
Using nonlinear features for fetal heart rate classification
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Abstract

Fetal heart rate (FHR) is used to evaluate fetal well-being and enables clinicians to detect ongoing hypoxia during delivery. Routine
clinical evaluation of intrapartum FHR is based on macroscopic morphological features visible to the naked eye. In this paper
we evaluated conventional features and compared them to the nonlinear ones in the task of intrapartum FHR classification. The
experiments were performed using a database of 217 FHR records with objective annotations, i.e. pH measurement. We have
proven that the addition of nonlinear features improves accuracy of classification. The best classification results were achieved
using a combination of conventional and nonlinear features with sensitivity of 73.4%, specificity of 76.3%, and F-measure of
71.9%. The best selected nonlinear features were: Lempel Ziv complexity, Sample entropy, and fractal dimension estimated by
Higuchi method. Since the results of automatic signal evaluation are easily reproducible, the process of FHR evaluation can
become more objective and may enable clinicians to focus on additional non-cardiotocography parameters influencing the fetus
during delivery.
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1. Introduction

Accurate evaluation of fetal status, based on available infor-
mation, is crucial when difficulties occur during delivery. Even
though a fetus is equipped with a defense mechanism to tackle
the delivery induced stress, in some cases only timely interven-
tion can prevent potential long-term consequences such as cere-
bral palsy, neuro-development disability, neonatal encephalopa-
thy or even death, resulting from excessively long oxygen insuf-
ficiency [1, 2].

The introduction of cardiotocography (CTG – recording of
fetal heart rate (FHR) and force/pressure of contractions) in the
1960’s was accompanied by great expectation since it offered
a new continuous fetal surveillance method. However, meta-
analysis of large multi-centric studies [3] did not prove any sig-
nificant improvements in the delivery outcomes. Some studies
even disproved any evidence of advantages of continuous mon-
itoring compared to intermittent one. Moreover, CTG became
the main suspect for an increased rate of cesarean sections [4].
Therefore, in 1986 CTG interpretation guidelines were intro-
duced in order to lower the number of asphyxiated neonates
as well as the number of cesarean sections [5, 6]. Nowadays
CTG remains the most prevalent method for intrapartum fe-
tal surveillance [7, 8], often supported by ST-analysis method
(Neoventa Medical, Sweden) which is based on analysis of fetal
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electrocardiogram (fECG). The introduction of additional ST-
analysis into the clinical practice improved the labor outcomes
slightly [9, 10] but its use is not always possible or feasible
since it requires invasive measurement.

A recently published paper [4] concluded that the weakness
of CTG still lies in a generally poor standard of interpretation
and the contribution of the human factor, demonstrated by high
intra and inter observer variability. Either more education and
training on CTG interpretation should be performed [1, 2] or
one should use a more cost-effective solution by developing a
decision support system serving as a source of additional infor-
mation [4].

First attempts for automatic analysis were completely based
on clinical guidelines for CTG assessment [5]. Recently, other
methods such as those derived from adults HRV research were
used for FHR analysis [11]. The statistical description of CTG
tracings was employed in [12] and in [11]. A short overview
of papers which analyzed the spectrum of FHR either an-
tepartum or intrapartum was published in [13]. An extension
of frequency analysis, the wavelet transform, was employed
in [14, 15]. Recently, a system identification approach to esti-
mate parameters from FHR and uterine pressures was described
in [16].

Use of nonlinear methods for FHR analysis has its roots
in adults HRV research. The measure of fractal dimension
was performed by [17, 18, 19]. Another attempt was to mea-
sure the length of FHR curve using the Higuchi method [20];
the different estimations of fractal dimension were reviewed
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by [21]. Probably the most successful nonlinear methods for
FHR analysis are approximate entropy (ApEn) and sample en-
tropy (SampEn). They are widely used for examination of non-
linear systems and also proved their applicability in FHR analy-
sis [22, 23, 24]. Another method for nonlinear analysis is Lem-
pel Ziv complexity used by [25].

