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Abstract We developed a biologically inspired unsu-

pervised connectionist architecture for grounding the

spatial terms. This two-layer architecture integrates in-

formation from visual and auditory inputs. In the first

layer, it employs separate visual what and where sub-

systems to represent spatial relations of two objects

in 2D space. The images are presented to an artifi-

cial retina and the phonologically encoded five-word

sentences describing the image serve as auditory in-

puts. The visual scene is represented by several self-

organizing maps (SOMs) and the auditory description

is processed by a Recursive SOM that learns to to-

pographically represent sequences. Primary representa-

tions from the first layer are unambiguously integrated

in a multimodal module (implemented by SOM or “neu-

ral gas” algorithms) in the second layer. The simula-
tions reveal that separate processing and representa-

tion of spatial location and object shape significantly

improves the performance of the model. The system is

able to bind proper lexical and visual features without

any prior knowledge. The results confirm theoretical

assumptions about the different nature of visual and

auditory coding that become efficiently integrated at

the multimodal layer.
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Karlovo náměst́ı 13, Prague
Tel.: +420224357609
E-mail: vavrecka@fel.cvut.cz

I. Farkaš
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1 Introduction

The question of how to acquire, represent and use knowl-

edge is fundamental in the artificial intelligence and

cognitive science research. Within the modern perspec-

tive, fueled by growing empirical evidence, we are look-

ing for a system that interacts with the environment

and is able to understand it, by forming its internal rep-

resentations that result from this interaction. The rep-

resentations in the system should preserve constant at-

tributes and regularities of the environment, represent

them as concepts, and connect these to the symbolic

level. This approach to the representation of mean-

ing differs from the classical symbolic approach based

on formal principles (Newell & Simon, 1972; Pylyshyn,

1984). The formal approach has been generally criti-

cized for its inherent difficulty to describe the whole

world by logic relations (Zieliger, 2010). Formal seman-

tics is sufficient only for the formal languages, but natu-

ral language and events captured from the environment

are too complex and fuzzy for such semantics.

Hence we need a different strategy to create a sys-

tem of representations and mechanisms for manipulat-

ing them. Barsalou (1999) proposed a theory based on

perceptual symbol systems (PSS) that provide schematic

neural representations spread across multiple sensory

modalities. The advanced version of Barsalou’s approach

is expressed in the LASS theory describing the interac-

tion between the linguistic system and the conceptual

system (Barsalou, 2008). Similar ideas stem from the

cognitive semantics (Lakoff, 1987), based on a percep-

tually created conceptual level and a grounded symbolic

level. These approaches are closely related to the sym-

bol grounding problem (Harnad, 1990). The basic task

for symbol grounding is to find the function and an in-

ternal mechanism to create representations which are
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intrinsic to the system, and hence do not need an ex-

ternal observer for their interpretation (Ziemke, 1999).

Harnad (1990) proposed a hybrid architecture based

on discrimination and identification. Discrimination is

a subsymbolic (nonarbitrary) representation of percep-

tual inputs, and identification assigns (nonarbitrary)

concepts to (arbitrary) symbols. Harnad used neural

networks for the subsymbolic representations and the

classical architecture for symbol operations. In the over-

view of grounding architectures, Taddeo and Floridi

(2005) introduced zero semantical commitment condi-

tion as a criterion for valid solution to the symbol ground-

ing problem, completely avoiding the designer’s approach.

This criterion, however, appears unsatisfiable in artifi-

cial systems (Vavrečka, 2006).

In the past decades, there was a number of dif-

ferent approaches and models of the symbol ground-

ing (e.g. Dorffner, Hentze & Thurner, 1996; Cangelosi

& Riga, 2006; Fontanari, Tikhanoff, Cangelosi, Ilin &

Perlovsky, 2009; Greco, 2010). Sugita and Tani (2005)

implemented a connectionist model, consisting of the

interconnected modules that were trained to make the

mobile robot execute motor commands and comment

on them. The system was also able to understand verbal

instructions, by demonstrating their execution, which

can be interpreted as grounded linguistic knowledge. In

all these models, the neural networks provide a natu-

ral computational framework for grounding knowledge

acquisition. Computational models of grounding, pre-

sented so far, mainly focused on grounding nouns in sen-

sorimotor object representations and verbs in actions

directly performed by the agent (Marocco, Cangelosi,

Fischer & Belpaeme, 2010). Roy and Pentland (2002)

developed a system able to segment words from utter-

ances and to associate the proper words with objects.

Consequently, Roy et al. (2003) extended this architec-

ture for perceptual, procedural and affordance repre-

sentations to ground the meaning of words in conver-

sational robots. These works do not care much about

biologically inspired features of the models, though.

Our approach is based on biology-inspired model-

ing (Vavrečka, Farkaš & Lhotská, 2011). The architec-

ture implements the multimodal representations in the

framework of the PSS. There are symbolic inputs (sen-

tences) processed by a separate auditory subsystem,

perceptual inputs processed by a visual system and the

multimodal layer that incorporates the process of iden-

tification of symbols with concepts by the integration

of auditory and visual information. Pezzulo and Calvi

(2011) also implemented Barsalous PSS as a computa-

tional model. Their architecture learns perceptual sym-

bols and assembles them in simulators for perceptual

and abstract categories.

