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The scope of unsupervised learning informally

� Unsupervised learning is used to analyze observations (or data) when the information from a
teacher (labels in a training multi-set) is not available. The alternative name: cluster analysis.

� The principle informally: data belonging to one class are more similar each to other than data
belonging to other classes.

� Observed data should be explained by a mathematical model (to be found).

Approaches:

Parametric × non-parametric

� The underlying class-conditional
probability distributions (likelihoods) are
modeled with a mixture of parametric
distributions.

� The objective is to find the model
parameters.

Deterministic × statistical

� Deterministic: according to the different
measures of similarity, e.g., according to
the distance.

� Statistical: a statistical model of the data
has to be found from data only.

http://cmp.felk.cvut.cz
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Motivating illustration

http://cmp.felk.cvut.cz
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Cluster analysis, two approaches

1. Hierarchical methods – new clusters are sought based on previous clusters either in a
top-down or a bottom-up manner.

2. Partitioning methods – clusters are found at one level of the hierarchy (these methods will be
of our main concern in this lecture).

� K-means algorithm. There is a deterministic and a statistical variant.
� EM algorithm (EM stands for Expectation-Maximization).

Partioning Hierarchical
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Courtesy: Figure; N. Nilsson 1996
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Background, supervised learning

� One of the main paradigms of statistical pattern recognition and Bayesian inference is to
model the relation between the observable features x ∈ X of an object and its hidden state
(called also the class label) y ∈ Y by a joint probability measure p(x, y).

� This probability measure is often known only up to some parameters Θ.

� In the empirical learning context, it is necessary to estimate these parameters from a training
(multi-)set T , which is assumed to represent a sequence of independent realizations of a
random variable.

� If the training (multi-)set T , ideally, contains realizations of pairs (x, y), then the
corresponding estimation methods are addressed as supervised learning.

http://cmp.felk.cvut.cz
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Backround, unsupervised learning

� It is quite common that some of variables y describing the hidden state are hidden, i.e. never
observed in the training data.

� It is necessary to marginalize over them in order to estimate the unknown parameters Θ.
� Corresponding estimation methods are known as unsupervised learning.
� Moreover, especially in computer vision, the observation x and the hidden state y may have
both a complex structure. The hidden state y can be, e.g., a segmentation, a depth map, or a
similar object. Consequently, it is often not feasible to provide the complete information y for
the realizations in the sample. This means to estimate the parameters in the situation of
missing information.

� The EM algorithm is a method searching for maximum likelihood estimates of the unknown
parameters Θ under such conditions.
We will start our explanation from the deterministic K-means algorithm. The statistical
K-means can be understood a special case of EM-algorithm.

http://cmp.felk.cvut.cz
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K-means clustering, deterministic, introduction

� The method aims to partition
n observations to K clusters.

� Each observation belongs to the cluster,
where the nearest centroid serves as its
prototype.

� If the distance is taken deterministically
then the data space is a partitioned into
Voronoi cells.

� The algorithm was proposed by Stuart
Lloyd in 1957 (still called Lloyd or
Lloyd-Forgy algorithm in the computer
science community).

� The term K-means was first used by
James MacQueen in 1967.

� The task is computationally NP-hard.

� There are effective heuristic algorithm,
which are often used and converge
quickly to a local optimum.

� These local minima are usually similar as
with EM algorithm used for a mixture of
Gaussian probability distributions (to be
explicated later).

http://cmp.felk.cvut.cz
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Distances dist used in K-means clustering

� xi, xj are the observations (data points) ∈ X ;
n is the number of observations.

� Distance dist(xi, xj) is used to asses ‘similarity’ among observations.
� Quantitative variables
• Error d(xi, xj) = |xi − xj| or (xi − xj)2 (Euclidean), etc.
• Correlation coefficient d(xi, xj) = ρ(xi, xj)

� Ordinal variables, i.e. order is important, e.g. rank. They can be normalized to lie within
〈0, 1〉 (percentage). A quantitative metric can be applied d(xi, xj) =

i−1
2

M , i = 1, 2, . . . ,M ,
where M is the number of equally sized bins.

