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Abstract: In March 2003, the first version of the Mizar Problems for Theorem Proving (MPTP) was released.
In the past ten years, such large formal knowledge bases have started to provide an interesting playground
for combining deductive and inductive AI methods. The talk will discuss three related areas of applica-
tion in which machine learning and general AI have been recently experimented with: (i) premise selection
for theorem proving over large formal libraries built with systems like Mizar, HOL Light, and Isabelle (ii)
advising and tuning first-order automated theorem provers such as E and leanCoP, and (iii) building larger
inductive/deductive AI systems such as MaLARea. Here I focus on the wider motivation for this work.

1 Why AI over Large Formal Knowledge Bases

1.1 The Three Semantic Dreams

There are three powerful and old dreams that came with the
invention of computers by Turing, von Neuman, and oth-
ers. (i) The dream of general Artificial Intelligence, and
in particular AI that helps with general scientific reason-
ing and research. (ii) The dream of Automated Reasoning,
and in particular Automated Theorem Proving that could at-
tack nontrivial mathematical theorems. And (iii) the QED
dream, of all of mathematics (and perhaps also program-
ming and all exact sciences backed by mathematics) being
done in a form that is fully understandable to computers,
verified for correctness by computers, and assisted in vari-
ous semantic ways by computers.

People coming from various backgrounds may be more
interested in a particular dream. For example, some ITP
(Interactive Theorem Proving) people may welcome the use
of ATPs if it helps the QED/verification progress. And they
may also welcome the use of arbitrary AI methods, if it
strengthens the automation. My basic motivation is the
dream of scientific AI. I cannot imagine any other future
than the one in which computers will to a very large extent
semantically understand, assist, and develop not just math-
ematics and computer science, but also physics, chemistry,
biology, medicine, engineering, economics, law, politics,
etc. Here, politics might really seem a bit far-fetched. But
no AI person smaller than John McCarthy dreamed exactly
about that quite lucidly and publicly in connection with the
QED dream (in which he was obviously involved too) al-
ready in 1999.1 And with varying levels of detail, he was
preceded by Leibniz and others.

1.2 How to Get There

There are two major obstacles to strong scientific AI, and I
believe those two are related. One is to get computers fully
understand all those large fields mentioned above, and the
other one is to develop programs that can efficiently and
usefully reason once the understanding has been provided.

1http://www-formal.stanford.edu/jmc/future/
objectivity.html

It is not obvious that the two abilities imply one another.
For example, in ITPs like Mizar, Isabelle, HOL (Light)
and Coq, large corpora of mathematics are in some sense
very well understood (all concepts are formally defined,
all proofs explained and verified), but the reasoning power
of those systems is on average far lower today than what
trained humans can do. The people behind the QED Man-
ifesto2 were even afraid enough of falling again into what
they perceived as the “AI/AR trap”, and wrote: It is the
view of some of us that many people who could have eas-
ily contributed to project QED have been distracted away
by the enticing lure of AI or AR. And indeed, following the
QED workshops challenge, the Mizar team formalized over
50% of the Compendium of Continuous Lattices textbook
already by 2002, demonstrating that advanced verification
is possible without strong reasoning. The same lack of
strong reasoning holds for more recent projects, like Fly-
speck and the formal proof of the Feit-Thompson theorem.
These are impressive results, which have however been ob-
tained with a lot of effort. The formal proofs are still often
much more detailed than standard mathematics, and many
shortcuts that mathematicians naturally invent and use have
to be manually translated into the formal languages.

I believe that good understanding involves combination
of knowledge, reasoning and pattern discovery. The larger
our initial knowledge, and the stronger our capability to find
analogies and to make useful inductive/deductive reasoning
chains about possible explanations and disambiguations,
the stronger our understanding. Understanding is also a dy-
namic process: in mathematics one can understand various
phenomena using various insights, and eventually realize
that some theorems and ideas are very easy when viewed
through the right conceptual framework. Finding such con-
ceptual frameworks is however the hard part, which in-
volves both deductive and inductive reasoning.