With respect to learning paradigms, we can distin-

guish two types of connectionist models that link sub-

symbolic (conceptual) knowledge with (linguistic) sym-

bols. The supervised approach is based on the error

correction learning in which input patterns are linked

with symbolic targets (labels). For instance, Cangelosi

and Harnad (2000) developed a supervised computa-

tional model able to ground proper features to par-

ticular words. They distinguish two types of category

learning, namely sensorimotor toil standing for con-

cept acquisition from sensory inputs, and the symbolic

theft based on the sharing of already grounded linguis-

tic descriptions between agents. In the follow-up model

(Cangelosi & Riga, 2006), linguistic inputs are linked

with sensorimotor outputs using back-propagation al-

gorithm. Both inputs and outputs are assumed to come

from the environment, and the trained model not only

provides an account for grounding linguistic symbols

(sensorimotor toil), but also for the grounding transfer

to novel linguistic expressions (symbolic theft). This

mechanism allows to learn new words without a vi-

sual demonstration, which is closely related to the PSS.

Tikhanoff, Cangelosi, Fitzpatrick, Metta, Natale, and

Nori (2008) extended this supervised architecture and

implemented it into a humanoid robot. The robot was

able ground words and to understand sentences such as

“put red sphere into container”.

The unsupervised approach treats both perceptual

stimuli and symbols equally as inputs, to be associated

(typically) by Hebbian-like learning. This implies a dif-

ferent way of incorporating the symbolic (lexical) level.

The target signal only functions as an additional in-

put rather than being the source for error-based learn-

ing. The unsupervised models are typically based on

self-organizing maps (SOM; Kohonen, 1990) that or-

ganize (high-dimensional) input vectors according to

their similarities (topographically). For instance, De-

vLex model (Li, Farkaš, & MacWhinney, 2004) also

consists of two self-organizing networks, one for lexical

symbols and the other for conceptual (semantic) repre-

sentations, that are bidirectionally connected. They can

activate each other but there is no additional layer for

multimodal representations. Within unsupervised ap-

proaches there emerged an alternative to link both per-

ceptual and symbolic information with multimodal rep-

resentations at the output. The example of this archi-

tecture is the unsupervised feature-based model, that

was used to account for early category formation in

young infants (Gliozzi, Mayor, Hu & Plunkett, 2009).

This approach postulates the unsupervisory role of lin-

guistic labels that can effect categorization during the

acquisition process, which has also been supported by

experimental evidence.
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Our model is conceptually similar to that of Gliozzi

et al (2009) but architecturally it is more complex, since

it was tested in another domain of human cognition. We

test our model in the area of spatial cognition, similarly

to Regier (1996), who created a supervised neural net-

work model consisting of several modules to ground the

spatial terms. The architecture was able to ground both

static spatial relations (e.g. left, right) and dynamic

relations (e.g. around, through). However, in Regiers

model the symbolic representational level was consid-

ered to be prior and fixed. On the contrary, we focus

on unsupervised learning of spatial relations of two ob-

jects in 2D space, by linking the perceptual information

and the linguistic description. The neural architecture

we propose satisfies the requirement that the artificial

system (agent) should learn its own functions and rep-

resentations (Ziemke, 1999). In contrast to the classical

top-down approach, our bottom-up approach restricts

the designer’s intervention in the representational sys-

tem to a minimum. All representations are learned from

the external environmental inputs.

In the basic model (Vavrečka, 2007) we simplified

inputs for the unimodal layers to Cartesian coordinates

of stimuli (i.e. 2D spatial positions) instead of the (high-

dimensional) retinal images as visual inputs, and only

two phonetic features instead of more detailed phono-

logical representations as an auditory input. The mul-

timodal layer consisted of 5 neurons representing ba-

sic spatial locations. The system reached 87% accuracy,

that quantifies the degree of unambiguity of output rep-

resentations. From the mapping perspective, the sys-

tem learned to unambiguously map the pairs of out-

put vectors (from the unimodal layers) to single units.

The system was able to create perceptually grounded

representations. The extended version of the model for

the representation of dynamic spatial terms (Vavrečka,

2008) based on the RecSOM (Voegtlin, 2002) and the

growing-when-required networks (Marsland, Shapiro &

Nehmzow, 2002) was able to process visual sequences

(around, through, outside, over, under) and it reached

88% accuracy.

The models described in this paper are the most re-

cent implementations of our architecture. Our aim was

to develop a biologically inspired model, so there are

some changes in the architecture compared to the pre-

vious versions. From the neuroanatomic point of view,

the information about the location and identification of

an object in space are processed separately in what and

where pathways (Ungerleider & Mishkin, 1982). The

dorsal where pathway is assumed to be responsible for

spatial representation of the object location, while the

ventral what pathways are involved in object recogni-

tion and form representation. We incorporate this fea-

ture in our model. The neurological and psychological

evidence also suggests that the brain must somehow

integrate various features into a coherent whole. This

problem was coined in literature as the (visual) bind-

ing problem, that is, a process of linking together the

attributes (color, form, motion, size, and location) of

a perceptual object. Our model proposes the unsuper-

vised solution of the visual binding based on the in-

tegration of what and where pathways (see the review

of connectionist approaches to the binding problem in

van der Velde & de Kamps, 2006). One of the motiva-

tions for our model was to test, whether it is possible to

bind location, color and shape of two objects without

any prior knowledge and without external information.