� Categorical variables d(xi, xj) = dist(xi, xj) =
{

0, if xi = xj
1, otherwise

}
or distances must be

specified by the user between each pair of categories.

http://cmp.felk.cvut.cz
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K-means clustering

� A partitioning clustering
algorithm.

� Data is partitioned into
K clusters.

� The user has to specify:

1. The number K of clusters;

2. The distance function.

� Each cluster is represented by its
centroid (mean), called also the
cluster center.

The Lloyd’s algorithm for Euclidean distance

1. Randomly choose K data points (seeds) to
be the initial cluster centroids.

2. Assign each data point to the closest
centroid.

3. Re-compute the centroids using the current
cluster memberships.

4. If a stopping criterion is not met, go to
step 2.

http://cmp.felk.cvut.cz
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Stopping (convergence) criteria

� No (or minimum) re-assignments of data points to different clusters.

� No (or minimum) change of centroids.

� Minimal decrease in the sum of squared error (SSE),

SSE =

k∑
j=1

∑
x∈Cj

dist(x, µj) ,

where Cj is j-th cluster, µj is the centroid of Cj (of all points in it); dist(x, µj) is the
distance between a point x and centroid µj.

http://cmp.felk.cvut.cz
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K-means clustering algorithm, example
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K-means demo from YouTube.

http://cmp.felk.cvut.cz
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K-means, computational complexity

Regarding K-means algorithm computational complexity, finding the optimal solution for
n observations in d dimensions is (Wikipedia):

� NP-hard in general Euclidean space d even for 2 clusters.

� NP-hard for a general number of clusters K even in the plane.

� If K and d are fixed, the problem can be exactly solved in time O(ndK+1 log n).

� Variety of heuristic algorithms exists, e.g. for Lloyd’s K-means algorithm as was described at
Slide 9.

http://cmp.felk.cvut.cz
http://en.wikipedia.org/wiki/K-means_clustering
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Strengths of K-means algorithm

� Simple. Easy to understand and implement.

� K-means is a very popular clustering algorithm.

http://cmp.felk.cvut.cz
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Weaknesses of K-means clustering

� The user needs to specify the required number of clusters K.

� The algorithm is sensitive to initial seeds.

� Sensitivity to outliers as initial cluster seeds. How to deal with outliers?

• Try to identify points located much further away from centroids than other points.

• Perform random sampling. Since sampling chooses a small subset of the data points only.
The chance of selecting an outlier is significantly smaller.

� The algorithm is not suitable for cluster of other shapes than hyper-ellipsoids. There is no
good measure for cluster size and/or shape.

� The algorithm can be used only if the mean is defined. For categorical data, the centroid is
usually replaced by the most frequent exemplar.

http://cmp.felk.cvut.cz
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Statistical approach to unsupervised learning

� Observations are treated as random variables.

� The outcome of learning is a statistical model allowing to assign the observation x ∈ X to the
hidden state (or class) y ∈ Y according to the modeled joint probability distribution p(x, y).

� The class-conditional probabilities (called also likelihoods) p(x|y) are derived from the
statistical model p(x, y), i.e. the joint probability. They can be used for (Bayesian) decisions
similarly as they are used in supervised learning.

� Data compression is an important application of unsupervised learning.
Here is the link to the vector quantization from signal processing, which allows the modeling
of probability density function by the distribution prototype vectors. Large set of data points
(vectors because they may lie in n-dim vector space) are divided into sets ideally of similar
amount of points in it. They are represented by centroids.

http://cmp.felk.cvut.cz
https://www.sciencedirect.com/topics/engineering/vector-quantization
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Used symbols

� x ∈ X - observations.

� y ∈ Y – the hidden state, the outcome of the recognition.

� Θ – the parameter, on which the decision strategy depends (often a vector of parameters).

� q(x,Θ):X → Y – the decision strategy (a classifier).

� x = (x1, x2, . . . , xn) – the sequence of observations is called the training sample T .