For classification of the FHR many different approaches were
used, e.g. Support Vector Machines [15, 16, 26], hybrid ap-
proach utilizing grammatical evolution [27], and also conven-
tional methods, such as k-nn (k-nearest neighbors), ldc (linear
discriminant classifier), and qdc (quadratic discriminant classi-
fier) [26].

There are also several complete systems for fetal assessment.
Among the best known are: Omniview SisPorto R© developed at
University of Porto, Portugal [28] and the NST-Expert (Non-
Stress Test) and its successor CAFE (Computer Aided Fetal
Evaluation) [29]. Both systems use a holistic approach to CTG
evaluation including information about the state of the mother.
Processing of the FHR in these systems is mainly based on mor-
phological features provided by FIGO guidelines.

The purpose of our work is to distinguish between two
groups: normal fetuses and fetuses with developed acidemia.
The general idea of this paper is not novel; most of the features
were used in papers before (cited in previous paragraph) though
they were usually employed in ad-hoc settings and tested on
small datasets. In this paper we provide a general approach
using a sufficiently large dataset and we evaluate a comprehen-
sive set of features that originated from different domains. In
addition, we consider thoroughly the applicability of nonlinear
methods to FHR.

2. Data description

Data was acquired at the Dept. of Obstetrics and Gynaecol-
ogy of the General University Hospital in Prague during 2007
and 2009; all women signed informed consent. The FHR sig-
nals used in this work were measured using Neoventa’s STAN
S21 system.

Recordings were checked for patient anamnesis and only one
fold pregnancies delivered during the 38th – 42nd week of preg-
nancy were chosen for the final database. Umbilical artery pH
values were obtained to serve as objective evaluation of hy-
poxia. The neonatal acidemia is defined as pH below 7.05 –
these values were suggested in the work of Sundstrom [30].
Nevertheless there exist other works suggesting different values
7.10 [31], 7.15 [32]. Considering these facts and after consulta-
tion with obstetricians at the General University Hospital value
of pH lower than 7.15 was considered not normal – further re-
ferred to as pathological.

Our database contained 217 recordings. Arterial pH values
were available for all records and, based on pH threshold, 94
were considered as pathological. For comparison the expert
annotations were gathered, using an in-house developed anno-
tation system, from three experts in the field of obstetrics in
the Czech Republic. Two measures were used for evaluation:
intra-observer agreement as a percentage of consistently anno-
tated records to all annotations and inter-observer agreement as

a percentage of equally annotated records among the three ex-
perts to all annotations.

3. Signal preprocessing

Signals were measured either externally using Doppler ultra-
sound or internally by scalp electrode. Fetal heart rate recorded
externally has lower signal to noise ratio than that recorded in-
ternally but there is no clinical difference between these two
approaches.

Values of extracted features and further classification are
highly dependent on the quality of signal preprocessing. Pre-
processing steps could distort the data and add stochastic com-
ponents making the use of nonlinear methods unsuitable.

In our case, the preprocessing consisted of three main steps:
segment selection, artefacts removal and interpolation. An ap-
propriate segment should be chosen as close as possible to de-
livery because during the last minutes major changes in fetal
condition can occur. However, as it is shown in Figure 1, FHR
directly preceeding the delivery is largely contaminated with
artefacts and noise. Therefore, we evaluated the signal in terms
of quality and automatically chose a segment with sufficient
quality that is closest to delivery. Segments were 20 minutes
long, i.e. 4800 samples using 4 Hz sampling frequency.
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Figure 1: Raw record of CTG. (a) Fetal heart rate, (b) intrauterine pressure.

