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Abstract

We present an unsupervised connectionist model for grounding
color, shape and spatial relations of two objects in 2D space.
The model constitutes a two-layer architecture that integrates
information from visual and auditory inputs. The images are
presented as the visual inputs to an artificial retina and five-
word sentences describing them (e.g. “Red box above green
circle”) serve as auditory inputs with phonological encoding.
The visual scene is represented by the Self-Organizing Map(s)
and the auditory description is processed by a recursive SOM
(RecSOM) that learns to topographically represent sequences.
Primary representations are integrated in a multimodal mod-
ule (implemented by SOM or Neural Gas algorithms) in the
second layer using self-organizing units with conjunctive rep-
resentations. We tested this two-layer architecture in two ver-
sions (a single SOM representing color, shape and spatial re-
lations vs. biologically inspired separate SOMs for spatial re-
lations and for shape and color) and several conditions (scenes
with varying complexity up to 3 colors, 5 object shapes and
4 spatial relations). In the scenes with higher complexity we
reached better results with NG algorithm in the multimodal
layer compared to SOM, which is thank to the flexible neigh-
borhood relations in NG algorithm, relaxing topographic or-
ganization. The results confirm theoretical assumptions about
the different nature of visual and auditory coding. Our model
is hence able to efficiently integrate the two sources of infor-
mation while reflecting their specific features.
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Introduction
In applied artificial intelligence, the continuing and challeng-
ing problem is the design of an adaptive system that interacts
with the environment and is able to understand its internal
representations. These representations should capture impor-
tant attributes of the environment, store them as concepts, and
connect these to the symbolic level. This idea is related to
the perceptual theory of cognition where the representation is
created from the perceptual inputs (sensory modalities). As
the next step we should integrate representations from dif-
ferent modalities to the multimodal level. Barsalou (1999)
introduced this principle as the Perceptual Symbol System.
The integration of modalities is also described in the area of
neuroscience. For instance, Damasio (1989) postulates con-
vergence zones, which integrate the information from sen-
sory maps and represent them. The convergence zones create
hierarchical levels of associations from the specific modali-
ties. There are similar ideas in cognitive psychology. The
dual coding theory (Paivio, 1986) describes two independent
but connected representational systems, which create internal

representations of the external environment – the verbal and
image codes.

In the mentioned theories we should identify some ideas,
which are fruitful for the following discussion about the per-
ceptually formed conceptual level and the way how to ground
symbols to these concepts. Theories about integration of
modalities should help us understand the symbol grounding
process. The basic task for symbol grounding is to find the
function and the internal mechanism to create representations
that are intrinsic to the system and do not need to be inter-
preted by an external observer (Ziemke, 1999). Our approach
presents the radical version of the symbol grounding architec-
ture based on the theory of embodied cognition (Varela et al.,
1991) arguing that the co-occurrence of inputs from the envi-
ronment is a sufficient source of information to create an in-
trinsic representational system (Vavrečka, 2009). These rep-
resentations preserve constant attributes of the environment.
As opposed to the classical grounding architecture (Harnad,
1990), we propose an alternative solution by processing the
symbolic input by a separate auditory subsystem and by fur-
ther integration of auditory and visual information in a mul-
timodal layer. In terms of Harnad’s theory, the multimodal
layer incorporates the process of identification. Our approach
is similar to the “grounding transfer” (Riga et al., 2004) based
on self-organizing maps (SOM; Kohonen 2001) and the su-
pervised multi-layer perceptron, but our system works in a
fully unsupervised manner implying a different way of incor-
porating the symbolic (lexical) level. In addition, our model
goes beyond the single word processing, because it can pro-
cess sentences. We test our model in the area of spatial ori-
entation, similar to Regier (1996) who created a neural net-
work model consisting of several modules to ground the spa-
tial terms, but trained in supervised manner. Our main goal
is to extend the research in this area by application of un-
supervised learning algorithms where the target signal only
functions as an additional input rather than being the source
for error-based learning. In general, neural networks provide
a natural computational framework for grounding knowledge
acquisition.