The model also provides a solution to the (unsuper-

vised) symbol grounding that can be considered as a

lexical binding. The sequences of symbols (words) pro-

cessed in the auditory layer are grounded (bound) to

proper features from the visual subsystem (shape, color,

location).

The rest of the paper is organized as follows. In Sec-

tion 2, we introduce the architecture in greater detail.

Section 3 presents results from four series of simula-

tions. Section 4 covers the discussion and the relation

of our model to other models. Section 5 concludes the

paper.

2 The Models

In our model, the representation process takes advan-

tage of the unimodal layers of units. The auditory layer

represents sentences and the visual layers represents

spatial location, shape and color of objects. The mul-
timodal level integrates the outputs of these unimodal

layers. In contrast to the classical approaches that pos-

tulate the abstract symbolic level as fixed and prior

(defined by the designer), in our model it is possible to

learn and modify the auditory layer, visual layer and

consequently the multimodal level. The schema of the

system is depicted in Fig. 1.

In the three simulations, we compare different ver-

sions of the visual subsystem, analyzing the distinction

between what and where pathways. The results help us

to decide, whether this simplification is important for

enhancing the overall model performance. The visual

system of our model is tested in three different con-

figurations: a single SOM that learns to capture both

what and where information (Model 1), two separate

SOMs for what and where information (Model 2), and

two separate SOMs with reduced where representations

(Model 3).

In Model 4, we compare different types of multi-

modal integration. Inspired by the biological evidence
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Fig. 1 Multimodal connectionist architecture for grounding
spatial terms. The auditory layer represents sentences and
the visual layers represent spatial location, shape and color
of objects. The multimodal level integrates the outputs of
these unimodal layers.

about topographic organization of sensory and motor

brain areas, we assume that primary unimodal layers

are topographically organized. Although there exist ex-

amples of this organizing principle also in higher ar-

eas (Malach, Levy, & Hasson, 2002), it remains an em-

pirical question, whether topographically organized re-

sponses are a general principle of the brain also at

higher levels of organization. In the multimodal layer,

we compare the SOM and neural gas (NG; Martinetz,

Berkovich, & Schulten, 1993) algorithms as representa-

tives of both approaches. Both algorithms are unsuper-

vised, based on the competition among units, but NG

uses a flexible neighborhood function, as opposed to the

fixed neighborhood in SOM (that enforces topography).

The goal was to experimentally investigate the effect of

the neighborhood function in the multimodal layer. We

used the modified SOM Toolbox (Vesanto, Himberg,

Alhoniemi, & Parhankangas, 2000) for all simulations.

2.1 Input data

The visual scenes consist of the trajector and the base

object in different spatial configurations. The base po-

sition is fixed in the center of the scene (the center of

retina) and the trajector position is located in one (or

at the boundary between two) of the spatial quadrants

relative to the base. The positions along the main semi-

axes are linguistically referred to as up, down, left, and

right, but perceptually, the trajector position is fuzzy

and random. The scene size (artificial retina) is 28×28

pixels and both objects consist of 4×4 pixels (Fig. 2a).

We trained various models with an increasing combi-

natorial complexity, starting with simple inputs with

Fig. 2 (a) Example of a visual input scene and the
monochrome visual vocabulary, (b) Simplified visual inputs
with varying levels of spatial fuzziness.

2 colors, 2 object types and 4 spatial relations, up to

more complex inputs consisting of 3 colors (red, green,

blue), 5 object types (box, ball, table, cup, bed) and 4

spatial relations (above, below, left, right).

The most complex scenario with 2 different objects

in the scene amounts to 840 combinations. The corre-

sponding training set resulted in 42000 examples (50

instances per spatial configuration). We also presented

stimuli with increasing fuzziness in the spatial location

to investigate the relation between fuzziness and the

error in the visual and multimodal layer. The two con-

ditions with the highest degree of fuzziness yield over-

lapping inputs (as seen in Fig. 2b).

2.2 Visual layer

The sensory input of the visual subsystem is captured

by an artificial retina that serves as an input to the pri-
mary visual layer. Visual layer consists of the SOM(s)

that learn the nonlinear mapping of input vectors to

output units in the topography-preserving manner (i.e.

similar inputs are mapped to neighboring units in the

map). The SOM performs standard computations in

each iteration. After presentation of a randomly chosen

(rescaled) input vector x, the output yi of a unit i in

the SOM is first computed as

yi = 1− ‖[x(t)−wi(t)‖

where ‖‖ denotes the Euclidean norm (also in forthcom-

ing equations), and then the k-WTA (winner-take-all)

rule is applied. According to k-WTA, k most active

units are proportionally kept active (with the activity

of the best matching unit scaled to 1), and all other

units are clamped to 0. In the models, we used k = 6.

The motivation for this type of output representation

consists in introducing some overlaps between similar

patterns to facilitate generalization.
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The output vectors of all unimodal modules are con-

catenated and serve as the input vector to the multi-

modal layer. For all visual maps, standard computa-

tions are performed regarding the weight update. After

the best matching unit (winner) c has been found ac-

cording to

c = arg min
i
{‖x(t)−wi(t)‖},

the weights in the winners neighborhood are updated

as

wi(t+ 1) = wi(t) + µ hci(t) [x(t)−wi(t)]

where µ is the learning rate, and hci(t) is the neighbor-

hood kernel around the winner c, with neighborhood

radius linearly shrinking over time. Let us now take a

more detailed look at these layers and their inputs.