The FHR signal contains a lot of artefacts caused by mother
and fetal movements or displacements of the transducer. In gen-
eral, the amount of data being removed as artefacts or missing
values is in the range between 20% – 40% of all data. The al-
gorithm suggested by Bernades et al. [33] was used for artefact
removal. Any successive five beats with a difference lower than
10 bpm among them are considered as a stable segment. Then,
whenever the difference between adjacent beats is higher than
25 bpm, the sample is substituted by linear interpolation be-
tween the previous beat and the new stable segment. Thus, all
abrupt changes in FHR are removed and replaced. The result of
artefacts removal is presented in Figure 2.
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We used cubic Hermite spline interpolation [34], imple-
mented in MATLABr, to replace the missing data. We did not
compute across a gap [35] when the length of the missing data
was 20 seconds or more – the value obtained based on our ex-
periments. For the purpose of this paper cubic Hermite spline
interpolation was used for equidistant 4 Hz data re-sampling
since it is convenient for signal analysis and also it is the least
prone to errors when frequency spectrum is estimated [36]. The
spline interpolation also introduces nonlinearity, however, the
amount of nonlinearity should be approximately the same for
normal and pathological FHR.
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Figure 2: Removing of artefacts. (a) Raw signal with artefacts, (b) signal after
artefacts removal.

For the use of nonlinear methods signals were detrended us-
ing second order polynomial, estimated, such that uninteresting
trend was removed but interesting dynamics preserved. Also
we normalized signals to zero mean and unit variance.

Despite the stress caused by delivery, the FHR is also af-
fected by fetal activity (active and quiet state) as described
by [37]. Nevertheless, the fetus is mostly awake during deliv-
ery, therefore, we neglected changes in FHR caused by active-
quiet states. We also neglected sex differences of FHR since
we expected the difference between normal and pathological
fetuses to be more profound [38].

4. Conventional features

To be able to compare our results to those of clinical
praxis, we computed the morphological features introduced by
the FIGO guidelines [5]. These features describe shape and
changes of the FHR baseline such as baseline mean and me-
dian, number of accelerations and decelerations, long-term and
short term variability, interval index, etc. Detailed description
of these features is not the purpose of this paper and can be
found in [11, 32].

Another type of features were those used routinely in adult
HRV evaluation such as NN50, RMSSD, and Poincaré plot as
well as the frequency features describing the amounts of en-
ergy in different energy bins. The power spectral density was

estimated using the fast Fourier transform (FFT). For more in-
formation about statistical HRV features refer to [39] and about
frequency bands to [37]. Note that Poincaré plot is a nonlinear
feature that is commonly used in HRV; hence it is considered as
conventional. The nonlinear features were computed over the
whole 20 minutes segments of the preprocessed data.

5. Nonlinear features

The nonlinear approach may reveal relevant clinical informa-
tion of FHR hidden to conventional time series analysis. Gold-
berger et al. [40] observed that a human heart beat fluctuates
on different time scales and is self-similar; despite that there re-
mains ongoing controversy over whether a normal heart rate is
chaotic or not [41], tools used for examination of chaotic time
series could also be useful for FHR analysis. There exist sev-
eral approaches for nonlinear time series analysis; in this work
fractal dimension, entropy, and complexity measures were uti-
lized. When analyzing FHR by nonlinear methods we have to
be aware of at least two major pitfalls. First, FHR contains
stochastic components induced by motion artefacts and mea-
surement process especially when an external ultrasound elec-
trode is used for signal acquisition. These distortions could
severely damage the nature of FHR; therefore we used a surro-
gate data test to establish nonlinearity of FHR. Second, a certain
data length is necessary to reliably estimate values of nonlinear
methods. The required data length for each method is discussed
in the corresponding sections below.

5.1. Fractal dimension

There are two approaches to estimate dimension of a signal
either by direct measurement of the waveform or by operating
in reconstructed state space. The former approach considers a
signal in R2 as a geometric object and directly uses it with-
out any further transformation. On the other hand the state
space is reconstructed from coordinates representing the vari-
ables needed to specify the state of a dynamical system.