The Models
We focus on learning spatial locations (of two objects in 2D
space) which is a cognitive domain where perceptual infor-
mation can be linked to the linguistic description. The con-
ceptual level is represented by the visual subsystem and the



symbolic level is represented by the auditory system. We
tested two versions of the visual subsystem, keeping in mind
the distinction between what and where pathways (Ungerlei-
der & Mishkin, 1982). The former learns to represent object
features (shape and color), the latter focuses on object po-
sition. To appreciate the importance of individual represen-
tations in the modules, we tested two models for this task.
Model I contains a single SOM that learns to capture both
what and where information. Model II is an extended version
of Model I with separate SOMs for processing what infor-
mation (color and shape) and where information. Figure 1
provides the sketch of Model II.

Figure 1: Visualization of information processing in Model II.
There is a separate layer (unimodal what system) for representing
shape and color, as opposed to Model I (where the two parts are
merged).

Training data
The input scenes consist of the trajector and the base object
in different spatial configurations. The position of the base
is fixed in the center of the scene and the trajector is located
in one of the spatial quadrants relative to the base. These
are linguistically referred to as up, down, left, and right but
perceptually, the trajector position is fuzzy. We trained the
models using scenes with increasing complexity, starting with
simple inputs with 2 colors, 2 object types and 4 spatial rela-
tions, up to more complex inputs consisting of 3 colors (red,
green, blue), 5 object types (box, ball, table, cup, bed) and 4
spatial relations (above, below, left, right). The training data
size varied from 6400 to 42000 examples (50-100 examples
of each spatial configuration) depending on the complexity of
the environment.

Visual layer
The sensory input of the visual subsystem is formed by an
artificial retina with 28×28 receptors that projects to the pri-
mary visual layer. Visual layer consists of the SOM(s) that
learn the nonlinear mapping of input vectors to output units
in the topography preserving manner (i.e. similar inputs are

mapped to neighboring units in the map). The SOM was ex-
pected to differentiate various positions of two objects, as
well as object types and their color in Model I. Model II
consists of a separate SOM for spatial locations (resembling
where system) and for color and shape of objects (resembling
what system). The what system stands for simplified atten-
tional mechanisms and the foveal input. There are two visual
fields (with 4×4 receptors each) that project visual informa-
tion about the trajector and the base in fixed position to the
unimodal what system SOM. The color of each pixel was
encoded by the activity level normalized to values between
0 and 1. Both maps were trained for 100 epochs with de-
creasing parameter values (unit neighborhood radius, learn-
ing rate).

Auditory layer
Auditory inputs (English sentences) were encoded as phono-
logical patterns representing word forms using PatPho, a
generic phonological pattern generator that fits every word
(up to trisyllables) onto a template according to its vowel-
consonant structure (Li & McWhinney, 2002). It uses the
concept of syllabic template: a word representation is formed
by combinations of syllables in a metrical grid, and the slots
in each grid are made up by bundles of features that corre-
spond to consonants and vowels. In our case, each sentence
consists of five 54-dimensional vectors with component val-
ues in the interval (0,1). These vectors are sequentially fed
(one word a time) to the RecSOM (Voegtlin, 2002), a recur-
rent SOM architecture, that uses a detailed representation of
the context information (the whole output map activation) and
has been demonstrated to be able to learn to represent much
richer dynamical behavior (Tiňo et al., 2006), compared to
other recurrent SOM models (Hammer et al., 2004). Rec-
SOM learns to represent inputs (words) in the temporal con-
text (hence capturing sequential information). RecSOM out-
put, in terms of map activation, feeds to the multimodal layer,
to be integrated with the visual pathway. Like SOM, Rec-
SOM is trained by competitive, Hebbian-like algorithm. As
a property of RecSOM, its units become sequence (sentence)
detectors after training, topographically organized according
to the suffix (most recent words).

Since RecSOM, unlike SOM, is not common, we provide
its mathematical description for interested readers here. Each
neuron i ∈ {1,2, ...,N} in RecSOM has two weight vectors
associated with it: wi ∈ Rn – linked with an n-dimensional
input s(t) (in our case, the current word, n = 54) feeding
the network at time t and ci ∈ RN – linked with the context
y(t− 1) = [y1(t− 1),y2(t− 1), ...,yN(t− 1)] containing map
activations yi(t−1) from the previous time step.

