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Outline of the talk:

� Classifier design.

� Mathematical formulation of the risk describing
process of learning.

� Upper bound = guaranteed risk.

� VC-dimension calculation.

� Structural risk minimization.
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Classifier design (1)

The object of interest is characterized by observable properties x ∈ X and its class membership
(unobservable, hidden state) y ∈ Y , where X is the space of observations and Y the set of
hidden states.

The objective of a classifier design is to find the optimal decision function q∗:X → Y .

Bayesian decision theory solves the problem by the minimization of the Bayesian risk

R(q) =
∑
x,y

pXY (x, y)W (y, q(x))

given the following quantities:
� pXY (x, y), ∀x ∈ X , y ∈ Y – the statistical model of the dependence of the observable
properties (measurements) on class membership.

� W (y, q(x)) the loss of decision q(x) if the true class is y.
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Classifier design (2)

Constraints or penalties for different errors depend on the application problem formulation.

However, in applications typically:

� None of the class conditional probabilities (likelihoods) are known, e.g., p(x|y), p(y),
∀x ∈ X , y ∈ Y .

� The designer is only given a training multi-set T = {(x1, y1) . . . (xL, yL)}, where L is the
length (size) of the training multi-set.

� The desired properties of the classifier q(x) are assumed.

Note: Non-Bayesian decision theory offers the solution to the problem if p(x|y), ∀x ∈ X , y ∈ Y
are known, but p(y) are unknown (or do not exist).

http://cmp.felk.cvut.cz
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Classifier design via parameter estimation

� Assume p(x, y) have a particular form, e.g., a mixture of Gaussians, piece-wise constant, etc.,
with a finite (i.e., small) number of parameters Θy.

� Estimate the parameters Θy from the training multi-set T .
� Solve the classifier design problem (i.e., minimize the risk) by substituting the estimated
p̂(x, y) for the true (and unknown) probabilities p(x, y).

– There is no direct relationship between known properties of estimated p̂(x, y) and the properties
(typically the risk) of the obtained classifier q′(x).

– If the true p(x, y) is not of the assumed form then q′(x) may be arbitrarily bad, even if the size
of training multi-set L approaches infinity!

+ Implementation is often straightforward, especially if parameters Θy for each class are assumed
independent.

+ Performance on real data can be predicted empirically from performance on training multi-set
(divided to training multi-set and validation multi-set, e.g., crossvalidation).
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Learning in statistical pattern recognition

� Choose a class Q of decision functions (classifiers) q:X → Y .
� Find q∗ ∈ Q by minimizing some criterion function on the training multi-set that
approximates the risk R(q) (which cannot be computed).

� Learning paradigm is defined by the approximating criterion function:
1. Maximizing likelihood.

Example: Estimating the probability density.
2. Using a non-random training multi-set.

Example: Image analysis.
3. Empirical risk minimization in which the true risk is approximated by the error rate on

the training multi-set.
Examples: Perceptron, Neural nets (Back-propagation), etc.

4. Structural risk minimization.
Example: SVM (Support Vector Machines).

http://cmp.felk.cvut.cz
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Overfitting and underfitting

� How rich class Q of classifiers q(x,Θ) should be used?

� The problem of generalization is a key problem of pattern recognition: a small empirical risk
Remp need not imply a small true expected risk R!

underfit fit overfit

http://cmp.felk.cvut.cz
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Asymptotic behavior

� For infinite training data, the law of large number assures

lim
L→∞

Remp(Θ) = R(Θ) .

� In general, unfortunately, there is no guarantee for a solution based on the expected risk
minimization because

argmin
Θ

Remp(Θ) 6= argmin
Θ

R(Θ) .

Performance on training data is often better than on test data (or real performance).
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The idea of the guaranteed risk

� Idea: add a prior (called also regularizer).

� This regularizer favors a simpler strategy,
cf., Occam razor.