In Model 1, the single SOM was tested whether it

could learn to differentiate various positions of two ob-

jects, as well as object types and their color. In Model

2, we used separate SOMs for spatial locations (ab-

straction of where system) and separate SOM for color

and shape of objects (abstraction of what system). The

what system incorporates a simple attentional mech-

anism and represents the foveal input of two conse-

quently observed objects. Two visual fields (each with

4×4 receptors) project simultaneously visual informa-

tion about the trajector and the base in a fixed position

to the unimodal what system. The color of each pixel

is encoded by the activity level, rescaled to values be-

tween 0 and 1. Model 3 employs the same what and

where systems as Model 2, but uses different inputs

to the where system consisting of two monochromatic

boxes (rather than concrete object shapes in color) in

the particular spatial position. The size of all visual

layers was fixed for all models, namely 30×30 neurons

for the where system and 25×25 neurons for the what

system. The sizes were estimated from previous simula-

tions and they also stem from the number of combina-

tions in the most complex scenario (840 combinations

in where system and 210 in what system). All SOM

maps have a hexagonal neighborhood function and the

lattices with a toroid topology.

2.3 Auditory layer

Auditory inputs (English sentences) were encoded as

high-dimensional patterns representing word forms us-

ing PatPho, a generic phonological pattern generator

that fits every word (up to three syllables) onto a tem-

plate according to its vowel-consonant structure (Li,

2002). PatPho uses the concept of a syllabic template:

a word representation is formed by combinations of syl-

lables in a metrical grid, and the slots in each grid are

made up by bundles of features that correspond to con-

sonants and vowels.

In our case of 5-word sentences, each sentence con-

sists of five 54-dimensional vectors with component val-

ues in the interval (0,1), representing particular words.

These vectors are sequentially fed (one at a time) to

the RecSOM (Voegtlin, 2002), a recurrent SOM archi-

tecture, that uses a detailed representation of the con-

text information (the whole output map activation) and

has been demonstrated to be able to learn to repre-

sent much richer dynamical behavior (Tiňo, Farkaš, &

van Mourik, 2006), compared to other recurrent SOM

models (Hammer, Micheli, Sperduti, & Strickert, 2004).

RecSOM learns to represent inputs (words) in the tem-

poral context (hence capturing sequential information).

RecSOM output, in terms of map activation, feeds to

the multimodal layer, to be integrated with the visual

pathway. Like SOM, RecSOM is trained by competi-

tive, Hebbian-like algorithm. As a property of RecSOM,

its units become sequence detectors after training, to-

pographically organized according to the suffix (most

recent words).

Formally, each neuron i ∈ {1, 2, ..., N} in RecSOM

has two associated weight vectors: wi ∈ Rn - linked

with an n-dimensional input s(t) (in our case, the cur-

rent word, with dimension n = 54) feeding the network

at time t, and the weight vector ci ∈ RN – linked with

the context y(t− 1) = [y1(t− 1), y2(t− 1), ..., yN (t− 1)]

containing the unit activations yi(t − 1) from the pre-

vious time step. The output of a unit i at time t is

yi(t) = exp(−di(t)), where

di(t) = α ‖s(t)−wi‖2 + β ‖y(t− 1)− ci‖2.

Here, α > 0 and β > 0 are model parameters that

respectively influence the effect of the input and the

context upon neurons profile. Their suitable values are

usually found heuristically (in our model, we use α =

β = 0.1). Both weight vectors are updated using the

same form of a SOM learning rule

∆wi = γ hci (s(t)−wi),

∆ci = γ hci (y(t− 1)− ci),

where c = arg mini{di(t)}, is the winner index at time t,

and 0 < γ < 1 is the learning rate. (The winner can be

equivalently defined as the unit c with the highest acti-

vation yc(t) : c = arg maxi{yi(t)}). Neighborhood func-

tion hci is a Gaussian (of width σ) on the distance d(i, c)

of units i and c in the map: hci = exp(−d(c, i)2/σ2).

The neighborhood width σ linearly decreases in time

to allow formation of topographic representation of in-

put sequences. After training, all RecSOM units be-
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come sensitive to particular sentences, ordered topo-

graphically according to sentence endings. The output

vector is composed of five winners representing partic-

ular words in the sentence. The activations of winning

units are slowly decayed in time (decreased by value

0.1 at each step) towards the end of sentence. This al-

lows to represent the order of winners in the sequence,

hence differentiating between similar base and the tra-

jector phonetic features in a scene (e.g. “red ball above

red ball”).

2.4 Multimodal layer

The multimodal layer is the core of the system, since

it learns to identify unique categories and represent

them. In agreement with the theory of perceptual sym-

bols systems (Barsalou, 1999), the main task for this

layer is to process the output from the unimodal lay-

ers and to find and learn the categories by mapping

different sources of information (visual and auditory)

that refer to the same objects in the external world.

Inputs for the multimodal layer are taken as concate-

nated unimodal activation vectors (from both modal-

ities) using the above mentioned k-WTA mechanism,

explained in Section 2.2. Unlike sparse localized output

codes (k = 6) used at the unimodal layer (to facilitate

generalization), the output representation in the mul-

timodal layer with WTA mechanism is chosen to be

localist (k = 1) for better interpretation of results and

the error calculation.