� y = (y1, y2, . . . , yn) – the sequence of recognition results (from a training multi-set).

� In the supervised learning context, the training sequence (multi-set) is(
(x1, y1), (x2, y2), . . . , (xn, yn)

)
.

http://cmp.felk.cvut.cz
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Classifier with adjustable parameters

� We have concentrated to the classifier design so far.

� The decision function q of a classifier depends on the parameter Θ.

q(x, )�
x y

�

y = q(x,Θ)

http://cmp.felk.cvut.cz
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Supervised learning

x y

Q

supervised
learning

x’

y’

q(x,Q)

training
multi-set

Θ = learning(x, y)

The decision rule q(x,Θ) is taught using the training multi-set.

http://cmp.felk.cvut.cz
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Unsupervised learning

x y

�

q(x, )�

unsupervised
learning

Θ = learning(x, y)

The output of the classifier itself is used for (self)-learning instead of the hidden state y, which
would be obtained from the training multi-set in the case of supervised learning.

http://cmp.felk.cvut.cz
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Unsupervised learning algorithm

Initiatization, i.e. the initial choice of the parameter Θt=0.

A cycle, where t is the iteration number in the cycle

� Recognition step y = q(x,Θt)

� Learning step Θt+1 = learning(x, y)

The question of the algorithm convergence is an important one.

http://cmp.felk.cvut.cz
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Use of unsupervised learning

� The data classification is not know in advance.
Example: Data mining.

� The data classification by a human is often too expensive.
Example: Speech recognition, in which a complicated Markovian sequence serves as the
statistical model. Learning its parameters requires a large amount of training data.

� It is possible to compress large data sets in such a way that they are replaced by much fewer
informative representatives.
Note: It is not needed here, that the representatives have some semantics.

� Unsupervised learning can be used as a method approximating a complex probability
distribution by a mixture of simpler distributions, often Gaussians.

http://cmp.felk.cvut.cz
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Towards statistical learning: K-means algorithm (1)

� Let assume the statistical model

px|k(x|1, µ1) = px|k(x|2, µ2) = . . . = px|k (x|K,µK) , where

• px|k(x|kj, µj) are Gaussian distributions with the unit covariance matrix.

• The probability distribution parameters are given by the vector
Θ = µ1, . . . , µK.

� Recognition is performed according to Bayesian strategy

k = argmax
k′

p(k′|x) = argmin
k′

‖x− µk′‖

corresponds to the classification based on the nearest neighbor approach.

http://cmp.felk.cvut.cz
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Towards statistical learning: K-means algorithm (2)

Θt+1 = argmax
Θ

n∑
i=1

log pxk(xi, ki)

= argmax
µ1,...,µK

n∑
i=1

log
1

(
√

2π) n
exp

(
− 1

2
(xi − µki)

>(xi − µki)
)

= argmin
µ1,...,µK

n∑
i=1

(xi − µki)
>(xi − µki)

= argmin
1

∑
i∈I1

(xi − µki)
>(xi − µki), . . . , argmin

k

∑
i∈Ik

(xi − µki)
>(xi − µki)

⇒ µj =
1

|Ij|
∑
i∈Ij

xi , j = 1, . . . ,K

http://cmp.felk.cvut.cz
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A move towards the EM algorithm

We know about probability distributions estimates from previous lectures:

� Parametric estimates, e.g. the maximally likely (ML) estimate.

� Nonparametric estimates, e.g. the Parzen window method or the n-nearest neighbors metods.

We have shown in previous example that the clustering using K-means corresponds to a special
case of a statistical model, i.e. the mixture of Gaussian distributions with unitary covariance
matrices. This means that these Gaussians have the same distributions with unitary dispersions.

Let us proceed to EM algorithm, which is an unsupervised learning method having a significant
theoretical and practical significance.

http://cmp.felk.cvut.cz
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EM algorithm, informally

� EM algorithm is an iterative estimation procedure from the maximal likelihood (ML) family
for the cases, in which a direct ML solution does not exist or it is too complicated;

� EM algorithm decomposes a single complicated ML optimization task into several simpler
optimization tasks by introducing a “missing parameter”.