The output of a unit i at time t is yi(t)= exp(−di(t)), where

di(t) = α · ‖s(t)−wi‖2 +β · ‖y(t−1)− ci‖2.

Here, ‖ · ‖ denotes the Euclidean norm, α > 0 and β > 0 are
model parameters that respectively influence the effect of the
input and the context upon neuron’s profile. Their suitable



values are usually found heuristically (in our model, we used
α= β= 0.1). Both weight vectors are updated using the same
form of SOM learning rule:

∆wi = γ ·hik · (s(t)−wi),

∆ci = γ ·hik · (y(t−1)− ci),

where k is an index of the best matching unit at time t,
k = argmini{di(t)}, and 0 < γ < 1 is the learning rate. Note
that the best matching (‘winner’) unit can be equivalently
defined as the unit k of the highest activation yk(t): k =
argmaxi{yi(t)}. Neighborhood function hik is a Gaussian (of
width σ) on the distance d(i,k) of units i and k in the map:
hik = exp(−d(i,k)2/σ2). The ‘neighborhood width’, σ, lin-
early decreases in time to allow for forming topographic rep-
resentation of input sequences. After training, all RecSOM
units become sensitive to particular sentences, ordered topo-
graphically according to sentence endings.

Multimodal layer
The units in the multimodal layer identify and represent
unique categories (if successful). In agreement with the the-
ory of perceptual symbol systems (Barsalou, 1999), the main
task for the multimodal layer is to process the output from the
unimodal layers and to find and learn the categories by map-
ping and merging different sources of information (visual and
auditory) that refer to the same object in the external world.

The multimodal layer is formed exploiting the concept of
self-organized conjunctive representations that have been hy-
pothesized to exist in the brain with the purpose of binding
the features such as various perceptual properties of objects
Mel & Fiser (2000). Here we extend this concept by link-
ing the subsymbolic and symbolic information. Hence, each
output units learns to represent a unique combination of per-
ceptual and symbolic information (that could be forwarded to
another, higher module).

We tested two versions of the multimodal layer, namely
SOM and Neural Gas (NG) algorithms (Martinetz & Schul-
ten, 1991). Both algorithms are unsupervised, based on the
competition among units and the same cooperative learning
rule, but NG uses a flexible neighborhood function, hence
relaxing topographic organization, as opposed to fixed (2D)
neighborhood relations in SOM. The size of the multimodal
layer was set to allow a distinct localist representation of all
840 object combinations (3 colors, 5 object types, 2 objects
in scene, 4 spatial terms) in the most complex data set, so
we used 841 neurons (arranged in a 29×29 grid in case of
SOM). 1 Inputs for this layer are outputs of unimodal first-
layer modules (concatenated from both modalities) using the
k-WTA (i.e. winner-takes-all) mechanism, where k most ac-
tive units are proportionally turned on (with the activity of

1It could be argued that we used high-level knowledge about data
for choosing the suitable number of neurons in the multimodal layer.
That is true, we wanted to avoid unnecessarily a large number of
units and save the training time; any larger layer would have worked
fine as well.

the best matching unit rescaled to 1), and all other units are
reset to zero (in the models, we used k = 6). The motivation
for this type of output representation consists in introducing
some overlaps between similar patterns to facilitate general-
ization. On the other hand, the output representation in the
multimodal layer is chosen to be localist for better interpreta-
tion of results and the calculation of error rate.

Results
We trained the system with fixed size of the multimodal layer
and varying size of the unimodal maps (ranging from 10×10
to 35×35 neurons) for 100 epochs and tested the models us-
ing a novel set of inputs. The size of the testing set was 30%
of the overall data set. To calculate the accuracy of neuron re-
sponses, we applied a voting algorithm after training to label
each neuron in the layer based on its most frequent response.
Then we measured the accuracy of this system, based on the
percentage of correctly classified test inputs.