The state space can be reconstructed using Taken’s embed-
ding theorem [42]. It states that it is possible to reconstruct state
space from signal x(t) delayed by time τ as long as the embed-
ding dimension m is larger than 2d+1, where d is a box counting
dimension. x(t) → y(t) = [x(t), x(t + τ), . . . , x(t + (m − 1) · τ)].
Different choice of τ and m leads to different reconstruction.
We adopted a mutual information approach [43] to search τ and
considered a first marked minimum as the optimal time delay.
For examination of embedding dimension we can use the Cao’s
method [44]. However, the correlation dimension, D2, is invari-
ant to m. It is therefore convenient to estimate D2 for different
m, e.g. increasing from 2 to 16, and observe when a value of
D2 saturates. This approach is computationally less efficient but
minimizes errors introduced by a single m estimate. The state
space reconstruction from FHR for normal and pathological fe-
tus is shown in Figure 3; see figure caption for details.

There are many theories about required data length with a
general agreement that required data length increases exponen-
tially with data dimension. We followed data size requirements
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Figure 3: Fetal heart rate and state space reconstruction for normal and pathological fetus. The upper left and right signals represent fetal heart rate. The
corresponding state space is shown below. (a) FHR and state space for normal fetus. The optimal delay time was τ = 2.5 s. (b) FHR and state space for
pathological fetus. The optimal delay time was τ = 5 s. The low complexity of FHR for fetus with developed acidemia, (b), is clearly visible in both time and state
space. In the state space the delayed coordinates of FHR span less area thus showing reduced variability.

suggested by [45]; for estimating a dimension d, a minimum
data length Nmin = 10d/2 is required.

5.1.1. Correlation dimension
Correlation dimension D2 is based on an estimation of the

correlation sum C(r) which gives the probability that two ran-
domly chosen points are close to each other with a distance
smaller than r.

C(m, r) =
1

N(N − 1)

N∑
i

N∑
i> j

Θ(r − ‖yi − yj‖), (1)

where y are m-dimensional delay vectors, N the number of
points, and Θ is the Heaviside function: Θ(x) equals zero for
x < 0 and one for x ≥ 0. If we consider the limit when r
approaches zero (theoretically) the correlation dimension is es-
timated as: D2 = limr→0

log C(r)
log r . The D2 is usually estimated

as a slope on log-log plot where log C(r) is plotted as a func-
tion of log r. Since the D2 cannot be estimated for all radii we
used local slope approach to estimate a proper scaling region
(rl, ru). Also we employed Takens-Theiler estimator [46, 47]
which uses the maximum likelihood approach:

D2 =
C(ru) −C(rl)∫ ru

rl

C(r)
r dr

(2)

5.1.2. Box-counting dimension
The box-counting dimension expresses the relationship be-

tween the number of boxes that contain part of an object and
the size of the boxes. In the case of a signal, the minimal
number of boxes N of side length ε, needed to cover whole

signal is counted and then the side length of the boxes is de-
creased. The box counting dimension is estimated as follows:
D0 = limε→0

log N
log(1/ε) , though ε could not reach zero for real sig-

nal.

5.1.3. Higuchi’s dimension
The Higuchi method [48] calculates fractal dimension

from the estimated length of a signal. From an origi-
nal signal x(1), x(2), . . . , x(N) of length N a new signal,
Xm

k , is constructed: X(m), X(m + k), X(m + 2k), . . . , X(m +

[(N − m)/k]) (m = 1, 2, . . . , k), where [] denotes the Gauss’
notation, m defines the initial time, and k the time interval. The
k represents time displacement and the number of new created
subsets is equal to k. Then for each m the length Lm(k) of Xm

k is
computed. The length of the curve for time interval k, 〈L(k)〉, is
defined as the average value over k set of Lm(k):

〈L(k)〉 =

k∑
m=1

Lm(k)/k (3)

The computed curve length 〈L(k)〉 for different k is related
to the fractal dimension D by the exponential formula 〈L(k)〉 ∝
k−D. The fractal dimension is estimated as a slope of fitted re-
gression to log-log plot of 〈L(k)〉 versus k.