� Vapnik-Chervonenkis learning theory
introduces a guaranteed risk J(Θ),
R(Θ) ≤ J(Θ), with the probabilistic
confidence η.

� The upper bound J(Θ) may be so large
(meaning pessimistic) that it can be useless.

Θ

Remp( )ΘRemp( )Θ

R( )Θ

min Rempmin R

R R, emp

Θ

R( )Θ

min Jmin R

R J,
J( )Θ
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The upper bound of a true risk

� The upper bound was derived by Chervonenkis and Vapnik in the 1970s.
� With the confidence η, 0 ≤ η ≤ 1,

R(Θ) ≤ J(Θ) = Remp(Θ) +

√
h
(
log
(

2L
h

)
+ 1
)
− log

(
η
4

)
L

.

where L is the length of the training multi-set, h is the VC-dimension of the class of
strategies q(x,Θ).

� Note that the above upper bound is independent of the true p(x, y)!!
� It is the worst case upper bound valid for all possible p(x, y).
� Structural risk minimization means minimizing the upper bound J(Θ).
(We will return to structural risk minimization after we explain how to compute
VC-dimension.)

http://cmp.felk.cvut.cz
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Vapnik-Chervonenkis dimension

� It is a number characterizing the decision strategy.

� Abbreviated VC-dimension.

� Named after Vladimir Vapnik and Alexey Chervonenkis
(Appeared in their book in Russian. V. Vapnik, A. Chervonenkis: Pattern Recognition
Theory, Statistical Learning Problems, Nauka, Moskva, 1974).

� It is one of the core concepts in Vapnik-Chervonenkis theory of learning.

� In the original 1974 publication, it was called capacity of a class of strategies.

� The VC dimension is a measure of the capacity of a statistical classification algorithm.

http://cmp.felk.cvut.cz


11/22
VC-dimension, the idea informally

f(x)

x

f1(x) = (x− 1)

f2(x) = (x− 1)(x+ 2)

f3(x) = (x− 2)(x− 1)(x+ 2)

f6(x) = (x− 2)(x− 1) x (x+ 1)

(x+ 2)(x+ 3)

Light green circles symbolize data points.

� The VC-dimension (capacity) of a classification
strategy tells how complicated it can be.

� An example: A high-degree polynomial
thresholding. If a high-degree polynomial is
used, it can be very wiggly, and can fit a
training multi-set exactly (overfit). Such a
polynomial has a high capacity and problems
with generalization.

� A linear function, e.g., has a low VC-dimension.

http://cmp.felk.cvut.cz
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Shattering

� Consider a classification strategy q with some parameter vector Θ.
� The strategy q can shatter a set of data points x1, x2, . . . , xn if, for all possible assignments
of labels y ∈ Y to data points, there exists a parameter Θ such that the model q makes no
errors when evaluating that set of data points.

Shattering example: q is a line in a 2D feature space.

3 points, shattered 4 points, undivisible

http://cmp.felk.cvut.cz
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VC-dimension h, definition

� Consider a set of dichotomic strategies q(x,Θ) ∈ Q.

� The set consisting of h data points (observations) can be labelled in 2h possible ways.

� A strategy q ∈ Q exists which assigns labels correctly to all possible configurations.
(Process of finding all possible configurations with correctly assigned labels is called
shattering.)

� VC-dimension (definition) is the maximal number h of data points (observations) that can be
shattered.

http://cmp.felk.cvut.cz


14/22
VC-dimension of a linear strategy in a 2D feature space
� A set of parameters Θ = {Θ0,Θ1,Θ2}.
A linear strategy q(x,Θ) = Θ1 x1 + Θ2 x2 + Θ0.

� Shattering example (revisited):

3 points, shattered 4 points, undivisible
� 3 points in 2D space (n = 2) can be shattered.
There was counter example given that 4 points cannot be shattered.
⇒ VC-dimension h = 3.

http://cmp.felk.cvut.cz
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VC-dimension for a linear strategy in a n-dimensional space

A special case, n=2.