Regarding primary modules, there were low error rates in
the auditory unimodal layer in both Models I and II, and also
in what unimodal system in Model II. This was thank to the
smaller variability of the inputs because the same sentence
describes the spatial location presented to the primary audi-
tory system and the objects are presented to the what system
without spatial variability. On the other hand, we observed a
high error rate in where system for the the trajector shape that
varied in the different positions of the specific area. There
was also a difference between the what and where system ac-
curacy in Model II. The where system was more accurate in
the representation of spatial locations and the what system
represents color and shape of trajector with a smaller error,
because there are specific inputs projected to the particular
subsystems.

Figure 2: Error rates in the multimodal layer for the trajector shape
representation. Model II based on Neural Gas performs best.

The analysis of the model behavior at the multimodal layer
revealed that the trajector shape and the spatial term repre-
sentations are the most difficult tasks for visual unimodal sys-
tems, caused by the variability and fuzziness of these inputs.
The results are depicted in Figures 2 and 3. These refer to



Figure 3: Error rates in the multimodal layer for the spatial term
representation. Model I based on Neural Gas performs best.

the model with unimodal maps having 30×30 neurons and
the multimodal layer consisting of 841 neurons. We com-
pare two Models (I and II), using one of the two algorithms
(SOM and NG) compared in case of scenes with increasing
complexity. The error rate for the representation of trajector
color, base color and base shape was very low in all scenarios
and the results were similar for both models and algorithms.

We also tested the error rate of the sentence representa-
tion based on the correct representation of all five labels (Fig-
ure 4). We obtain the best results for Model II with NG algo-
rithm in the multimodal layer. In the most complex scenario,
the error rate for the NGs was 20% on average compared to
70% for the SOM. The poorer result of multimodal SOM can
be attributed to the fixed neighborhood function which im-
poses constraints on the learned nonlinear mapping and ham-
pers unit differentiation.

Figure 4: Error rate in the multimodal layer for the whole
scene/sentence representation. Model II based on Neural Gas per-
forms best.

Discussion

The results presented in Figures 2-4 reveal some differences
in the tested models. The correct representation of the tra-
jector shape in the multimodal layer (Figure 2) requires the
separate unimodal what system. The error rates for Model I
and II confirm the necessity of the what system in the com-
plex environment because there is a 60% increase of errors
in the model without separate what system. There is also
a difference in the effectiveness of the SOM and NG in the
multimodal layer. In both models the NG algorithm yields
lower error rates. The higher error rate in SOM is probably
caused by its fixed neighborhood function that imposes addi-
tional constraints on the learned mapping. There is a differ-
ent type of clustering in unimodal layers that are transferred
to multimodal layer. The SOM algorithm based on the fixed
neighborhood function is not able to adapt to the joint outputs
from unimodal layers.

On the other hand, there is a problem to represent spatial
terms both for NG and SOM algorithms in Model II. The
inputs are taken from 3 unimodal layers and we observe a
higher error rate for both algorithms in most complex sce-
nario compared to Model I. This is caused by the missing in-
formation about the spatial term in what system that projects
to the multimodal layer. This results in poor categorization
of Model II. These are contradictory results, because Model
II performs better for trajector shape but yields higher error
rates for the spatial term representation.

To compare the overall accuracy of both models we needed
to analyze the whole sentence processing (Figure 4). The best
results were obtained for Model II using NG algorithm in the
multimodal layer. These results are consistent with our ex-
pectation about the advantages of the relaxed neighborhood
function of NG. Hence, the better results are achieved with
NG by sacrificing the topographicity of responses in the mul-
timodal layer. From the biological perspective, it remains an
open question, whether brain organizes its responses topo-
graphically also at higher levels of organization.

We can also conclude that it is advantageous to follow the
biologically inspired hypothesis about processing of visual
information in separate subsystems. The question for the fu-
ture research is to find a proper way of output coding from
unimodal layers to increase system accuracy.

