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Abstract— In this paper we propose a novel method for
the EEG signal processing based on the classification of in-
dependent components of the signal features. ICA algorithm
has been successfully applied to the area of EEG artefact
detection, however this algorithm can be applied to identify
independent components of signal features. We decomposed the
EEG signal to the descriptive features, calculated independent
components for specific features, linked them to the appropriate
electrodes and classified these feature components by several
algorithms. This method was applied to the data from a
psychological experiment focused on the adoption of a specific
frame of reference within the spatial navigation. The results
were compared with the widely adopted method of signal
feature classification. The feature components method revealed
the brain structures involved in the spatial navigation similar
to the results of recent EEG and fMRI studies.

I. INTRODUCTION

The algorithms and mathematical theory of the Indepen-
dent component analysis (ICA) are described by various
authors [1], [2] and widely adopted by the researchers in
the area of signal processing. The method is based on the
estimation of source signals and from the theoretical point of
view the ICA algorithm stands for a solution of Blind Source
Separation (BSS) problem. The basic example is the cocktail
party problem (separating different independent components
of a signal without utilizing any specific knowledge of the
component signals). The application of the ICA algorithm
should be useful for the signal preprocessing and also for
information redundancy reduction [3]. There are several
definitions of the independent component analysis, but all
of them assume linear combination of source signals:

X = AS, (1)

where X is a matrix of mixed source signals, A is mixing ma-
trix, which characterizes environment through which source
signals pass, and S is the matrix of source signals. X and S
are of size n x m, where n is number of sources and m is
length of record in samples. Mixture matrix A is of size n x
n, where n is number of sources. We assume that number of
components and measured signals does not need to be the
same. Fig. 1 shows schematic representation of the mixing
process.
The components can be obtained using the following ex-
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Fig. 1. Schematic representation of the signal mixing process.

pression:

S = A−1X = WX, (2)

where matrix W is inverse to matrix A. Estimation of the
matrix W is equivalent to the search of components.
The result of this process is set of components that are
independent and their linear combination is equivalent to the
original signal X. The core of the algorithm is based on
the iterative function that maximizes independence of each
component on other components.
ICA has several restrictions:

• The independent components must be statistically inde-
pendent.

• The distributions of independent components must be
non-Gaussian.

• We assume that mixing matrix is a square.

ICA also has several disadvantages:

• We cannot specify the order of components
• We cannot estimate the energy of components

It is possible to partially eliminate the second disadvantage
by preprocessing algorithms based on centering and whiten-
ing of the signal.
As we already mentioned the algorithm is suitable for the
feature extraction. This idea is motivated by the minimizing
redundancy in data. There are several studies describing this
method [3], [4]. Redundancy in data is removed by linear
demixing (we obtain matrix representing linear system) that
makes data vectors independent on each other. Lin et al. [5]
applied ICA algorithm to the raw EEG data and calculated
spectral analysis of the independent components. They esti-
mated drowsiness level of participants in the virtual reality
driving environment.
We proposed reversed approach based on the extraction of
signal features and further processing of these features by
ICA algorithm. This means that features are transformed
to feature components. This transformation maximizes the
independent tendencies in features and groups them together
in each component.