VC-dimension = 3.

Generalization to n-dimensions for linear classifiers

� A hyperplane in the space Rn shatters any set of h = n+ 1 linearly independent points.

� Consequently, VC-dimension of linear decision strategies is h = n+ 1.

http://cmp.felk.cvut.cz
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VC-dimension in a 2D space for a circular strategy

Maximally 4 data points in R2 can
be shattered by a circular decision
strategy in 8 possible ways
⇒
VC-dimension h = 4.
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Small # of parameters, VC-dimension=∞

Counterexample by E. Levin, J.S. Denker (Vapnik 1995):
� A sinusoidal 1D classifier, q(x,Θ) = sign(sin(Θx)), x,Θ ∈ R.
� For any given number L ∈ N, the points xi = 10−i, i = 1, . . . , L and be found and arbitrary
labels yi, yi ∈ {−1, 1} can assigned to xi.

� Then q(x,Θ) is the correct labelling if Θ = π

(
1 +

L∑
i=1

(1−yi) 10i

2

)
.

Example: L = 3, y1 = −1, y2 = 1, y3 = −1.
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� Thus the VC dimension of this decision strategy is infinite.

http://cmp.felk.cvut.cz
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Examples of other VC-dimension = ∞ strategies

� Nearest-neighbor classifier – any number of observations, labeled arbitrarily, will be classified.
Thus VC-dimension = ∞. Also Remp = 0. The VC-dimension provides no information in this
particular case.

� Convex polygons classifying observation lying on a circle, VC-dimension =∞.

� SVM classifiers with Gaussian (or RBF . . . ) kernel, VC-dimension =∞.

http://cmp.felk.cvut.cz
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Structural risk minimization

� Minimize guaranteed risk J(Θ), that is the upper bound

R(Θ) ≤ J(Θ) = Remp(Θ) +

√
h
(
log
(

2L
h

)
+ 1
)
− log

(
η
4

)
L

.

For each model i in the list of hypotheses
• Compute its VC-dimension hi.
• Θ∗i = argmin

Θi

Remp(Θi).

• Compute Ji(Θ∗i , hi).
Choose the model with the lowest Ji(Θ∗i , hi).

� Preferably, optimize directly over both (Θ∗, h∗) = argmin
Θ,h

J(Θ, h).

� Gap tolerant linear classifiers minimize Remp(Θ) while maximizing margin. Support Vector
Machine does just that.

http://cmp.felk.cvut.cz
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Structural risk minimization pictorially

VC-dimension h

Empirical
risk

Risks

Regularizer

Guaranteed risk ,J( h)Θ

Space of nested hypotheses with decreasing h
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VC-dimension, a practical view

Bad news: Computing the guaranteed risk is useless in many practical situations.

� VC dimension cannot be accurately estimated for non-linear models such as neural
networks.

� Structural Risk Minimization may lead to a non-linear optimization problem.

� VC dimension may be infinite (e.g., for a nearest neighbor classifier), requiring infinite
amount of training data.

Good news: Structural Risk Minimization can be applied for linear classifiers.

� Especially useful for Support Vector Machines.

http://cmp.felk.cvut.cz
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Empirical risk minimization, notes

Is then empirical risk minimization = minimization of training multi-set error, e.g., neural networks
with backpropagation, dead ? No!

– Guaranteed risk J may be so large that this upper bound becomes useless.
Find a tighter bound and you will be famous! It is not impossible!

+ Vapnik, Chervonenkis suggest learning with progressively more complex classes of the decision
strategies Q.

+ Vapnik & Chervonenkis’ theory justifies using empirical risk minimization on classes of
functions with a reasonable VC dimension.

+ Empirical risk minimization is computationally hard (impossible for large L). Most classes of
decision functions Q for which the empirical risk minimization (at least locally) can be
efficiently organized are often useful.

Where does the nearest neighbor classifier fit in the picture?

http://cmp.felk.cvut.cz
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