We tested two unsupervised algorithms in the mul-

timodal layer, SOM and NG, that differ in the neigh-

borhood function. The size of the multimodal layer was

set to allow a distinct localist representation of all 840

object combinations in the most complex data set, so

we used 841 neurons (arranged in a 29×29 grid in case

of SOM).

For clarity, we explain the NG algorithm briefly

here. NG shares with SOM a number of features. In

each iteration t, an input vector m(t) is randomly cho-

sen from the training dataset. Subsequently, for all units

we compute di(t) = ‖m(t)−zi‖ and then sort the units

according to their increasing distances di, using indices

l = 0, 1, ... (where l(0) corresponds to the current win-

ner). Then we update all weight vectors zi according

to

∆zi = η exp(−l(i)/λ) (m(t)− zi)

with η being the learning rate and λ the so-called neigh-

borhood range. We used η = 0.5 and λ = n/2 where n

is the number of neurons. Both parameters are reduced

with increasing t. It is known that after sufficiently

many adaptation steps the feature vectors cover the

data space with minimum representation error (Mar-

tinetz, Berkovich, & Schulten, 1993). Mathematically,

the adaptation step of the NG can be interpreted as

gradient descent on a cost function.

3 Results

We present results corresponding to the four models as

described above in Section 2, tracking our “experimen-

tal trajectory”, along which we eventually converged to

Model 4. We trained each model for 100 epochs and

tested it with a novel set of inputs. For each run, the

data set was randomly split to training and testing sub-

sets using the 70:30 ratio.

3.1 Quantification of the model accuracy

To quantify the model accuracy, we designed the follow-

ing evaluation procedure for each trained model. After

the model has been trained, we again ran once through

the training set, in order to label all neurons, reflecting

their responsiveness to each of the five input features

(base color, base shape, spatial location, trajector color,

and trajector shape). We attach to each neuron five

counter arrays, initialized to zeros, each consisting of

n(f) slots, with n(f) being the number of different (pos-

sible) values of feature f (depending on the task com-

plexity). For each training input pattern, we find the

winner (as in the SOM algorithm) whose five counter

values are increased by one (i.e. for each current feature

value). After the sweep through the training set, we as-

sign unique feature labels to all neurons by applying

the “maximum response principle,” according to which

each neuron becomes a representative of only the most

frequent value of the given feature (for which that neu-

ron became the winner most often). Then we measure

the model accuracy, as the percentage of correctly clas-

sified test inputs. The feature of the testing pattern is

assumed to be correctly classified, if it matches the win-

ners representative feature. We first calculate the error

for each feature separately, and then also the overall er-

ror for the whole scene/sentence that requires that all

features in the testing sentence be correctly classified.

3.2 Model 1

In Model 1, the single SOM in the visual system is

tested whether it can learn to represent all visual fea-

tures simultaneously. We observe a high error in the

where system for the trajector features, because tra-

jector positions overlap in the specific area. Although
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Fig. 3 The unit responses in the auditory layer of Model 1. If
the same neuron responds to the same feature (e.g. shape) of
the trajector and the base (overlapping dots), it will increase
the error for the whole scene/sentence as well. (a) Visual-
ization of the RecSOM grid (time is represented as a size of
the dot, shown bottom-up 4b), (b) Timeline of the sentence
processing (y-axis) bottom-up.

the spatial location of the trajector is fuzzy, the error

for this feature in the test set is the lowest (14%). Low

errors also result for base color (18%) and base shape

(28%). Errors for trajector color (37%) and trajector

shape (65%) are rather high. We also test whether the

level of fuzziness (shown in Fig. 2b) affects the error in

the SOM map. All features but the spatial location are

not sensitive to the fuzziness level, as the errors vary

within 3% range. On the other hand, the error for spa-

tial location correlates with the fuzziness starting from

3% for fixed position of the trajector to 14% for highly

overlapping spatial locations.

The auditory RecSOM layer performs better com-

pared to the visual layer because the phonetic features,

being sequentially fed to the system, are not fuzzy.

There are 0% errors for base color, base shape, tra-

jector color and spatial term. Error for the trajector

shape is 1%. On the other hand, there is a 22% confu-

sion error. The RecSOM architecture allows a neuron

to become sensitive for multiple instances of the same

word in the sentence, because it represents each sen-

tence (sequence) in 2D grid. This neuron is sensitive

to e.g. both red color of the trajector and the base.

It results in the confusion of the neuron response (see

Fig. 3) and increases the error in multimodal layer. This

problem should be partially eliminated by decayed ac-

tivation of winning neurons (see Auditory layer).

The performance of the multimodal layer heavily

depends on the effectiveness of unimodal layers. The

errors for the representation of trajector color (8%),

base color (1%) and base shape (2%) are low. On the

other hand, there are high errors for both the trajector

Fig. 4 Visualization of spatial term errors in the where layer
for full retinal inputs (blue) and for bounding box inputs (red)
as a function of the fuzziness level of trajector spatial location.

shape (46%) and spatial term (25%). This is due to bad

performance of the visual layer. The overall error of the

system reaches 68%.

