Nonparametric probability density estimation

Václav Hlaváč

Czech Technical University in Prague Czech Institute of Informatics, Robotics and Cybernetics 160 00 Prague 6, Jugoslávských partyzánů 1580/3, Czech Republic http://people.ciirc.cvut.cz/hlavac, vaclav.hlavac@cvut.cz also Center for Machine Perception, http://cmp.felk.cvut.cz *Courtesy: Vojtěch Franc, Min-Ling Zhang. Book Duda, Hart, Stork, 2001.*

Outline of the talk:

- Decision making methods taxonomy.
- Max. likelihood vs. MAP methods.
- Histogramming as a core idea.

- Towards non-parametric estimates.
- Parzen window method.
- k_n -nearest-neighbor method.

Decision making methods taxonomy according to statistical models

Unimodal and multimodal probability densities

- Parametric methods are good for estimating parameters of unimodal probability densities.
- Many practical tasks correspond to multimodal probability densities, which can be only rarely modeled as a mixture of unimodal probability densities.

Nonparametric method can be used for multimodal densities without the requirement to assume a particular type (shape) of the probability distribution.

There is the price to pay: more training data is needed.

Nonparametric density estimation

- Consider the observation $x \in X$ and the hidden parameter $y \in Y$ (a class label in a special case).
- In the Naïve Bayes classification and in the parametric density estimation methods, we assume knowing either
 - The likelihoods (also class-conditional probabilities) $p(x|y_i)$, or
 - their parametric form (cf. parametric density estimation methods explained already).

4/23

 Instead, nonparametric density estimation methods obtain the needed probability distribution from data without assuming a particular form of the underlying distribution.

Courtesy: Ricardo Gutierrez-Osuna, U of Texas

Nonparametric density estimation methods; two task types

- There are two groups of methods enabling to estimate the probability density function:
 - 1. The likelihood, i.e. the class-conditional probability density $p(x|y_i)$ depends on a particular hidden parameter y_i . The (maximal) likelihood is estimated using sample patterns, e.g., a by the histogram method, Parzen window method (also called the kernel smoothing function).
 - 2. Maximally aposteriori probability (MAP) $p(y_i|x)$ methods, e.g., the nearest neighbor methods.

MAP methods bypass the probability density estimation. Instead, they estimate the decision rule directly.

Idea = counting the occurrence frequency \Rightarrow histogram

- Divide the sample (events) space to quantization bins of the width h.
- Approximate the probability distribution function at the center of each bin by the fraction of points in the dataset that fall into a corresponding bin. h is the width of the bin.

$$\hat{p}(x) = \frac{1}{h} \cdot \frac{\text{count of samples in the particular bin}}{\text{total number of samples}}$$

p

m

6/23

The histogram method requires defining two parameters, the bin width h and the starting position of the first bin.

Disadvantages of histogram-based estimates

р

m

7/23

- Curse of dimensionality:
 - A fine representation requires many quantization bins.
 - The number of bins grows exponentially with the number of dimensions.
 - When not enough data is available, most of quantization bins remain empty.
- These disadvantages make the histogram-based probability density estimate useless with the exception of the fast data visualization in dimension 1 or 2.

Nonparametric estimates, ideas (1)

- Consider a dataset $X \in \mathcal{X}$, $X = \{x_1, x_2, \dots, x_m\}$.
- Consider outcomes of experiments, i.e., samples x of a random variable.

- The probability that the sample x appears in a bin R (or more generally in a region R in multidimensional case) is $P = \Pr[x \in R] = \int_{D} p(x') \, dx'$.
- Probability P is a smoothed version of the probability distribution p(x).
- Inversely, the value p(x) can be estimated from the probability P.

Nonparametric estimates, ideas (2)

- Suppose that n samples (vectors) x₁, x₂, ... x_n are drawn from the probability distribution.
 We are interested, which k of these vectors fall in the particular discretization bin. Such a situation is described by the binomial distribution.
- A binomial experiment is a statistical experiment with the following properties:
 - The experiment consists of n repeated trials.
 - Each trial can result in just two possible outcomes (e.g. success, failure; yes, no; In our case, if a sample x_i , i = 1, ..., n, falls in a particular discretization bin).
 - The trials are independent, i.e., the outcome of a trial does not effect other trials.
 - The probability of success P is the same on every experiment.