� It uses the gradient optimization (the steepest ascent) for finding the ML optimum. This is
the reason why it suffers from getting stuck in a local minima.

� There are two main applications of the EM algorithm:
• Data has incomplete, missing or corrupted values as a result of a faulty observation

process.
• The existence of missing or hidden parameters can simplify the likelihood function, which

would otherwise lead to an analytically intractable optimization problem. E.g., teacher’s
labels are missing.

(The latter item, unsupervised learning, will be of our main interest in this lecture.)

http://cmp.felk.cvut.cz
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EM algorithm; the definition

� The Expectation Maximization algorithm iteratively maximizes the likelihood of a training
sample T with respect to unknown parameters Θ of a probability model under the condition
of missing information.

� The training sample T is assumed to represent a set of independent realizations of a random
variable defined on the underlying probability space.

Notation remarks on conditional probabilities:

� We will deal with the class-conditional probabilities (likelihoods) of the form p(x|y,Θ), where
Θ is a vector of parameters, e.g. of a decision strategy.

� We will also write the parameters Θ as a subscript: p(x|y,Θ) = pΘ(x|y) because it simplifies
the expressions.

http://cmp.felk.cvut.cz
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EM, Theory (1)

� Let Ω be a finite sample space (i.e. all possible outcomes), F be its power set, and
pθ:F → R+ be a probability measure defined up to unknown parameters θ ∈ Θ.

� The task is to estimate parameters θ given observations X = {x1, . . . , xn}.
� Marginalize over missing hidden states y, i.e. P (x|θ) =

∑
y P (x, y|θ).

� Let X: Ω→ X be a random variable and the data T = (x1, x2, . . . , xn) be a sequence of
independent realizations of X .

� The Maximum Likelihood (ML) estimator provides estimates the of the unknown
parameter Θ by maximalizing the probability of T

Θ∗ = argmax
Θ

n∏
i=1

pΘ(Ωi) ,

where Ωi denotes the pre-image (also inverse image) {ω ∈ Ω |X(ω) = xi} selecting the
corresponding patterns from the input sample space Ω.

http://cmp.felk.cvut.cz
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Theory (2)

� The likelihood of observed data writes

l(θ) = P (X|θ) =
∏
xi∈X

P (X|θ) =
∏
xi∈X

.
∑
y

P (x, y|θ) .

� The unknown parameters θ∗ are obtained by maximizing the log-likelihood L(θ) = log l(θ);
θ∗ = argmax

Θ

n∏
i=1

pθ(Ωi) , where Ωi = {ω ∈ Ω |X(ω) = xi}. Ωi is called the pre-image.

� After logarithm is taken, the optimization task reads

θ∗ = argmax
θ∈Θ

L(x1, . . . , xn) = argmax
θ∈Θ

n∑
i=1

log
∑
ω∈Ωi

pΘ(ω) (1)

http://cmp.felk.cvut.cz


29/46
EM, Remark about marginalization

In the supervised learning context:
� The sample space Ω is assumed a Cartesian product Ω = X × Y , where x ∈ X are
observations (measurements) and y ∈ Y are hidden states (or class labels more specially).

� Let X ′: Ω→ (X × Y) be a random variable and the training multi-set
T = ((x1, y1), (x2, y2), . . . , (xn, yn)) be a sequence of independent realizations of X ′.

In the unsupervised learning context:
� The hidden state y ∈ Y is not known. The set X simply projects onto the first component
X(x, y) = x of X ′.

� In such a case, the probability pΘ(Ωi) =
∑
y∈Y

pΘ(xi, y) is nothing but the marginalization

over all possible y.
� This special case (unsupervised learning) will be considered in this lecture.

http://cmp.felk.cvut.cz
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EM, Theory (3)

� The optimization task (1) at the slide 28 is often complicated and hardly solvable by standard
methods. The objective function is either not convex or parameters Θ are of a rather different
natures.