3.3 Model 2

Model 2 processes what and where information using

separate SOMs, and we identify a difference in accuracy

between the two systems. The what system outperforms

the where system, as documented by low errors for base

color (1%), base shape (8%), trajector color (0%) and

trajector shape (5%). We did not test the performance

of the what system for the spatial term simply because

that information was not made available to the what

system. The errors for the where and auditory systems

are identical to Model 1, because these layers receive

the same inputs as in Model 1. Notably, the additional

what layer changed the performance of the multimodal

layer. Errors for base color (2%) and base shape (4%)

in the multimodal layer remain the same as in Model 1,

but lower errors are observed for trajector color (1%)

and trajector shape (5%). On the other hand, the sys-

tem exhibits a much higher error for the spatial term

(71%) compared to Model 1 (25%). The multimodal

SOM layer is probably not able to merge the informa-

tion from three unimodal layers. The overall error is

75%, caused by the problem with the representation of

the spatial term. The more detailed analysis is post-

poned to Discussion.

3.4 Model 3

The simplification of inputs to the where system is

achieved by using monochromatic bounding boxes in-
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Fig. 5 Comparison of the errors in the multimodal layer for
the representation of the spatial term. Model 4s (NG in the
multimodal layer and a single SOM in the visual system)
performs best.

stead of object shapes and colors. This expectedly led

to lower errors compared to full retinal images (see

Fig. 4). We do not compare the results for object fea-

tures (shape and color), because in this model there

is no information about them provided to the where

system. The analysis of the SOM structure revealed

a better organization of specific clusters in favour of

bounding box inputs for the spatial term representa-

tion. These results lead us to the conclusion that it is

possible to simplify the information projected to the

where system to optimize the speed and effectiveness

of our architecture. However, the simplification of the

where inputs does not affect the performance of the

multimodal layer. There are similar results for the ob-

ject features, spatial term (70%) and also overall error

(74%). So we tested the NG algorithm in the multi-

modal layer in further simulation trying to improve the

performance.

3.5 Model 4

We compare the effectiveness of the SOM and NG algo-

rithms in the multimodal layer. We observe a different

type of clustering in the unimodal layers that are trans-

ferred to the multimodal layer, where the SOM is not

able to adapt to the joint outputs from unimodal layers,

apparently due to neighborhood constraints (Model 1

and 2). The results of the NG algorithm (Model 4 and

4s) for the same input data confirm this hypothesis. The

multimodal layer based on NG is able to correctly map

all the object features without any problem. There is a

0% error for both simplified inputs (Model 3) and also

for full retinal projections to the where system (Model

2). The errors for multimodal NG module and the sin-

Fig. 6 Errors in the multimodal layer for whole scene (sen-
tence) representation. Model 4 based on what and where vi-
sual system and NG in multimodal layer performs best.

gle SOM in the visual layer (Model 4s) are as follows:

1% for base color, 2% for base shape, 6% for trajector

color and 26% for trajector shape. These results are sig-

nificantly better than those for the multimodal SOM.

Surprisingly, we observe the lowest error for the rep-

resentation of the spatial term in the multimodal layer

for NG algorithm and a single SOM visual layer (Model

4s). There is a 12% error compared to 24% for Model

4 (see Fig. 5). The SOM algorithm leads to higher er-

rors of the spatial term for both models, namely 25%

(Model 1) and 70% (Model 2). These results are con-

tradictory, because Model 2 (and also Model 3) with

separate what and where systems performs better for

all features except the spatial term. This could be at-

tributed to the missing information about the spatial

term in the what system (see Discussion).

The comparison of the overall accuracy (whole sen-

tence error) is shown in Fig. 6. The best results are

obtained for what and where subsystems and the NG

algorithm in the multimodal layer (Model 4). There is a

25% error compared to 70% overall error for multimodal

SOM in the most complex scenario. Hence, the better,

albeit not perfect, results are achieved with NG by sac-

rificing the topographicity of responses in the multi-

modal layer.

The last analysis is dedicated to the comparison of

SOM (Model 3) and NG (Model 4) algorithms in the

multimodal layer that have to process different levels

of spatial fuzziness. Fig. 7 reveals a lower error for NG

at all levels of fuzziness and the high errors for SOM

regardless of the fuzziness level (70%). Hence, the mul-

timodal SOM is unable to represent neither fuzzy nor

distinct inputs.
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Fig. 7 Errors in the multimodal layer for SOM (Model 3)
and NG (Model 4) algorithms as a function of the fuzziness
level of the trajectors spatial location (see Fig. 2b).

4 Discussion

We analyze the presented models in the context of the-

oretical assumptions, especially the perceptual theory

of cognition and conceptual approaches to knowledge

representation. We also discuss various aspects of our

model, its relation to other models and the features of

lexical and visual binding.

4.1 Architecture

In our model, the representations take advantage of

the two or three unimodal layers of units. The audi-

tory layer represents unique labels (linguistic terms),

whereas the where part of the visual system represents
fuzzy information about the spatial locations of ob-

jects in the external world and what system captures

shapes and colors of objects in a fixed foveal position.