Nonparametric estimates, ideas (3)

The probability that k of n samples fall in the particular discretization bin is given by the binomial distribution

$$P(k) = \binom{n}{k} p^k (1-p)^{n-k}, \quad 0 \le k \le n,$$

where the binomial coefficient, i.e., the number of combinations is $\binom{n}{k} = \frac{n!}{k! (n-k)!}$ for $k \leq n$ and zero otherwise.

Note that a k-combination is a selection of k items from a collection of n items, such that the order (unlike permutations) of selection does not matter.

• Binomial distribution is rather sharp at its expected value. It can be expectated that $\frac{k}{n}$ will be a good estimate of the probability P and consequently of the probability density p.

• The expected value $\mathcal{E}(k) = nP$; Consequently, $P = \frac{\mathcal{E}(k)}{n}$.

Nonparametric estimates, ideas (4)

- x is a point within the quantization bin R. We repeat from slide 8: $P = \Pr[x \in R] = \int_{R} p(x') \, dx'.$
- Let assume the quantization bin R is small; V is the volume enclosed by R. $p(\cdot)$ hardly varies within R. $P \simeq p(x) V$.

•
$$P = \frac{\mathcal{E}(k)}{n}$$
 and $P \simeq p(x) V$. Consequently, $p(x) = \frac{\mathcal{E}}{N}$.

- X follows the binomial probability distribution, see slide 10. X peaks sharply about $\mathcal{E}(X)$ for large enough n.
- Let k be the actual value of X after observing the i.i.d. examples $x_1, x_2, \ldots x_n$. The consequence is that $k \simeq \mathcal{E}[X]$.

• It implies from the previous two items: $p(x) = \frac{\frac{k}{n}}{V}$.

Parzen windows vs. k_n -nearest neighbor

We like to show the explicit relation to the number n of elements in the dataset (training samples in a special case in pattern recognition). We will denote the related quantities by the subscript n.

Recall:

R is the quantization bin. k_n is the number of samples falling into R. p(x) is the probability that the sample x falls into the bin R.

$$R \longrightarrow R_n \text{ (containing } x\text{)}$$
$$p(x) = \frac{\frac{k_n}{n}}{V} \longrightarrow p_n(x) = \frac{\frac{k_n}{n}}{V_n}$$

Two basic probability density methods can be introduced:

- Parzen windows method: Fix the volume V_n and determine k_n .
- k_n -nearest-neighbor method: fix k_n and determine V_n .

Parzen window (1)

- $p_n(x) = \frac{\frac{k_n}{n}}{V_n}$; Fix the volume V_n and determine k_n .
- Assume R_n is a *d*-dimensional hypercube. The length of each edge is h_n . It implies $V_n = h_n^d$.
- Determine k_n with a Parzen window function (also called kernel smoothing function or potential function).
- One possiblity: a hypercube window function

$$\varphi(\mathbf{u}) = \begin{cases} 1 & |u_j| \leq \frac{1}{2}; \quad j = 1, \dots d \\ 0 & \text{otherwise} \end{cases}$$

Emanuel Parzen (1929-2016) Photo from 2006

• $\varphi(\mathbf{u})$ defines a unit hypercube centered at the origin. $\varphi\left(\frac{\mathbf{x}-\mathbf{x}_i}{h_n}\right) = 1$, i.e., \mathbf{x}_i falls within the hypercube of volume V_n centered at \mathbf{x} .