So to get to strong AI for sciences, it should be good
to study useful ways of deductive and inductive reasoning
(and understanding) over large corpora of advanced human
knowledge and reasoning that are as deeply accessible to
computers as possible. In my opinion, nothing has so far
beaten large corpora of formal (but largely human-written,

2http://www.rbjones.com/rbjpub/logic/qedres00.htm



and often aligned with informal texts) mathematical knowl-
edge as a suitable resource combining these aspects, push-
ing the deductive/inductive reasoning research from small
toy domains to much more realistic domains. If reasoning
and understanding capabilities can be developed for math-
ematics to the level where full LATEX-written books will be
automatically understood, verified, and digested into strong
AI systems that solve nontrivial mathematical problems,
then a lot of motivation will be provided for similar seman-
tic treatment of other sciences. In this sense, the dream of
strong ATP and the QED dream are included in the AI-for-
science dream. But as suggested above, I also think that the
ATP and QED dreams can considerably profit from comple-
mentary AI methods like machine learning and pattern dis-
covery applied to the large computer-understandable cor-
pora of human thinking. At least when reasoning over large
domains, such complementary methods already help a lot.

2 The First Decade

The last decade opened three large corpora to such ex-
periments with automated theorem proving and related AI
methods: the Mizar Mathematical Library (MML), the Is-
abelle/HOL library (and all developments in the Archive
of Formal Proofs – AFP – based on Isabelle/HOL), and
the HOL Light/Flyspeck libraries. This translation work
continues, in some sense from both sides: better transla-
tion methods from the more expressive logics to first-order
logic are very useful, while the ATP calculi and systems are
equipped with more and more features that take them closer
to the expressive logics (types, higher-order ATPs, SMTs).

A considerable amount of work has been done since 2003
on better ATP data structures and large-theory algorithms
inside ATPs. The only way to do some ATP experiments
was initially however only through external knowledge se-
lection methods, either heuristic or learning. In the evalu-
ation [7] done in 2010, only 2% of the large MML prob-
lems could be solved by unaided E, 6% could be solved by
E using the freshly developed heuristic SInE filtering, and
15% when using the most restrictive SInE filtering. On the
smaller MPTP2078 benchmark used for the Mizar@Turing
2012 CASC competition, machine learning from previous
proofs further improved on SInE by 44% when using naive
Bayes, and by 50% when using kernel-based learning [1].
This has been further improved by 10% by a simple ensem-
ble approach combining SInE as a ranker with the kernel-
based ranking [4]. Exploring a number of the most comple-
mentary learning, feature-characterization, and ATP meth-
ods has led to development of strong “hammer” systems
for Isabelle [5, 3], Mizar [8] and HOL Light [2]. 39% of all
top-level Flyspeck theorems (about 14.000) can be today
proved in a push-button mode.

The AI-based methods that have already been imple-
mented and tried inside ATPs include various guidance
mechanisms in E, in particular goal-oriented heuristics that
prefer clauses that are in various ways close to the con-
jecture. Similar mechanisms exist also in Prover9, how-

ever they have been so far used rather for proving deep
results in small algebraic theories. A recent experiment
with full learning-based guidance is the MaLeCoP sys-
tem [10], which learns guidance from any closed tableaux
branch, and applies the guidance practically at every infer-
ence point, pruning the average search about twenty times.

Such experiments easily lead to larger deduc-
tive/inductive AI metasystems. E.g., learning premise
selection can be interleaved with proving, resulting in
the MaLARea-style [9] loop, where the premise selection
benefits from more proofs and counterexamples, and the
proving benefits from better premise selection. Such AI
loops can be augmented by introduction of suitable con-
cepts, lemmas, and conjectures. ATPs may self-improve
for long times in strategy-evolving loops [6], growing new
strategies by genetic or iterative methods, focusing on
specific types of problems, and eventually optimizing a
global strategy scheduling meta-system as done in Vampire
and E-MaLeS (again using learning). A new kind of an AI
metasystem that should be attempted soon will use large
aligned informal/formal corpora such as Flyspeck, and
develop AI loops that gradually improve the understanding
(translation) capability between the informal and formal
texts, helping the understanding by the AI/ATP methods
simultaneously trained on the already understood part.
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