The multimodal level integrates the outputs of these

unimodal layers. The grounded meaning is simultane-

ously represented by all layers (auditory, visual and

multimodal), making this approach resemble the the-

ory of Peirce (1931) who defined three components of

a sign – representamen, interpretant and the sign it-

self. Our model represents the sign hierarchically which

guarantees better processing and storing of representa-

tions, because the sign (the multimodal level) is mod-

ifiable from both modalities (the sequential “represen-

tamen” auditory level and the parallel “interpretant”

visual level). This feature makes the units in the higher

layer bimodal (i.e. they can be stimulated by any of the

primary layers) and their activation can be forwarded

for further processing. Bimodal (and multimodal) neu-

rons are known to be ubiquitous in the association ar-

eas of the brain (Stein & Meredith, 1993). The multi-

modal layer is formed by exploiting the concept of self-

organized conjunctive representations that have been

hypothesized to exist in the brain with the purpose of

binding the features such as various perceptual proper-

ties of objects (Mel & Fiser, 2000). Here we extend the

concept of grounding by linking the subsymbolic and

symbolic information. Hence, each output unit learns

to represent a unique combination of perceptual and

symbolic information (that could be forwarded to an-

other, higher module).

Interestingly, the bimodal layer with conjunctive units

is also used in recent generative probabilistic models

that can be designed to link information from two (or

more) sources (e.g. modalities). For example, the deep

belief net (DBN) is a stochastic generative model (a

multi-layer neural network with bidirectional connec-

tions) that learns to approximate the complex joint

probability distribution of high-dimensional data in a

hierarchical way. For instance, DBN was trained to clas-

sify the isolated hand-written digits into 10 categories,

so the visual inputs (28×28 pixel images) were linked

with categorical labels (Hinton, Osindero, & Teh, 2006).

The linking was established via the training on image-

label pairs (treated as inputs), using the higher (bi-

modal) layer (with 2000 units) that learned the joint

distribution of those input pairs. DBN was shown to

be superior to various other (discriminatory) models

in this digit classification task. From the perspective

of the representations formed in the multimodal units,

Hinton et als goal was the same as ours (although our

units are deterministic rather than stochastic). The sep-

arate multimodal level provides a platform for the de-

velopment of subsequent stages of information process-

ing (e.g. inference mechanisms). Further tests of this

approach should also focus on scaling up our model to

more complex mappings.

The architecture of our model shares some similar-

ities with, but also differs from the DevLex model of

early lexical acquisition (Li et al., 2004). DevLex, orig-

inally inspired by DISLEX model (Miikkulainen, 1997)

also consists of two (growing) self-organizing maps, but

these are directly interconnected. DevLex was proposed

to learn the form-meaning associations (phonological

word forms and meanings) via Hebbian updating the

(bidirectional) connection links, aiming to model the

processes of lexical comprehension and production. De-

vLex, however, does not contain a higher (e.g. multi-

modal) layer that integrates the modalities, as do other

grounding models (Riga, Cangelosi & Greco, 2004; Roy,

2005). Instead, the overall representation of the mean-

ing is taken as the joint coactivation of the two maps.

Our model is very similar to the connectionist model

of Dorffner et al. (1996) that consists of two primary
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(symbolic and conceptual) layers connected to one cen-

tral layer. There is a linking layer (the counterpart of

our multimodal layer) interconnecting the two primary

layers via localist units that link both representations

(i.e. one unit connects one word-concept pair of pri-

mary representations). First, one set of links (weights to

the linking layer) is trained using a competitive mecha-

nism exploiting the WTA approach. Then, the winners

weights towards the other layer are updated according

to the outstar rule (Grossberg, 1987). Hence, the pur-

pose is to learn form-concept mapping, mediated by

the linking layer. In both models, these mappings were

aimed at simulating the word comprehension (form to

meaning) and the word production (meaning to form),

but our model is also able to bind visual features and

also bind proper lexical units in the sentence to the vi-

sual counterparts (lexical binding or extended symbol

grounding).

4.2 Visual binding

Our model proposes the unsupervised solution to the

visual binding, based on the integration of what and

where pathways. With respect to the visual binding

problem, the model is based on convergent hierarchical

coding, also called combination coding (Riesenhuber &

Poggio, 2002). The neurons react only to combinations

of features, that is, to an object of a particular shape

and color at a particular retinal position (localist rep-

resentation). The hierarchical processing implies that

increasingly complex features are represented by higher

levels in the hierarchy. Complex objects and situations

are constructed by combining simpler elements. On the

other hand, the convergent hierarchical coding requires

as many binding units as there are distinguishable ob-

jects. It should result in a combinatorial explosion for

large-scale simulations. Our model is able to represent

840 combinations, but it can also suffer from combi-

natorial explosion because we represent pairs of objects

instead of separate entities in the primary layers. In case

of 10 objects, 5 colors in 4 spatial locations we would

need to represent 2450 object pairs in a primary what

system, instead of 50 separate objects. It is also possible

to add a separate layer for the color processing, in which

case there will only be 10 objects presented in the what

system (we plan to test this architecture in the future).

Alternatively, we could represent the features in the ac-

tivity of a population of neurons distributed within and

across levels of the cortical hierarchy as distributed rep-

resentation (Goldstein, 2002), although some authors

have raised the question whether the combinatorial ex-

plosion is really a problem (Ghose & Maunsell, 1999).