Parzen window (2)

• Combining
$$p_n(x) = \frac{k_n}{N_n}$$
 and $k_n = \sum_{i=1}^n \varphi\left(\frac{\mathbf{x}-\mathbf{x}_i}{h_n}\right)$ results in Parsen pdf
 $p_n(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^n \frac{1}{V_n} \varphi\left(\frac{\mathbf{x}-\mathbf{x}_i}{h_n}\right)$, i.e. an average of functions of \mathbf{x} and \mathbf{x}_i .
 $V_n = h_n^d$; $\varphi(\cdot)$ is a pdf function $\Rightarrow p_n$ is also a pdf function.

• The window function $\varphi(\cdot)$ is not limited to a hypercube window function from Slide 13. $\varphi(\cdot)$ can be any probability distribution function; $\varphi(\mathbf{u}) \ge 0$; $\int \varphi(\mathbf{u}) \, \mathrm{d}\mathbf{u} = 1$.

•
$$\int p_n(x) \, \mathrm{d}\mathbf{x} = \frac{1}{nV_n} \sum_{i=1}^n \int \varphi\left(\frac{\mathbf{x}-\mathbf{x}_i}{h_n}\right) \mathrm{d}\mathbf{x} = \left(\text{integration by substitution } \mathbf{u} = \frac{\mathbf{x}-\mathbf{x}_i}{h_n}\right) = \frac{1}{nV_n} \sum_{i=1}^n \int h_n^d \varphi(\mathbf{u}) \, \mathrm{d}\mathbf{u} = \frac{1}{n} \sum_{i=1}^n \int \varphi(\mathbf{u}) \, \mathrm{d}\mathbf{u} = 1$$

Parzen window, superposition, distance

- Parsen probability distribution function (repeated from Slide 14): $p_n(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{V_n} \varphi\left(\frac{\mathbf{x}-\mathbf{x}_i}{h_n}\right)$
- Simplification by the substitution $\delta_n(\mathbf{x}) = \frac{1}{V_n} \varphi\left(\frac{\mathbf{x}}{h_n}\right)$ yields $p_n(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^n \delta_n(\mathbf{x} \mathbf{x}_i)$
 - $p_n(\mathbf{x})$ is a superposition of n interpolants.
 - \mathbf{x}_i contributes to $p_n(\mathbf{x})$ based on its "distance" from \mathbf{x} , i.e. $\mathbf{x} \mathbf{x}_i$.

What is the effect of the window width h_n on the Parzen probability distribution function?

What is the effect of "window width" h_n on the Parzen probability density function?

$$\delta_n(\mathbf{x}) = \frac{1}{V_n} \varphi\left(\frac{\mathbf{x}}{h_n}\right) = \frac{1}{h_n^d} \varphi\left(\frac{\mathbf{x}}{h_n}\right)$$

• $\frac{1}{h_n^d}$ affects the amplitude (also vertical scale).

• $\frac{\mathbf{x}}{h_n}$ affects the width (also horizontal scale).

For $\varphi(()u)$:		For $\delta_n(\varphi(\mathbf{x}))$:
$ \varphi(\mathbf{i}) \le a \; (amplitude)$	\Rightarrow	$ \delta_n(\mathbf{x}) \le rac{a}{h_n}$
$ u_j \le b_j$ (width), $j = 1, \dots, d$.	\Rightarrow	$ x_j \leq h_n \cdot b_j$, $j = 1, \dots, d$.

$$\int \delta_n(\mathbf{x}) \, \mathrm{d}\mathbf{x} = \int \frac{1}{h_n^d} \varphi\left(\frac{\mathbf{x}}{h_n}\right) \mathrm{d}\mathbf{x} = \left(\text{integration by substitution } \mathbf{u} = \frac{\mathbf{x}}{h_n}\right) = \int \frac{1}{h_n^d} \varphi(\mathbf{u}) \, h_n^d \mathrm{d}\mathbf{u} = \int \varphi(\mathbf{u}) \mathrm{d}\mathbf{u} = 1$$

Effect of "window width: h_n " (2)

Case one:

If h_n increases \Rightarrow the amplitude (vertical scale) decreases and the function width (horizontal scale) increases.

Case two:

If h_n decreases \Rightarrow the amplitude (vertical scale) increases and the function width (horizontal scale) increases.