5.1.4. Variance dimension
The variance fractal dimension is based on properties of frac-

tional Brownian motion (fBm). Let the signal x(t) be continu-
ous in the time t and ∆t is the time increment. The variance
σ2 is related to the time increments ∆t of signal x(t) accord-
ing to the power law [49]. Var{∆x(tn,∆t)} =∝ |∆t|2H , where
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∆x(tn,∆t) = x(tn + ∆t)− x(tn) and H is the Hurst exponent com-
puted from a log-log plot using

H = lim
∆t→0

1
2

log Var{∆x(tn,∆t)}
log(∆t)

(4)

Finally, the variance dimension is defined as Dσ = E + 1 − H,
where E is the Euclidean dimension which is one for the time
series.

5.2. Approximate entropy
Entropy describes behavior of a system in terms of random-

ness, and quantifies information about underlying dynamics.
The approximate Entropy (ApEn) is able to distinguish low-
dimensional deterministic system, chaotic system, stochastic
and mixed systems [50]. It has its roots in the work of Grass-
berger and Procaccia [51] and Eckmann and Ruelle [52]. A
time series xn of length N is divided into a set of m-length
vectors um(i). Then the number of vectors um(i) and um( j),
close to each other, in an Euclidean sense d[um(i), um( j)] ≤ r,
is expressed by the number nm

i (r). This number is used to
calculate the probability of vectors being close according to
Cm

i (r) = nn
i /(N − m + 1). Let’s define the function Φm(r) =

1/(N −m + 1)
∑N−m+1

i=1 ln Cm
i (r). Consequently the ApEn can be

defined as

ApEn(m, r) = lim
N→∞

[Φm(r) − Φm+1(r)]. (5)

Generally, the tolerance r is r = (0.15; 0.2) · S D (S D
stands for standard deviation) and the embedding dimension
m = 2 [22]. ApEn is broadly applicable for a data series of
length N > 100 [50]. Nevertheless, this was suggested for a
wide spectrum of applications. In our case, a meaningful data
length for ApEn is N ≥ 1000.

5.3. Sample entropy
A slightly modified estimation of approximate entropy was

proposed by [53] and resulted in sample entropy (SampEn).
This estimation overcame the shortcomings of the ApEn mainly
because the self-matches are excluded. Secondly, conditional
probabilities are not estimated by a template-wise approach.
SampEn requires only that one template finds a match of length
m + 1. The calculation of SampEn is as follows:

S ampEn(m, r) = lim
N→∞

− ln
Cm+1(r)
Cm(r)

. (6)

The values for parameters r and m were the same as for the
ApEn. Also the data requirements hold.

5.4. Lempel Ziv complexity
The Lempel Ziv Complexity (LZC) [54] estimates reoccur-

ring patterns contained in the time series irrespective of time. A
periodic signal has the same reoccurring patterns and low com-
plexity while in random signal individual patterns are rarely re-
peated and signal complexity is high.

A signal, x(1), x(2), . . . , x(n), is encoded to form a sequence
S such that an increase in value, x(i + 1) > x(i), is encoded by

1 and decrease, x(i + 1) ≤ x(i), by 0. The algorithm counts dis-
tinct patterns in S ; for each new pattern the complexity c(n)
is increased by 1. By convention, when the last element of
S is reached, the c(n) is also increased by 1. The c(n) is de-
pendent on the length of the original sequence n. We used
the normalization form to avoid this dependence on the num-
ber of data points [54]. The normalized C(n) is defined as
C(n) = c(n) · log2(n)/n. Binary encoding was used in order
to avoid a dependence of results on quantification criteria and
normalization procedures. The required data length for binary
encoded data is 1000 samples [55].