It is estimated that the number of objects, scenarios,

colors and other features in the brain is approximately

10 million items. It is obviously beyond the limits of

recent cognitive systems, but it is below the number of

neurons in the mammalian visual cortex, so the combi-

nation coding could be a sufficient method. We could

also adopt Neural Modeling Fields (Perlovsky, 2001),

the unsupervised learning method based on Gaussian

mixture models that arguably does not suffer from com-

binatorial complexity. The application of this theory

to the area of symbol grounding resulted is 95% accu-

racy of the system that learned repertoire of 112 actions

(Cangelosi, Tikhanoff, Fontanari, & Hourdakis, 2007).

4.3 Lexical binding

Our model is able to map the words in the sentence with

the fixed grammar to the objects in the environment

without any prior knowledge (lexical binding). Previ-

ous models of symbol grounding (Cangelosi, Greco &

Harnad, 2000; Cangelosi & Parisi, 2004; Cangelosi &

Riga, 2006; Cangelosi et al, 2007) deal with the lex-

ical level but our model goes beyond words because

it can represent sentences in RecSOM. The ability of

lexical binding should be considered as an extension

of the symbol grounding. Cangelosi et al. (2000) rec-

ommend to ground specific words (sensorimotor toil)

at the first stage and then compositionally chain them

in the grounded language level (symbolic theft). There

are separate objects presented to their system within a

training phase, grounding basic object features. Our ap-

proach can be considered an alternative to this theory.

We also ground words at the first stage, but unlike the

mentioned approach, we present sentences as linguistic

inputs to be bound with proper features from the vi-

sual subsystem (shape, color, location). Compared to

the classic sensorimotor toil experiments based on the

grounding of two features, our system is able to ground

5 features simultaneously that speeds up the process of

symbol grounding (faster acquisition of the grounded

lexicon). Tikhanoff (2009) proposed the architecture

(and implemented it in iCub robot) that was able to

understand basic sentences but it was based on super-

vised learning. Our model is a proof of concept that

also unsupervised architectures can find proper map-

ping between visual and lexical features. We are able

to build representations solely from the sensory inputs,

arguing that the co-occurrence of inputs from the envi-

ronment is a sufficient source of information to create

an intrinsic representational system.
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4.4 Performance

The analysis of model behavior revealed that the tra-

jector shape and the spatial term representations are

the most difficult subtasks for visual unimodal systems.

The difficulty is caused by the variability and fuzzi-

ness of these inputs. The correct representation of the

trajector shape requires a separate unimodal what sys-

tem. The errors for Model 1 and Model 2 confirm the

necessity of the what system in the complex environ-

ment because we observe a 60% increase of errors in the

model without a separate what system. On the other

hand, the error for the spatial term in Model 4 reflects

some problems with an increasing number of inputs to

the multimodal layer, because there is a lower error for

Model 1 compared to Model 2. The problem could re-

side in the number of dimensions. The multimodal mod-

ule receives a 1300-dimensional input in Model 1 and a

1925-dimensional input in Model 2. The increase of di-

mensionality together with a localist unimodal output

function may decrease the effectiveness for the spatial

term representation, although other features are repre-

sented better in high-dimensional space. This contra-

diction has to be investigated in a greater detail.

The results for specific algorithms in the multimodal

layer confirm our hypothesis that the SOM algorithm

based on the fixed neighborhood function is not able to

adapt to the distribution of the joint outputs from uni-

modal layers. The SOM-based models show a topology-

preserving property for the input data, but they are

weak with regard to properly represent clusters with

different non-uniform data distributions (Kim, Sang-

Woo & Minho, 2011). Our results are also in line with

Pezzulo and Calvi (2011) who conclude that percep-

tual symbols may not be topographically organized,

although some parts of the perceptual and motor ar-

eas show topological hierarchical organization. There

also exist grounding models based on topologically or-

ganized connectionist networks (e.g. Joyce, Richards,

Cangelosi & Coventry, 2003) to simulate the percep-

tual symbol system, but our results do not confirm this

assumption.

The mapping in our models is actually a cluster-

ing process that makes the system also vulnerable to

errors in the input space. If (at least) one perceptual

input creates discrete clusters, successful learning can

be achieved. In case of all fuzzy sources of informa-

tion, it is difficult to create a system that is able to

provide (without any additional information or super-

vision) a successful mapping, e.g. to learn a new mean-

ing of spatial position at the boundary of two spatial

areas (e.g. below and right) and the auditory informa-

tion (beright). In other words, the successful clustering

presumes that at least one modality provides distinct

activation vectors for different classes to drive the clus-

tering process (i.e. the classes are well separable in the

corresponding input subspace). On the other hand, the

occurrence of both auditory and visual fuzzy inputs is

rare in the real world, so our system could be consid-

ered a step towards the solution for symbol grounding

problem (at least at this small scale).

5 Conclusion

We have created a system that is able to extract con-

stant attributes and regularities of the environment and

identify them with abstract symbols. The meaning is

nonarbitrarily represented at the conceptual level that

guarantees the correspondence of the internal represen-

tational system with the external environment. We can

also conclude that it is advantageous to follow the bio-

logically inspired hypothesis about processing of visual

information in separate subsystems. The question for

the future research is to find a proper way of output

coding from unimodal layers to increase system accu-

racy and to scale up the model. The main advantage of

our model is the hierarchical representation of the sign

components.

Acknowledgements This work has been supported by re-
search program MSM 6840770012 of the CTU in Prague,
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