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Outline of the talk:

¢ Decision making methods taxonomy. ¢ Towards non-parametric estimates.
¢ Max. likelihood vs. MAP methods. ¢ Parzen window method.

¢ Histogramming as a core idea. ¢ k,,-nearest-neighbor method.
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® Parametric methods are good for estimating parameters of unimodal probability densities.

® Many practical tasks correspond to multimodal probability densities, which can be only rarely
modeled as a mixture of unimodal probability densities.
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¢ Nonparametric method can be used for multimodal densities without the requirement to
assume a particular type (shape) of the probability distribution.

There is the price to pay: more training data is needed.
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¢ Consider the observation z € X and the hidden parameter y € Y
(a class label in a special case).

@ In the Naive Bayes classification and in the parametric density estimation methods, we
assume knowing either
e The likelihoods (also class-conditional probabilities) p(z|y;), or
e their parametric form (cf. parametric density estimation methods explained already).
¢ Instead, nonparametric density estimation methods obtain the needed probability distribution
from data without assuming a particular form of the underlying distribution.
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Courtesy: Ricardo Gutierrez-Osuna, U of Texas
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@ There are two groups of methods enabling to estimate the probability density function:

1. The likelihood, i.e. the class-conditional probability density p(x|y;) depends on a
particular hidden parameter ;. The (maximal) likelihood is estimated using sample

patterns, e.g., a by the histogram method, Parzen window method (also called the kernel
smoothing function).

2. Maximally aposteriori probability (MAP) p(y;|x) methods, e.g., the nearest neighbor
methods.

MAP methods bypass the probability density estimation. Instead, they estimate the
decision rule directly.
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¢ Divide the sample (events) space to quantization bins of the width A.

¢ Approximate the probability distribution function at the center of each bin by the fraction of
points in the dataset that fall into a corresponding bin. h is the width of the bin.

. 1 count of samples in the particular bin
plz) = -

h total number of samples

¢ The histogram method requires defining two parameters, the bin width h and the starting
position of the first bin.

p(x) p(x)

(@) (®)
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Disadvantages of histogram-based estimates

@ Discontinuities in the probability distribution estimates depend on the quantization bins
density instead of the probability itself.

¢ Curse of dimensionality:
e A fine representation requires many quantization bins.
e The number of bins grows exponentially with the number of dimensions.
e When not enough data is available, most of quantization bins remain empty.

® These disadvantages make the histogram-based probability density estimate useless with the
exception of the fast data visualization in dimension 1 or 2.
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Nonparametric estimates, ideas (1) @
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¢ Consider a dataset X € X', X = {x1,22,...,Tm}.

¢ Consider outcomes of experiments, i.e., samples  of a random variable.
AP(X)

P(x)
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¢ The probability that the sample = appears in a bin R (or more generally in a region R in
multidimensional case) is P = Pr|z € R| = fp

¢ Probability P is a smoothed version of the probability distribution p(x).
@ Inversely, the value p(x) can be estimated from the probability P.
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¢ Suppose that n samples (vectors) x1, x2, ... x, are drawn from the probability distribution.
We are interested, which £ of these vectors fall in the particular discretization bin. Such a
situation is described by the binomial distribution.

¢ A binomial experiment is a statistical experiment with the following properties:

e The experiment consists of n repeated trials.

e Each trial can result in just two possible outcomes (e.g. success, failure; yes, no; In our
case, if a sample x;, i = 1,...n, falls in a particular discretization bin).

e The trials are independent, i.e., the outcome of a trial does not effect other trials.

e The probability of success P is the same on every experiment.
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The probability that k& of n samples fall in the particular discretization bin is given by the
binomial distribution

Py = () p*1-pr*, 0<k<n,

where the binomial coefficient, i.e., the number of combinations is (Z’) = #‘_k), for k <n
and zero otherwise.

Note that a k-combination is a selection of k items from a collection of n items, such that
the order (unlike permutations) of selection does not matter.

Binomial distribution is rather sharp at its expected value. It can be expectated that % will be
a good estimate of the probability P and consequently of the probability density p.

The expected value £(k) = nP; Consequently, P = %
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® 1 is a point within the quantization bin R. We repeat from slide 8:
P =Pr[z € R] = fp

@ Let assume the quantization bin R is small; V' is the volume enclosed by R. p(-) hardly varies
within R. P ~ p(x) V.

¢ P= ( ) and P ~ p(x) V. Consequently, p(x) =

<_|3|m

¢ X follows the binomial probability distribution, see slide 10. X peaks sharply about £(X) for
large enough n.

® Let k be the actual value of X after observing the i.i.d. examples x1, zo,...x,. The
consequence is that k ~ £[X].

<.:|3|?r

@ It implies from the previous two items: p(x) =
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Parzen windows vs. k,,-nearest neighbor

¢ We like to show the explicit relation to the number n of elements in the dataset (training
samples in a special case in pattern recognition). We will denote the related quantities by the

subscript n.

¢ Recall:
R is the quantization bin. k,, is the number of samples falling into R.
p(x) is the probability that the sample z falls into the bin R.
R — R, (containing x)

kn kn
px) =< —  pal®) =

Two basic probability density methods can be introduced:
® Parzen windows method: Fix the volume V,, and determine k,,.

® [, -nearest-neighbor method: fix k,, and determine V/,.
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Parzen window (1)

ki
pn(x) = v Fix the volume V,, and determine k,,.

