
Nonparametric probability density estimation
Václav Hlaváč

Czech Technical University in Prague
Czech Institute of Informatics, Robotics and Cybernetics

160 00 Prague 6, Jugoslávských partyzánů 1580/3, Czech Republic
http://people.ciirc.cvut.cz/hlavac, vaclav.hlavac@cvut.cz

also Center for Machine Perception, http://cmp.felk.cvut.cz

Courtesy: Vojtěch Franc, Min-Ling Zhang. Book Duda, Hart, Stork, 2001.

Outline of the talk:
� Decision making methods taxonomy.

� Max. likelihood vs. MAP methods.

� Histogramming as a core idea.

� Towards non-parametric estimates.

� Parzen window method.

� kn-nearest-neighbor method.
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Decision making methods taxonomy
according to statistical models

http://cmp.felk.cvut.cz
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Unimodal and multimodal probability densities

� Parametric methods are good for estimating parameters of unimodal probability densities.
� Many practical tasks correspond to multimodal probability densities, which can be only rarely
modeled as a mixture of unimodal probability densities.

� Nonparametric method can be used for multimodal densities without the requirement to
assume a particular type (shape) of the probability distribution.

There is the price to pay: more training data is needed.

http://cmp.felk.cvut.cz
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Nonparametric density estimation

� Consider the observation x ∈ X and the hidden parameter y ∈ Y
(a class label in a special case).

� In the Naïve Bayes classification and in the parametric density estimation methods, we
assume knowing either
• The likelihoods (also class-conditional probabilities) p(x|yi), or
• their parametric form (cf. parametric density estimation methods explained already).

� Instead, nonparametric density estimation methods obtain the needed probability distribution
from data without assuming a particular form of the underlying distribution.

Courtesy: Ricardo Gutierrez-Osuna, U of Texas

http://cmp.felk.cvut.cz
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Nonparametric density estimation methods; two task types

� There are two groups of methods enabling to estimate the probability density function:

1. The likelihood, i.e. the class-conditional probability density p(x|yi) depends on a
particular hidden parameter yi. The (maximal) likelihood is estimated using sample
patterns, e.g., a by the histogram method, Parzen window method (also called the kernel
smoothing function).

2. Maximally aposteriori probability (MAP) p(yi|x) methods, e.g., the nearest neighbor
methods.
MAP methods bypass the probability density estimation. Instead, they estimate the
decision rule directly.

http://cmp.felk.cvut.cz
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Idea = counting the occurrence frequency ⇒ histogram
� Divide the sample (events) space to quantization bins of the width h.
� Approximate the probability distribution function at the center of each bin by the fraction of
points in the dataset that fall into a corresponding bin. h is the width of the bin.

p̂(x) =
1

h
· count of samples in the particular bin

total number of samples

� The histogram method requires defining two parameters, the bin width h and the starting
position of the first bin.

http://cmp.felk.cvut.cz
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Disadvantages of histogram-based estimates

� Discontinuities in the probability distribution estimates depend on the quantization bins
density instead of the probability itself.

� Curse of dimensionality:

• A fine representation requires many quantization bins.

• The number of bins grows exponentially with the number of dimensions.

• When not enough data is available, most of quantization bins remain empty.

� These disadvantages make the histogram-based probability density estimate useless with the
exception of the fast data visualization in dimension 1 or 2.

http://cmp.felk.cvut.cz
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Nonparametric estimates, ideas (1)

� Consider a dataset X ∈ X , X = {x1, x2, . . . , xm}.
� Consider outcomes of experiments, i.e., samples x of a random variable.

P(x)

P(x)

R

x
xxxxx x xx xxx x x x x x xx xx xxx x xxxxxxxx x x x x x x xx xxx

x

� The probability that the sample x appears in a bin R (or more generally in a region R in
multidimensional case) is P = Pr[x ∈ R] =

∫
R

p(x′) dx′.

� Probability P is a smoothed version of the probability distribution p(x).
� Inversely, the value p(x) can be estimated from the probability P .

http://cmp.felk.cvut.cz
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Nonparametric estimates, ideas (2)

� Suppose that n samples (vectors) x1, x2, . . . xn are drawn from the probability distribution.
We are interested, which k of these vectors fall in the particular discretization bin. Such a
situation is described by the binomial distribution.