6. Surrogate data test

Since the FHR is a signal with finite length, finite precision,
and, more importantly, is contaminated with noise, we per-
formed a surrogate data test. The surrogate data has the same
distribution and autocorrelation function as the original data but
the nonlinear properties are destroyed. We used iterative Am-
plitude Adjusted Fourier Transform method [56] with endpoint
matching to generate 39 surrogates and tested the null hypothe-
sis that the data originates from Gaussian linear stochastic pro-
cess. All methods were used as a discriminator between origi-
nal data and its surrogates; the level of significance was set to
p < 0.05.

7. Feature selection/ dimensionality reduction and classifi-
cation

7.1. Feature selection/ dimensionality reduction

Since we acquired 33 features in total (11 FIGO-like, 14
HRV-based, and 8 Nonlinear features) an automatic selection
of attributes was performed. First, features were separated
based on their ”origin” – thus we created four sets: FIGO-
like (morphological features based on FIGO-guidelines), HRV-
based (features inspired by adult HRV analysis features), Non-
linear (features described in Section 5), and features selected
from all domains (FS-Complete). Then, based on our experi-
ence, we employed three completely unrelated feature selec-
tion/ dimensionality reduction algorithms to produce a more in-
formative input to the classifier. Therefore we employed: Prin-
cipal component analysis (PCA) [57]; Information gain (Info-
Gain) [58] – both implemented in WEKA [58] – and Group of
adaptive models evolution neural network (GAME-NN) devel-
oped at the Czech Technical University in Prague [59].

The last step of the feature selection consisted of feature
meta-selection, where only features selected by at least two
methods were included in the final sets. The purpose of fea-
tures division based on their ”origin” was to prove that within
each group there are features with information value and, hence,
their computations were performed correctly.

7.2. Feature classification and performance evaluation

The different features sets were used to train the following
classifiers: Naive Bayes, Support Vector Machine (SVM), and
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Figure 4: Distributions of selected features; 0-normal class, 1-pathological class.

C4.5 decision tree; all implemented in WEKA [58]. The de-
scription of these methods could be found e.g in [60]. Using
10-fold cross validation the best parameters for the SVM (ra-
dial basis function kernel) were sought: the radius γ = 1/2σ2

and cost parameter C.
The most common measures for the evaluation of experi-

mental results are: sensitivity, specificity, and F-measure. The
F-measure is computed using precision (= positive predictive
value) PR = T P/(T P + FP) and recall (= sensitivity) RE =

T P/(T P + FN):

Fβ =
(1 + β2)(PR · RE)
β2 · PR + RE

. (7)

Parameters TP, FP, and FN stand for true positive, false posi-
tive and false negative, respectively. The parameter β is usually
set to one. This means that precision and recall have equal pri-
ority. Another useful measure is receiver operator curve (ROC)
and the area under this curve (AUC). The ROC defines the re-
lationship between sensitivity and specificity for the model pa-
rameters. Given the ROC and AUC we can estimate which pa-
rameters are the best for modeling and if the model is suitable
for the task in the first place. The experimental results were
computed using 10-fold cross validation.

The difference between individual classifiers trained using
different feature sets should be statistically confirmed. Al-
though there is no unified framework the use of McNemar’s test
is recommended [61]. However, when dealing with a relatively
small dataset (217 records in our case) there is not enough data
to acceptably minimize both errors: (i) when estimating classi-
fication performance, (ii) in statistical testing. Apparently, the
better way is to minimize the former error and refrain from sta-
tistical testing.

8. Results

The FHR signals were analyzed by conventional and non-
linear methods. For the correlation dimension, D2, we found
optimal time delay to be equal to τ = 3.9± 2.5s. We performed
the surrogate data test with all methods as discriminators and
rejected the null hypotheses that data originate from Gaussian
linear stochastic process on p < 0.05.