� Suppose, however, that the task of parameter estimation is feasible if the complete
information, i.e., a set of realizations of ω ∈ Ω, were available.

� This applies in particular if the corresponding simpler objective function∑
i

log pΘ(ωi)

is not convex with respect to parameters Θ or if the task decomposes into simpler independent
optimization tasks with respect to individual components of a parameter collection.

http://cmp.felk.cvut.cz
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EM, Theory (4)

The key idea of the Expectation Maximization algorithm is to exploit this circumstance and to
solve the optimization task (1) from slide 28 by the “iterative splitting”, i.e. by iterating the
following two feasible tasks:

1. Given a current estimate of Θ, estimate (E-step) the missing information, i.e., pΘ(ω|Ωi) for
each element xi ∈ T .

2. Given the complete information, solve the corresponding estimation (maximization, M-step)
task, resulting in an improved estimate of Θ.

http://cmp.felk.cvut.cz
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EM, Theory (5)

It is convenient to introduce nonnegative auxiliary variables αi(ω), ω ∈ Ωi, for each element xi of
the training sample T fulfilling

∑
ω∈Ωi

αi(ω) = 1, ∀i = 1, 2, . . . n.

Variables αi can be seen as posterior probabilities p(ω|Ωi) for ω ∈ Ωi, given a realization xi. The
log-likelihood of a realization xi can be written when using αi as

log pΘ(Ωi) =
∑
ω∈Ωi

αi(ω) log pΘ(Ωi) , (which follows from the introduced auxiliary variables αi) (2)

=
∑
ω∈Ωi

αi(ω) log pΘ(ω)−

∑
ω∈Ωi

αi(ω) log pΘ(ω)︸ ︷︷ ︸
=0

−
∑
ω∈Ωi

αi(ω) log pΘ(Ωi)



=
∑
ω∈Ωi

αi(ω) log pΘ(ω)−
∑
ω∈Ωi

αi(ω) log
pΘ(ω)

pΘ(Ωi)
(3)

http://cmp.felk.cvut.cz
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EM, Theory (6)

The log-likelihood of the training sample T is
L(T,Ω) = L(x1, x2, . . . , xn,Ω) =

n∑
i=1

log pΘ(Ωi)︸ ︷︷ ︸
substitute using (2) from slide 32

(4)

=

n∑
i=1

∑
ω∈Ωi

αi(ω) log pΘ(ω)−
n∑
i=1

∑
ω∈Ωi

αi(ω) log
pΘ(ω)

pΘ(Ωi)

=

n∑
i=1

∑
ω∈Ωi

αi(ω) log pΘ(ω)−
n∑
i=1

∑
ω∈Ωi

αi(ω) log pΘ(ω|Ωi)

� The expression (4) does not depend as a whole on the specific choice of the auxiliary variables
α, whereas the minuend and subtrahend do.

� The minuend is the likelihood of a complete data sample if the α are interpreted as the
missing information, i.e., posterior probabilities for ω ∈ Ωi given the observation xi. The
subtrahend will be mentioned later.

http://cmp.felk.cvut.cz
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EM algorithm

Starting with some reasonable choice for the initial Θ(0), the likelihood is iteratively increased by
alternating the following two steps.

� The (E)xpectation step calculates a new α such that new Θ(t) becomes a maximizer of the
subtrahend. Changing Θ subsequently can only decrease its value.

� The (M)aximization step relies on this and maximizes the minuend only, avoiding to deal with
the subtrahend.

� E-step:
α

(t)
i (ω) = p

(t)
Θ (ω) (5)

� M-step:
Θ(t+1) = argmax

Θ

n∑
i=1

∑
ω∈Ωi

α
(t)
i (ω) log pΘ(ω) (6)

http://cmp.felk.cvut.cz
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EM algorithm, the conceptual point of view

� E-step can be seen as the inference. It calculates the missing data in each step t, i.e., the
posterior probabilities p(t)

Θ (ω|Ωi) for each element xi in the training sample T .

� The M-step utilizes these posterior probabilities in a supervised learning step.