Assume R,, is a d-dimensional hypercube. The length of each
edge is h,,. It implies V,, = h¢.

Determine k,, with a Parzen window function (also called kernel
smoothing function or potential function).

One possiblity: a hypercube window function

(1 <k oj=1,...d
p(u) = { 0 otherwise

¢(u) defines a unit hypercube centered at the origin.

P (X;:z> =1, i.e., x; falls within the hypercube of volume V,
centered at X.

Emanuel Parzen
(1929-2016)

Photo from 2006
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Parzen window (2)
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¢ Combining p,,(z) = % and ky, =

n

Tl

n
> (X;:‘) results in Parsen pdf
i=1

Pn(x) = Z P (X_Xi), i.e. an average of functions of x and x;.

V, = he;

1
go( ) is a pdf function = p,, is also a pdf function.
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® The window function ¢(+) is not limited to a hypercube wmdow function from Slide 13. (-)

can be any probability distribution function; ¢(u)

‘fpn )dx = Vn;f@(

X—X;

window
function

_1_

window

width

h

_1_

du—%éfgo(u) du=1

) > 0; [ (u)

) dx = (lntegratlon by substitution u = h:@) —

du=1.

training data x;

Parzen pdf p, ()
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¢ Simplification by the substitution §,,(x) = V% © (i) yields p,(x) =+ 3 0,(x — x;)

e p,(x) is a superposition of n interpolants.

e x; contributes to p,(x) based on its “distance” from x, i.e. x — x;.

What is the effect of the window width h,, on the Parzen probability distribution function?
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What is the effect of “window width” A,
on the Parzen probability density function?

1 X 1 X
=70 (5) =7 # (o)

¢ ;%d affects the amplitude (also vertical scale).
¢ = affects the width (also horizontal scale).
For o(()u): For 6,,(p(x):
lo(i)| < a (amplitude) = | |0.(x)] < h%
\uj|§bj (Wldth),]:1,...,d. = |$J|<h b .,d.

f5 )dx = f nd ¥ ( ) dx = (lntegratlon by substitution u = hi =

[ 7z p(w) hifdu = [ p(u)du =1

16/23
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Case one: Case two:
If h, increases = the amplitude (vertical scale) If h, decreases = the amplitude (vertical scale)
decreases and the function width (horizontal scale) increases and the function width (horizontal scale)
Increases. Increases.

Example 1: The influence of h on the shape of §,,(x) for a single 2D Gaussian
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] — 1 %
pulx) = = 3 6u(x = x;), where 6,(x) = 5 (h_>
1=1 n n

¢ If h,, is very large then d,,(x) is broad with small amplitude. p,, is a superposition of n broad,
smooth functions with low resolution.

@ If h,, is very small then 6,,(x) is sharp with large amplitude. p,, is a superposition of n sharp
functions with high resolution.

One has to find a compromise value of h,, for limited number of training examples.
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¢ Parsen probability distribution function p,,(x), cf. Slide 14,

kn
pn(X) — VL

® Fix the number of data occurrences k,, in a quantization bin. = Determine the volume V/,. of
the quantization bin,

¢ The procedure:

Specify k,, — Center a cell about x — Grow the cell until capturing k,, nearest examples —
Return the cell volume V,.

® The principled rule to specify k,,, page 175 Duda, Hart, Stork 2001:
lim k,, = oo; lim %" =
n—oo n—oo

¢ A rule of thumb for the choice for k,,: k,, = v/n.
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pilx)
Example 1: J
Eight points in one dimension; (n =1; d = 1).

® red curve: k, = 3
¢ black curve: k,, =5

Example 2:
31 points in two dimensions; (n = 31; d = 2)

¢ Black surface: k,, = 5
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Let the data speak for themselves.

Parametric methods are not considered for class-conditional probability p(z|y;) (also
likelihood) density functions because it can be a multimodal function. Notation reminder:
x € X is the observation and y € Y is the hidden parameter (class label in the more special
case).

Estimate the class-conditional pdf from training examples. Make predictions based on Bayes
formula.

Fundamental result in probability density function estimation:

D = , Where

SRE

e V), is a volume of region R,, containing X,
e n is the number of training examples,
® k, is the number of training examples falling within R,,.
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Notation reminder: n is the number of elements in the dataset. k,, is the number of data
occurrences in a particular quantization bin. V,, is the volume of this bin ¢(+) is a Parzen
window function.

Fix the volume V,, of the quantization bin = Determine the number of data occurrences k,,
in a bin.

Effect of the Parzen window width h,,. A compromised value for a fixed number of training
samples has to be determined.

Parzen window function (-) is a pdf function = p,, is also a pdf function.

po(%) = = zn: 5,.(x — %;), where 6, (x) = hig ; (%)

1=1

window . window 3
function width "

+ | training data x; | = | Parzen pdf p,(-)
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¢ Parsen probability distribution function p,,(x), cf. Slide 14,

kn
pn(x) = VL

® Fix the number of data occurrences k,, in a quantization bin. = Determine the volume V,,. of
the quantization bin,

¢ The procedure:

Specify k,, — Center a cell about x — Grow the cell until capturing k,, nearest examples —
Return the cell volume V,.

¢ A rule of thumb for the choice for k,,: k,, = v/n.
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