The mapping in our models is actually a clustering pro-
cess. If (at least) one perceptual input source creates discrete
clusters, successful learning can be achieved. In case of all
fuzzy sources of information, it is difficult to create a system
that is able (without any additional information) to provide a
successful mapping, e.g. to learn a new meaning of spatial
position in the middle of two spatial areas (below and right)
and the auditory information, i.e. “beright.” In other words,
the successful clustering presumes that at least one modal-
ity provides distinct activation vectors for different classes to
drive the clustering process (i.e. the classes are well separable
in the corresponding input subspace).



Some theoretical aspects
Let us also look at some theoretical aspects of the presented
architectures. The representation process takes advantage of
the two or three unimodal layers of units. The auditory layer
represents unique labels (linguistic terms), the where system
represents fuzzy information about the spatial locations of ob-
jects in the external world and what system captures shapes
and colors of objects in fixed foveal position. The multi-
modal level integrates the outputs of these unimodal layers.
In contrast to the classical approaches that postulate the ab-
stract symbolic level as fixed and prior (defined by the de-
signer), in our model it is possible to learn and modify all
levels of representation. The meaning is simultaneously rep-
resented by all layers (auditory, visual and multimodal), mak-
ing this approach resemble the theory of Peirce (1931) who
defined three components of a sign – representamen, interpre-
tant and the sign itself. This contrasts with the classical sym-
bolic approach, where interpretant (concept) is made of arbi-
trary symbols (e.g. frames, semantic networks) or it is miss-
ing. Our proposed architecture satisfies the requirement that
the artificial system (agent) should learn its own functions
and representations (Ziemke, 1999). In contrast to the classi-
cal top-down approach, our bottom-up approach restricts the
designers intervention into the representational system to a
minimum. Representations are learned from the external en-
vironmental inputs in a completely unsupervised manner.

Our model assumes the existence of the higher layer that
integrates the information from two primary modalities. This
assumption makes the units in the higher layer bimodal (i.e.
they can be stimulated by any of the primary layers) and their
activation can be forwarded for further processing. Bimodal
(and multimodal) neurons are known to be ubiquitous in the
association areas of the brain (Stein & Meredith, 1993).

Relation to other connectionist architectures
Interestingly, the bimodal layer with conjunctive units is also
used in generative probabilistic models that can be designed
to link information from two (or more) modalities. For ex-
ample, the deep belief net (DBN) is a stochastic generative
model (a multi-layer neural network with the bidirectional
connections) that learns to approximate the complex joint
probability distributions of high-dimensional data in a hier-
archical way. DBN was trained to classify the isolated hand-
written digits into 10 categories, so the visual inputs (28×28
pixel images) were to be linked with categorical labels (Hin-
ton et al., 2006). The linking was established via the training
on image-label pairs, using the higher (bimodal) layer (with
2000 units) that learned the joint distribution of those pairs.
DBN was shown to be superior to various other (discrimina-
tory) models in this classification task. From the perspective
of the representations formed in the multimodal units, their
goal was the same as ours (although our units are determinis-
tic rather than stochastic).

Our model also shares some similarities with the DevLex
model of early lexical acquisition (Li et al., 2004). De-

vLex, originally inspired by the DISLEX model (Miikku-
lainen, 1997) also consists of self-organizing maps, but these
are directly interconnected, rather than projecting their out-
puts to a higher, multimodal layer. DevLex was proposed
to learn the form-meaning associations (phonological word
forms and meanings) via Hebbian updating the (bidirectional)
connection links, aiming to model the processes of lexical
comprehension and production. DevLex does not contain a
higher (e.g. multimodal) layer that integrates the modalities,
as other grounding models (Riga et al., 2004; Roy, 2005). In-
stead, the overall representation of the meaning is in DevLex
taken as the joint co-activation in the two maps. At the same
time, each map has a capacity to activate the other map, yield-
ing the overall representation. However, direct linking of the
sensory modalities is also based on neuroscientific rationale,
because the brain is known to have these direct connections
as well (see e.g. Allman et al. 2009).