� The names E-step and M-step stem from a rather formal view:

• The E-step calculates the α and therefore the objective function in Equation (6) at the
slide 34, which has the form of an expectation of log pΘ(ω). The computation of this
objective function is sometimes considered to be a part of the E-step.

• The M-step name comes from maximization of the minuend (supervised learning).

http://cmp.felk.cvut.cz
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EM, the monotonically decreasing likelihood

� Recall the slide 34. The choice for α in Equation (5) guarantees that the subtrahend in
Equation (6) can decrease only whatever the new Θ will be chosen in the subsequent M-step.
It follows from a special case of Johan Jensen’s inequality (Danish mathematician, 1906)∑

ω∈Ωi

pΘ′(ω|Ωi) log pΘ′(ω|Ωi) ≤
∑
ω∈Ωi

pΘ(ω|Ωi) log pΘ(ω|Ωi) , ∀Θ′ 6= Θ

� Since the M-step chooses the new Θ to maximize the minuend, the likelihood can only
increase or remain unchanged.

� There is an alternative way how to show the monotonicity of the EM algorithm. It considers
the maximization of the likelihood and the Jensen’s inequality. This alternative explanation is
not explicated here.

http://cmp.felk.cvut.cz
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EM algorithm properties

� EM algorithm maximizes the likelihood function LΘ(T ) =
n∑
i=1

log pΘ(xi).

� It is holds that L(Θ0) ≤ L(Θ1) ≤ . . . ≤ L(Θt).
� The sequence L(Θt) converges to L∗ for t→∞ (i.e. L is upper bounded).
� L∗ is either a local minimum, or the saddle point or the global minimum.
� If the function Θt+1 = f(Θt) = L (x,R(x,Θt)) is continuous then the sequence

Θ0,Θ1, . . . ,Θt converges to Θ∗ for t→∞.
� EM algorithm is suitable for MLE (Maximum Likely Estimates).
� There is an analytic solution for simple statistical models, ∂L(Θ)

∂Θ = 0.
� We have explained the derivation of the EM algorithm for a discrete probability space and
discrete random variables. It can be however generalized for uncountable probability spaces
and random variables X with continuous probability density.

� EM is a meta-algorithm, which needs to be adapted to a particular application.

http://cmp.felk.cvut.cz
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EM algorithm properties; Global convergence?

Is there a case in which EM algorithm converges globally?

� In the case of a special statistical model, i.e. for the conditional independence model and two
hidden states only, the EM algorithm converges to the global minimum (proved by M.I.
Schlesinger).

� There is a hypothesis that for the conditional independence model it holds also for more than
two hidden states.

� The M.I. Schlesinger’s result seems to have a theoretical significance only. In practice, the
pre-conditions are not met and the EM algorithm does not converge to the global minimum.

http://cmp.felk.cvut.cz
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The special case: A mixture of probability distributions

� In a special case, when the probability model is decomposed into

a mixture of K probability distributions pk(x), k = 1, . . . ,K. pΘ(x) =
K∑
k=1

pΘk(x, k)

� Think of the individual components as mixture of kernels, except for there is only a few of
them as opposed to one kernel per data point in kernel-based density estimation methods.

� The log-likelihood function

LΘ(T ) =

n∑
i=1

log pΘ(xi) =

n∑
i=1

log

K∑
k=1

pk(xi) p(k)︸ ︷︷ ︸
pΘk(xi)

(7)

� In such a case, EM algoritmus can be used for ML estimate of the mixture parameters.
Example: Parameters estimate for the finite mixture statistical model, often mixture of
Gaussians.

http://cmp.felk.cvut.cz
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EM maximizes the lower bound of L

� EM start from any initial estimate Θ0.
� The cycle iterates:
E-step: Estimates the lower bound of the function L(Θ) in the point Θt.
M-step: finds a new parameter value Θt+1, which maximizes the estimated lower bound.

