Born
November 1985
E-mail
Tel
+420-22435-4222

Affiliation
Czech Institute of Informatics, Cybernetics, and Robotics Czech Technical University in Prague
Research group
Robotics and Machine Perception (37240)
Office
B-611a, Jugoslavskych partyzanu 3, 160 00 Praha 6

Research team
Imitrob (contains information about current and past projects)

Publications
  • Sedlař, Jiři, Štěpánová, Karla, škoviera, Radoslav, Behrens, Jan K., Tuna, Matúš, šejnová, Gabriela, šivic, Josef, Babuška, Robert, Imitrob: Imitation Learning Dataset for Training and Evaluating 6D Object Pose Estimators IEEE Robotics and Automation Letters (2023), Vol. 8, No. 5 p. 2788-2795
  • Škoviera, Radoslav, Jan Kristof Behrens, and Karla Štěpánová. SurfMan: Generating Smooth End-Effector Trajectories on 3D Object Surfaces for Human-Demonstrated Pattern Sequence. IEEE Robotics and Automation Letters 7.4 (2022): 9183-9190.
  • Holešovský, Ondřej, Radoslav Škoviera, Václav Hlaváč, and Roman Vítek. Experimental Comparison between Event and Global Shutter Cameras. Sensors 21, no. 4 (2021): 1137.
  • Behrens, Jan Kristof, Karla Štěpánová, Ralph Lange, and Radoslav Škoviera. Specifying Dual-Arm Robot Planning Problems through Natural Language and Demonstration. IEEE Robotics and Automation Letters (2019).
  • Skoviera, Radoslav, Karla Stepanova, Michael Tesar, Gabriela Sejnova, Jiri Sedlar, Michal Vavrecka, Robert Babuska, and Josef Sivic. Teaching robots to imitate a human with no on-teacher sensors. what are the key challenges?. arXiv preprint arXiv:1901.08335 (2019).
  • Šikudová, Elena, Kristína Malinovská, Radoslav Škoviera, Júlia Škovierová, Miroslav Uller, and Václav Hlaváć. Estimating pedestrian intentions from trajectory data. In 2019 IEEE 15th international conference on intelligent computer communication and processing (ICCP), pp. 19-25. IEEE, 2019.
  • Vobecky, Antonin, Michal Uricár, David Hurych, and Radoslav Skoviera. Advanced pedestrian dataset augmentation for autonomous driving. In Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, pp. 0-0. 2019.
  • Sejnova, Gabriela, Michal Vavrecka, Michael Tesar, and Radoslav Skoviera. Exploring logical consistency and viewport sensitivity in compositional VQA models. In 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2108-2113. IEEE, 2019.
  • Škoviera, Radoslav, Ivan Bajla, and Júlia Škovierová. Object recognition in clutter color images using Hierarchical Temporal Memory combined with salient-region detection. Neurocomputing (2018).
  • Škovierová Júlia, Antonín Vobecký, Miroslav Uller, Radoslav Škoviera and Václav Hlavác. Motion Prediction Influence on the Pedestrian Intention Estimation Near a Zebra Crossing. In VEHITS, pp. 341-348. 2018.
  • Anna Krakovská, Radoslav Škoviera, Georg Dorffner, and Roman Rosipa. Does the complexity of sleep eeg increase or decrease with age? In J. Manka, Viktor Witkovský, M. Tyšler, and I. Frollo, editors, Proceedings of the 10th International Conference on Measurement. Institute of Measurement Science, SAS, 2015.
  • Radoslav Škoviera, Ivan Bajla, and Júlia Kucerová. Object recognition in clutter color images using hierarchical temporal memory combined with salient-regions detection. In M.H. Hamza, editor, IASTED Computational Intelligence, pages 245–254. ACTA Press, 2015.
  • Radoslav Škoviera, Zuzana Rošťáková, Anna Krakovská, and Roman Rosipal. Spectral and complexity characteristics of sleep eeg following ischemic stroke. 6th International Young Biomedical Engineers and Researchers Conference, 12:108–114, 2014.
  • Radoslav Škoviera and Ivan Bajla. Image classification based on hierarchical temporal memory and color features. In J. Manka, Viktor Witkovský, M. Tyšler, and I. Frollo, editors, 9th International Conference on Measurement, pages 63–66. Institute of Measurement Science, SAS, 2013.
  • Radoslav Škoviera, Kristián Valentín, Svorad Štolc, and Ivan Bajla. Recognition of untrustworthy face images in atm sessions using a bioinspired intelligent network. In Maria De Marsico and Ana L. N. Fred, editors, ICPRAM, pages 511–517. SciTePress, 2013.
  • Radoslav Škoviera, Kristián Valentín, Svorad Štolc, and Ivan Bajla. Detekcia anomálneho správania biologicky inšpirovanou sietou. Technical Report E-talent 2010et019, Ústav merania SAV, 2012.
  • Svorad Štolc, Ivan Bajla, Kristián Valentín, and Radoslav Škoviera. Pairwise temporal pooling method for rapid training of the htm networks used in computer vision applications. Computing and Informatics, 31(4):901–919, 2012.
  • Svorad Štolc, Ivan Bajla, Kristián Valentín, and Radoslav Škoviera. Temporal pooling method for rapid htm learning applied to geometric object recognition. In J. Manka, Viktor Witkovský, M. Tyšler, and I. Frollo, editors, Proceedings of the 8th International Conference on Measurement, pages 59–64. Institute of Measurement Science, SAS, 2011.

Notable projects
2018-2023:
Robotics for Industry 4.0. Project No. CZ.02.1.01/0.0/0.0/15_003/0000470. [member]
2019-2021:
Collaborative Robotic Workplace of the Future (MPO Trio FV40319). [PI]
2016-2017:
TRADR (Long-Term Human-Robot Teaming for Disaster Response funded by EU FP7 programme). [member]

Teaching

Education and Experience
2011 - 2016: Research Assistant at the Department of Theoretical Methods, Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia.
2015 - PhD degree in Informatics at the Institute of Measurement Science, SAS; thesis: Utilization of self-organized learning in hierarchical HTM networks for object recognition in image databases (supervisor prof. RNDr. Ing. Ivan Bajla, CSc.)
2010 - MSc degree in Cognitive Science at the Department of applied informatics, Faculty of Mathematics, Physics, and Informatics, Comenius University in Bratislava.