� A binomial experiment is a statistical experiment with the following properties:

• The experiment consists of n repeated trials.
• Each trial can result in just two possible outcomes (e.g. success, failure; yes, no; In our

case, if a sample xi, i = 1, . . . n, falls in a particular discretization bin).
• The trials are independent, i.e., the outcome of a trial does not effect other trials.
• The probability of success P is the same on every experiment.

http://cmp.felk.cvut.cz
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Nonparametric estimates, ideas (3)

� The probability that k of n samples fall in the particular discretization bin is given by the
binomial distribution

P (k) =

(
n

k

)
pk (1− p)n−k , 0 ≤ k ≤ n ,

where the binomial coefficient, i.e., the number of combinations is
(
n
k

)
= n!

k! (n−k)! for k ≤ n
and zero otherwise.

Note that a k-combination is a selection of k items from a collection of n items, such that
the order (unlike permutations) of selection does not matter.

� Binomial distribution is rather sharp at its expected value. It can be expectated that kn will be
a good estimate of the probability P and consequently of the probability density p.

� The expected value E(k) = nP ; Consequently, P = E(k)n .

http://cmp.felk.cvut.cz
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Nonparametric estimates, ideas (4)

� x is a point within the quantization bin R. We repeat from slide 8:
P = Pr[x ∈ R] =

∫
R

p(x′) dx′.

� Let assume the quantization bin R is small; V is the volume enclosed by R. p(·) hardly varies
within R. P ' p(x)V .

� P = E(k)n and P ' p(x)V . Consequently, p(x) =
E
n
V .

� X follows the binomial probability distribution, see slide 10. X peaks sharply about E(X) for
large enough n.

� Let k be the actual value of X after observing the i.i.d. examples x1, x2, . . . xn. The
consequence is that k ' E [X].

� It implies from the previous two items: p(x) =
k
n
V .

http://cmp.felk.cvut.cz
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Parzen windows vs. kn-nearest neighbor

� We like to show the explicit relation to the number n of elements in the dataset (training
samples in a special case in pattern recognition). We will denote the related quantities by the
subscript n.

� Recall:
R is the quantization bin. kn is the number of samples falling into R.
p(x) is the probability that the sample x falls into the bin R.
R → Rn (containing x)

p(x) =
kn
n
V → pn(x) =

kn
n
Vn

Two basic probability density methods can be introduced:
� Parzen windows method: Fix the volume Vn and determine kn.
� kn-nearest-neighbor method: fix kn and determine Vn.

http://cmp.felk.cvut.cz
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Parzen window (1)

� pn(x) =
kn
n
Vn

; Fix the volume Vn and determine kn.
� Assume Rn is a d-dimensional hypercube. The length of each
edge is hn. It implies Vn = hdn.

� Determine kn with a Parzen window function (also called kernel
smoothing function or potential function).

� One possiblity: a hypercube window function

ϕ(u) =

{
1 |uj| ≤ 1

2; j = 1, . . . d
0 otherwise

� ϕ(u) defines a unit hypercube centered at the origin.
ϕ
(
x−xi
hn

)
= 1, i.e., xi falls within the hypercube of volume Vn

centered at x.

Emanuel Parzen
(1929-2016)

Photo from 2006

kn =

n∑
i=1

ϕ

(
x− xi
hn

)

http://cmp.felk.cvut.cz
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Parzen window (2)

� Combining pn(x) =
kn
n
Vn

and kn =
n∑
i=1

ϕ
(
x−xi
hn

)
results in Parsen pdf

pn(x) =
1
n

n∑
i=1

1
Vn
ϕ
(
x−xi
hn

)
, i.e. an average of functions of x and xi.

Vn = hdn; ϕ(·) is a pdf function ⇒ pn is also a pdf function.
� The window function ϕ(·) is not limited to a hypercube window function from Slide 13. ϕ(·)
can be any probability distribution function; ϕ(u) ≥ 0;

∫
ϕ(u) du = 1.

�
∫
pn(x) dx = 1

nVn

n∑
i=1

∫
ϕ
(
x−xi
hn

)
dx =

(
integration by substitution u = x−xi

hn

)
=

1
nVn

n∑
i=1

∫
hdnϕ(u)du = 1

n

n∑
i=1

∫
ϕ(u)du = 1

window
function ϕ(·) + window

width hn + training data xi ⇒ Parzen pdf pn(·)

http://cmp.felk.cvut.cz
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Parzen window, superposition, distance

� Parsen probability distribution function (repeated from Slide 14): pn(x) = 1
n

n∑
i=1

1
Vn
ϕ
(
x−xi
hn

)
� Simplification by the substitution δn(x) = 1

Vn
ϕ
(

x
hn

)
yields pn(x) = 1

n

n∑
i=1

δn(x− xi)

• pn(x) is a superposition of n interpolants.

• xi contributes to pn(x) based on its “distance” from x, i.e. x− xi.

What is the effect of the window width hn on the Parzen probability distribution function?

http://cmp.felk.cvut.cz
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What is the effect of “window width” hn

on the Parzen probability density function?