This value is better suited for optimization.

the 1new estimate

the 2new estimate
(local maximum)

lower
bound

�
t+1

�
t+2

L( )�

�
t

�

E-step

M-step
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Even a more special case: Gaussian Mixture Model (GMM)

� Let us instantiate the log-likelihood of the general mixture model from Equation (7) at
slide 39 by Gaussian distributions and maximize it

Θ∗ = argmax
Θ

LΘ(T ) =

n∑
i=1

log pΘk(xi) =

n∑
i=1

log

K∑
k=1

pk(xi) p(k)

=

n∑
i=1

log

K∑
k=1

N (xi|µk,Σk) p(xk)

� We could try to maximize this function by differentiation for a more special case with unitary
covariances Σk as [Bishop 1995] did. The obtained solution is not a closed form solution and
represent a highly nonlinear coupled system of equations.

� We already know that an iterative EM algorithm guarantees to increase the log-likelihood in
every iteration.
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Example – Gaussian mixture models (GMM)

� Gaussian mixture model is defined by pΘ(x, k) = pΘ(x|k) pΘ(k) = N (x|µk,Σk) p(k)

� E-step: calculate

α(xi, k)
t

=
N (x|µtk,Σ

t
k) p

t(k)
K∑
k=1

N (x|µtk,Σt
k) p

t(k)

� M-step: calculate

p
t+1

(k) =
1

n

∑
xi∈X

α(xi, k)
t

µ
t+1
k =

∑
xi∈X

α(xi, k)txi∑
xi∈X

α(xi, k)t

Σ
t+1
k =

∑
xi∈X

α(xi, k)t(xi − µty)(xi − µ
t
k)
>

∑
xi∈X

α(xi, k)t
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Example – human face image reconstruction (1)

� Each pixel value xi(r, c) in the image Xi at position (r, c) is observed with the Gaussian
noise N (0, σ).

� The probability of observing value xi(r, c) assuming the leftmost column of a human face f
at the position si is

p(xi(r, c)|si, f, b, σ) =

{
N (f(r, c− si + 1), σ) for c ∈ 〈si, si + w)
N (b, σ) elsewhere ,

where b is the intensity of the uniform background of width W ; f(r, c′) are pixels belonging
to a face.
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Example – human face image reconstruction (2)

� Unobserved data are here the face positions si. Parameters of the probability model are face
pixels f(r, c′), the background intensity b and the noise variation σ.

� Probability of observing set of m images X = {X1, . . . , Xm} is

p(X|f, b, σ) =

m∏
i=1

∑
s

p(Xi, s|f, b, σ) =

m∏
i=1

∑
s

p(s) p(Xi|s, f, b, σ)

=

m∏
i=1

∑
s

p(s)
∏
r

∏
c

p(xi(r, c)|s)
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EM relation to K-means clustering

� Consider a classification problem with measurements x ∈ X and hidden states (classes)
y ∈ Y .

� The relation between each measurement x and its class label y can be described using the
probability pΘ(x, y).

� Having an unlabeled training set of measurements X = {x1, . . . , xn}, one can use EM
algorithm to estimate the probability model and even to classify the observed data without
any information from the teacher.

� To classify the data, one can use the output of E-step

α(xi, y)t =
pΘt(xi, y)∑

y∈Y
pΘt(xi, y)

= pΘt(y|xi) ,

which can be interpreted as the probability of xi belonging to the class y.
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Taking into account known priors, MAP solution

� EM can be used to find MAP (Maximally Aposteriory Probable) solutions for models with defined priors p(Θ)

p(Θ|X) =
p(X|Θ) p(Θ)

p(X)
' p(X|Θ) p(Θ) = p(X,Θ)

� The optimized lower bound is

F (Θ, α) =
∑
xi∈X

∑
y∈Y

α(xi, y) log
p(xi, y,Θ)

α(xi, y)

� E-step: calculate
α(xi, y)

t
=

p(xi, y,Θ
t)∑

y∈Y
p(xi, y,Θt)

= p(y|xi,Θt
)

� M-step: calculate
Θ
t+1

= argmax
Θ∈Θ

Ep(y|xi,Θt)
(log p(xi, y,Θ)
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