We performed feature selection for each group of features
with the results presented in Table 1. The distributions of fea-
tures from the FS-Complete set are present in Figure 4. The
discrimination between normal and pathological examples is

most apparent for features: Poincaré SD2, SampEn(2, 0.20),
and LZC. The projection of the 7-dimensional feature space
(FS-Complete set features) into 2-dimensional space was per-
formed by a self organizing map [62, 63] (20x20 units in hexag-
onal topology and Gaussian neighborhood trained for 200 iter-
ations of rough training phase and 200 iterations of fine tun-
ing phase; a sequential training algorithm was used). This map
is shown in Figure 5; the discrimination between pathological
(red) and normal (green) examples is clearly visible, however
there are also a number of cases that could not be easily sepa-
rated. This corresponds to the classification accuracy shown in
Table 3 below.

Figure 5: Projection of 7-dimensional FS-Complete feature set using self orga-
nizing map into 2-dimensions. green – normal class, red – pathological class,
grey scale represents distance between examples.

Table 1: Selected features organized by their origin: FIGO-like, HRV-based;
Nonlinear, FS-Complete.

Feature set Selected features
FIGO-like baselineSD, meanII
HRV-based Poincaré SD2, LF/(HF + MF), energyLF, ener-

gyMF, energyVLF
Nonlinear SampEn(2,0.20), LZC, FdVariance, FdHiguchi
FS-Complete baselineSD, Poincaré SD2, LF/(HF + MF), en-

ergyMF, SampEn(2,0.20), LZC, FdHiguchi

We found optimal settings for SVM (radial basis function
kernel): γ = 0.01, cost parameter C = 14. Results for all fea-
tures and with nonlinear features excluded are presented in Ta-
ble 2. Classification results for each feature set, described in
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Table 1, are shown in Table 3. Results based on the expert’s
annotations for the same data are presented in Table 4 for com-
parison.

Table 2: Classification results for all features and with nonlinear features ex-
cluded.

Feature set All in [%] NaiveBayes SVM C4.5 Tree

All features

Sensitivity 67.0 66.0 55.3
Specificity 75.6 78.9 71.5
Precision 67.7 70.5 59.8
F-measure 67.4 68.0 57.5
AUC 0.74 0.74 0.63

Nonlinear
features
excluded

Sensitivity 60.6 53.2 54.3
Specificity 71.5 78.9 69.9
Precision 62.0 65.8 58.0
F-measure 61.3 58.7 56.0
AUC 0.69 0.74 0.64

Table 3: Classification results for selected features from different groups:
FIGO-like, HRV-based; Nonlinear, FS-Complete.

Feature set All in [%] NaiveBayes SVM C4.5 Tree

FIGO-like

Sensitivity 66.0 53.2 55.3
Specificity 68.3 81.3 65.9
Precision 61.4 68.5 55.3
F-measure 63.6 64.2 55.3
AUC 0.70 0.71 0.60

HRV-based

Sensitivity 44.7 56.4 59.6
Specificity 82.1 83.6 69.9
Precision 65.6 72.5 60.2
F-measure 53.2 67.4 59.9
AUC 0.71 0.73 0.60

Nonlinear

Sensitivity 68.9 70.1 53.3
Specificity 73.2 78.1 85.0
Precision 64.6 71.0 71.6
F-measure 66.7 70.6 61.1
AUC 0.74 0.75 0.68

FS-
Complete

Sensitivity 72.3 73.4 60.6
Specificity 75.6 76.3 71.5
Precision 69.4 70.3 62.0
F-measure 70.8 71.9 61.3
AUC 0.75 0.78 0.68

When the nonlinear features were excluded and only con-
ventional features were used the classification performance de-
creased as is shown in Table 2. The best results were achieved
using the SVM with FS-Complete feature set, shown in bold in
Table 3.

9. Discussion

When analyzing the FHR one has to be aware of its proper-
ties especially when using nonlinear methods. As an example
we can use correlation dimension D2. The values of D2 for all
records D2 = 2.42 ± 0.61 were low in comparison to D2 ≈ 6 of
adult HRV [64]. There are two possible explanations. First, the
RR intervals from external (ultrasound) records were corrupted

Table 4: Classification results of clinicians when comparing their evaluation of
FHR to objective pH annotation.