Example 1: The influence of h on the shape of $\delta_n(x)$ for a single 2D Gaussian

Example 2: The influence of h on the shape of $\delta_n(x)$ consisting of five 2D Gaussians

Effect of "window width": h_n (3)

$$p_n(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^n \delta_n(\mathbf{x} - \mathbf{x}_i), \text{ where } \delta_n(\mathbf{x}) = \frac{1}{h_n^d} \varphi\left(\frac{\mathbf{x}}{h_n}\right)$$

- If h_n is very large then $\delta_n(\mathbf{x})$ is broad with small amplitude. p_n is a superposition of n broad, smooth functions with low resolution.
- If h_n is very small then $\delta_n(\mathbf{x})$ is sharp with large amplitude. p_n is a superposition of n sharp functions with high resolution.

One has to find a compromise value of h_n for limited number of training examples.

k_n -Nearest Neighbor

$$p_n(\mathbf{x}) = \frac{\frac{k_n}{n}}{V_n}$$

• The procedure:

Specify $k_n \to \text{Center}$ a cell about $\mathbf{x} \to \text{Grow}$ the cell until capturing k_n nearest examples \to Return the cell volume V_n .

• The principled rule to specify
$$k_n$$
, page 175 Duda, Hart, Stork 2001:
$$\lim_{n \to \infty} k_n = \infty; \lim_{n \to \infty} \frac{k_n}{n} = \infty$$

• A rule of thumb for the choice for
$$k_n$$
: $k_n = \sqrt{n}$.

(mp) 20/23

k_n -Nearest Neighbor, examples

Example 1: Eight points in one dimension; (n = 1; d = 1).

- red curve: $k_n = 3$
- black curve: $k_n = 5$

Example 2:

31 points in two dimensions; (n = 31; d = 2)

• Black surface:
$$k_n = 5$$

p(x)

Summary (1)

- Let the data speak for themselves.
- ◆ Parametric methods are not considered for class-conditional probability p(x|yi) (also likelihood) density functions because it can be a multimodal function. Notation reminder: x ∈ X is the observation and y ∈ Y is the hidden parameter (class label in the more special case).

21/23

- Estimate the class-conditional pdf from training examples. Make predictions based on Bayes formula.
- Fundamental result in probability density function estimation:

$$p_n = rac{k_n}{V_n}$$
 , where

- V_n is a volume of region R_n containing \mathbf{x} ,
- n is the number of training examples,
- k_n is the number of training examples falling within R_n .

Summary (2), Parzen window

р

- Fix the volume V_n of the quantization bin \Rightarrow Determine the number of data occurrences k_n in a bin.
- Effect of the Parzen window width h_n. A compromised value for a fixed number of training samples has to be determined.
- Parzen window function $\varphi(\cdot)$ is a pdf function $\Rightarrow p_n$ is also a pdf function.

$$p_n(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^n \delta_n(\mathbf{x} - \mathbf{x}_i), \text{ where } \delta_n(\mathbf{x}) = \frac{1}{h_n^d} \varphi\left(\frac{\mathbf{x}}{h_n}\right)$$

window $\varphi(\cdot) + \begin{array}{c} \text{window} & h_n \\ \text{width} & h_n \end{array} + \begin{array}{c} \text{training data } \mathbf{x}_i \end{array} \Rightarrow \begin{array}{c} \text{Parzen pdf } p_n(\cdot) \end{array}$

Summary (3), k_n -nearest neighbor

Parsen probability distribution function $p_n(\mathbf{x})$, cf. Slide 14,

$$p_n(\mathbf{x}) = \frac{\frac{k_n}{n}}{V_n}$$

• Fix the number of data occurrences k_n in a quantization bin. \Rightarrow Determine the volume V_n . of the quantization bin.

• The procedure:

Specify $k_n \to \text{Center}$ a cell about $\mathbf{x} \to \text{Grow}$ the cell until capturing k_n nearest examples \to Return the cell volume V_n .

• A rule of thumb for the choice for k_n : $k_n = \sqrt{n}$.