Our model is also very similar to the model of Dorffner et
al. (1996). They created a connectionist system consisting of
two primary levels (symbolic and conceptual) connected to
one central layer. There is a linking layer (the counterpart of
our multimodal layer) interconnecting the two primary layers
via localist units that link both representations (i.e. one unit
connects one word-concept pair of primary representations).
First, one set of links (weights to the linking layer) is trained
using a competitive mechanism exploiting the winner-take-all
approach. Then, the winners weights towards the other layer
are updated according to the outstar rule (Grossberg, 1987).
Hence, the purpose is to learn form-concept mapping, me-
diated by the linking layer. Regarding DevLex, the similar
mapping was obtained by connecting the two SOMs directly.
In both models, these mappings were aimed at simulating the
word comprehension (form-to-meaning) and the word pro-
duction (meaning-to-form).

The mentioned models deal with lexical level but our
model goes beyond words because it is able to represent sen-
tences with fixed grammar via RecSOM map. It finds the
mapping of the particular words to the concepts in the multi-
modal layer without any prior knowledge, so the system pro-
poses the solution to the binding problem.

Conclusion
Our model proposes a solution to the binding problem by es-
tablishing a self-organized mapping between the concept and
the symbol. The system design allows us in principle to ap-
pend other modalities into this system and still represent dis-
crete multimodal categories. Our current version of the model
does not provide the direct association, but it could be im-
plemented via the multimodal layer by adding the top-down
links from it to the unimodal layers.

The important advantage of our model is the hierarchical
representation of the sign components. It guarantees better
processing and storing of representations because the sign
(multimodal level) is modifiable from both modalities (the se-
quential “symbolic” auditory level and the parallel “concep-



tual” visual level). The separate multimodal level provides
a platform for the development of subsequent stages of this
system (e.g. inference mechanisms).

In our model we have created a system that is able to rep-
resent constant features of the environment and identify them
with abstract symbols. Meaning is nonarbitrarily represented
at the conceptual level (interpretant) that guarantees the cor-
respondence of the internal representational system with the
external environment.

Even though our model (especially Model II) was shown
to perform quite well (20% error for the most complex sca-
nario), there are ways how to increase its accuracy. For in-
stance, the task of where system can be reasonably facilitated
by reducing the two objects to radially symmetric blobs of
activation, which will eliminate several degrees of variance.
Actually, our preliminary simulations confirm this hypothe-
sis. Another thing that we are currently investigating is the
scaling of the system.

We would also like to use this representational system in
the process of “thinking” (mental manipulation of grounded
representations). We intend to compare systems based on the
prior symbolic level (the classical grounding approach) with
the system based on the symbols grounded to the nonarbitrary
concepts via the multimodal layer. The goal is to confirm the
advantages of the multimodal representations in the area of
symbol grounding.
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Li, P., Farkaš, I., & MacWhinney, B. (2004). Early lexical
development in a self-organizing neural network. Neural
Networks, 17(8-9), 1345-1362.

Li, P., & McWhinney, B. (2002). PatPho: A phonological
pattern generator for neural networks. Behavior Research
Methods, Instruments and Computers.

Martinetz, T., & Schulten, K. (1991). A neural-gas network
learns topologies. In Proceeedings of the int. conference
on artificial neural networks (p. 397-402).

Mel, B., & Fiser, J. (2000). Minimizing binding errors us-
ing learned conjunctive features. Neural Computation, 12,
247-278.

Miikkulainen, R. (1997). Dyslexic and category-specific
aphasic impairments in a self-organizing feature map
model of the lexicon. Brain and Language, 57, 334-366.

Paivio, A. (1986). Mental representation: A dual coding
approach. Oxford: Oxford University Press.

Peirce, C. (1931). Collected papers of Charles Sanders
Peirce (C. Hartshorne, Ed.). Harvard University Press.

Regier, T. (1996). The human semantic potential: Spatial lan-
guage and constrained connectionism. Cambridge, MA:
MIT Press.

Riga, T., Cangelosi, A., & Greco, A. (2004). Symbol ground-
ing transfer with hybrid self-organizing/supervised neural
networks. In International joint conference on neural net-
works (IJCNN’04).

Roy, D. (2005). Grounding words in perception and action:
computational insights. Trends in Cognitive Sciences, 9,
389-396.

Stein, B., & Meredith, M. (1993). Merging of the senses.
Cambridge, MA: MIT Press.
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