All in [%] Expert #1 Expert #2 Expert #3
Sensitivity pH 34.4 49.0 40.5
Specificity pH 14.1 16.2 8.6
Intra-observer agreement 70.7 56.1 76.7
Inter-observer agreement
between the three experts

80.5

by the measurement process, such as quantization, filtering, and
averaging. To be more specific, the external monitoring uses
Doppler ultrasound for fetal heart beat detection which are usu-
ally determined from a periodicity of Doppler envelope using
autocorrelation function. This function tends to average slight
successive changes of heart beats resulting in loss of FHR vari-
ability [65]. Second, during the preprocessing stage, artefacts
were linearly interpolated, i.e. a possible complex behavior was
replaced by a line. Both factors may contribute to decreased
value of D2. Nevertheless, the nonlinear methods are still ap-
plicable since the surrogate date test showed significant differ-
ence between FHR and its surrogates on p < 0.05. However,
there is also a limitation to the surrogate test due to nonlinearity
introduced by the cubic spline interpolation.

Regarding the classification results there are two important
questions that need to be carefully considered. How to interpret
the results acquired and presented in Tables 2, 3, and 4? How
to relate them to the works already done? The answer is not
straightforward since there are two quite distinct approaches to
processing and classification of the FHR signal intrapartum.

The first one is a more technical approach that uses the ob-
jective evaluation of the data. This approach was used in many
papers during the last decade and was also adopted in this pa-
per. Our results of 73.4% sensitivity, 76.3% of specificity, and
F-measure 71.9% compare favourably to those of [26, 66] es-
pecially considering the small sample size they used. However,
this technical approach suffers from, at least, two major draw-
backs. The relation of hypoxia to the fetal cord arterial pH after
delivery is widely discussed in several papers [31]. The pre-
dominant conclusion is that only an overall examination of the
baby at about four years of age can bring a confident enough
conclusion on the occurrence of effective asphyxia during the
delivery. In addition, in many cases where timely interventions
based on suspect/pathological FHR signal is made, the arterial
pH values of the instrumentally delivered baby will be above
the pathological threshold.

A second approach to the evaluation of FHR recordings is
to acquire expert evaluation of signals and use the classifica-
tion process to try to adopt an expert behavior. Nevertheless,
this approach has several drawbacks as well. First, the inter
and even the intra observer variabilities are quite substantial as
presented in Table 4. Second, the experts categorize the sig-
nals usually according to FIGO-based guidelines into the three
classes (normal, suspect, and pathological). Large subset of
signals are evaluated as suspect, but suspect class does not exist
after delivery, there is usually normal or (possibly) asphyxiated
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baby (about whom, there will likely not be any decisive proof
for at least the next several months). Moreover, in the clinical
practice there is always additional information involved in the
decision making process – pushing the decision process more
in one direction.

10. Conclusion

This paper, for the first time, evaluates the behavior of the
full set of nonlinear methods on one reasonably large database.
In addition we considered the usability of these methods with
respect to FHR properties. We compared a full spectrum of
nonlinear features to the conventional features already used in
other papers, and we showed that classification based on fea-
ture sets including nonlinear features performs the best. It also
performs on-par with the best results obtained in other works
such as [26, 66].

The evaluation of FHR still remains subjective [67]. Clini-
cians say that they use conventional features like accelerations,
decelerations, and variability though there is a contributing fac-
tor of pattern-like memory acquired during working experience.
In contrast to the previous works, we proved that nonlinear fea-
tures are useful in combination with conventional ones on a
large database.

To be able to affect the way the data is processed in the clini-
cal settings there is a need to include additional information de-
scribing the environment in which the FHR signal is acquired
(maternal preexisting condition, drugs used, length of delivery
etc.) which are an integral part of the obstetrician’s decision
making progress. Nevertheless, it is evident that proper pro-
cessing of the FHR will remain an important part of any future
decision support system.
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