δn(x) =
1

Vn
ϕ

(
x

hn

)
=

1

hdn
ϕ

(
x

hn

)
� 1
hdn

affects the amplitude (also vertical scale).
� x
hn

affects the width (also horizontal scale).

For ϕ(()u): For δn(ϕ(x):
|ϕ(i)| ≤ a (amplitude) ⇒ |δn(x)| ≤ a

hn

|uj| ≤ bj (width), j = 1, . . . , d. ⇒ |xj| ≤ hn · bj, j = 1, . . . , d.∫
δn(x) dx =

∫
1
hdn
ϕ
(

x
hn

)
dx =

(
integration by substitution u = x

hn

)
=∫

1
hdn
ϕ(u)hdndu =

∫
ϕ(u)du = 1

http://cmp.felk.cvut.cz
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Effect of “window width: hn” (2)

Case one:
If hn increases ⇒ the amplitude (vertical scale)
decreases and the function width (horizontal scale)
increases.

Case two:
If hn decreases ⇒ the amplitude (vertical scale)
increases and the function width (horizontal scale)
increases.

Example 1: The influence of h on the shape of δn(x) for a single 2D Gaussian

Example 2: The influence of h on the shape of δn(x) consisting of five 2D Gaussians

http://cmp.felk.cvut.cz
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Effect of “window width”: hn (3)

pn(x) =
1

n

n∑
i=1

δn(x− xi), where δn(x) =
1

hdn
ϕ

(
x

hn

)
� If hn is very large then δn(x) is broad with small amplitude. pn is a superposition of n broad,
smooth functions with low resolution.

� If hn is very small then δn(x) is sharp with large amplitude. pn is a superposition of n sharp
functions with high resolution.

One has to find a compromise value of hn for limited number of training examples.

http://cmp.felk.cvut.cz
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kn-Nearest Neighbor

� Parsen probability distribution function pn(x), cf. Slide 14,

pn(x) =
kn
n

Vn

� Fix the number of data occurrences kn in a quantization bin.⇒ Determine the volume Vn. of
the quantization bin.

� The procedure:
Specify kn → Center a cell about x → Grow the cell until capturing kn nearest examples →
Return the cell volume Vn.

� The principled rule to specify kn, page 175 Duda, Hart, Stork 2001:
lim
n→∞

kn =∞; lim
n→∞

kn
n =∞

� A rule of thumb for the choice for kn: kn =
√
n.

http://cmp.felk.cvut.cz
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kn-Nearest Neighbor, examples

Example 1:
Eight points in one dimension; (n = 1; d = 1).

� red curve: kn = 3

� black curve: kn = 5

Example 2:
31 points in two dimensions; (n = 31; d = 2)

� Black surface: kn = 5

http://cmp.felk.cvut.cz
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Summary (1)

� Let the data speak for themselves.
� Parametric methods are not considered for class-conditional probability p(x|yi) (also
likelihood) density functions because it can be a multimodal function. Notation reminder:
x ∈ X is the observation and y ∈ Y is the hidden parameter (class label in the more special
case).

� Estimate the class-conditional pdf from training examples. Make predictions based on Bayes
formula.

� Fundamental result in probability density function estimation:

pn =
kn
n

Vn
, where

• Vn is a volume of region Rn containing x,
• n is the number of training examples,
• kn is the number of training examples falling within Rn.

http://cmp.felk.cvut.cz
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Summary (2), Parzen window

� Notation reminder: n is the number of elements in the dataset. kn is the number of data
occurrences in a particular quantization bin. Vn is the volume of this bin ϕ(·) is a Parzen
window function.

� Fix the volume Vn of the quantization bin ⇒ Determine the number of data occurrences kn
in a bin.

� Effect of the Parzen window width hn. A compromised value for a fixed number of training
samples has to be determined.

� Parzen window function ϕ(·) is a pdf function ⇒ pn is also a pdf function.

pn(x) =
1

n

n∑
i=1

δn(x− xi), where δn(x) =
1

hdn
ϕ

(
x

hn

)

�
window
function ϕ(·) + window

width hn + training data xi ⇒ Parzen pdf pn(·)

http://cmp.felk.cvut.cz
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Summary (3), kn-nearest neighbor

� Parsen probability distribution function pn(x), cf. Slide 14,

pn(x) =
kn
n

Vn

� Fix the number of data occurrences kn in a quantization bin.⇒ Determine the volume Vn. of
the quantization bin.

� The procedure:
Specify kn → Center a cell about x → Grow the cell until capturing kn nearest examples →
Return the cell volume Vn.

� A rule of thumb for the choice for kn: kn =
√
n.

http://cmp.felk.cvut.cz
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