II. MATERIALS AND METHODS

The data for testing the proposed method were obtained
from the psychological experiment focused on EEG cor-
relates of the spatial navigation [6]. Schönebeck et al. [7]
presented the tunnel task that was built in 3D virtual reality
environment to identify adoption of allocentric and egocen-
tric frame of reference (navigation strategies) in horizontal
plane. We replicated this method by extension the tunnel
traverses into the vertical plane and search for neural corre-
lates of mentioned reference frames (See [6] for details).
The experimental sample consisted of 38 participants (7
females and 31 males). The mean age was 28.8 years. All
subjects had normal or corrected-to-normal vision and they
were without any medication affecting the EEG signal. There
were totally 20 tunnels, specifically 5 tunnels with variable
curvature in four directions (left, right, up, down). Each
subject traversed 26 seconds through every virtual tunnel and
the EEG activity was recorded from the nineteen unipolar
sintered Ag/AgCl EEG electrodes, positioned under the 10-
20 system.
The data processing started with the extraction of discrim-
inative features. The signal was divided into a segments of
constant length of 1 second and then the following features
were extracted: statistical parameters, mean and maximum
values of first and second derivation of the samples, ab-
solute/relative power for five EEG frequency bands (delta,
theta, alpha, beta, gamma), statistical values of the wavelet
coefficients corresponding to different decomposition scales
(Daubechies 4 mother wavelet and 4 levels of decomposition
was used), Shannons entropy of wavelet transform and mean
and maximum values of wavelet coefficients of first and
second derivation. In this way a 1748-dimensional feature
vector (92 features per electrode) was constructed for each
segment of 1 second length. The feature extraction was
processed in the PSGLab Matlab Toolbox that is being
developed in our laboratory [8].
After this stage we implemented a novel step to the classical
method of signal processing as we applied ICA algorithm
to the signal features. To prepare the inputs for the ICA
we grouped together similar signal features from different
electrodes into the feature matrices. Each row of a feature
matrix contains feature from one electrode and columns
represent time-series of the feature value changes. Then ICA
was applied to each feature matrix, specifically the EFICA
algorithm developed by Hyvrinen [9] and the demixing ma-
trix was obtained. This matrix represents the transformation
from the feature space to the feature component space. The
matrix was sorted by a simple algorithm that inserts the
row with the highest value in the first column to the top
of matrix. To the second row, the row with the highest value
in the second column is assigned etc. So we are able to link
the components with the highest contribution to the specific
electrode. The application of sorting algorithm from different
runs of ICA guarantees the order of feature components.
After this procedure the features were transformed by the
multiplication with the demixing matrix to the independent

feature components.
The output from the ICA algorithm served as the input to
the algorithms for selection and classification. This procedure
allows us to discriminate the neural correlates of the allocen-
tric and egocentric frame of reference. We employed PRTools
toolbox [10] for this part of analysis. At the beginning we
applied some basic transformations to the data. We removed
outliers by construction of a distance matrix and objects with
a fraction 1/10 of their distances larger than the average
distance in the class + 3 times the standard deviation of
the within-class distances were excluded. Further processing
of feature components selection was divided into following
steps. At the first stage there were two algorithms applied
for the pre-selection of the best feature components. The
feature components were evaluated using inter/intra distance
and 1-nearest neighbour criterion resulted in set of 50 best
features for each method. The inter/intra distance criterion
[10] is distance-based class separability criterion, that is a
monotonously increasing function of the distance between
expectation vectors of different classes, and a monotonously
decreasing function of the scattering around the expectations.
The 1-nearest neighbour method approximates the local
density of the data patterns. These output sets of feature
components served as the input for the successive processing.
The next step was the application of forward, backward and
branch and bound selection algorithms to already preselected
feature components. Forward algorithm was applied to both
sets (inter-intra set and 1-nearest neighbour set) and there
were selected 5 best feature components, discriminating
between egocentric and allocentric frames of reference adop-
tion. For the sake of complexity there were also calculated
optimized versions of forward and backward algorithms that
calculate all possible combinations of 50 best preselected
feature components and the best n-ary set was evaluated.

III. RESULTS

The extension of the tunnel task to the 3D environment
resulted in new navigation strategies compared to adminis-
tration only in the horizontal plane [7], [11], [12] so we
selected only 17 participants from the experimental sample
with stable navigation strategy (9 egocentric and 8 allocentric
frames of reference users) to test the feature components
method. We analysed data from the whole tunnel traverse
for both horizontal and vertical plane.
The selected feature component sets were tested by three
classifiers to identify best set distinguishing adoption of allo-
centric and egocentric frames of reference. For the objectivity
of the method we did 3-fold cross-validation. We employed
linear classifier, quadratic classifier and naive Bayes classifier
and achieved best trade off between processing time and
accuracy for the quadratic Bayes classifier. The lowest error
rate was reached for branch and bound algorithm with fixed
number of features based on inter-intra class search but there
were problems with individual differences (see bellow).

To be able to test the effectiveness of this approach we
did the comparison of the feature components and signal
features. The best signal features were selected by identical



TABLE I
ERROR RATES OF BEST FEATURE COMPONENTS (FC) AND SIGNAL

FEATURES (SF) EVALUATED BY 3 CLASSIFIERS (FC/SF)

Classifier type /Fea-
ture component selec-
tion method

Linear Quadratic Naive Mean error rates

Forward (in-in) best 5
features 2.4/7.0 2.1/5.8 2.3/9.8 2.3/7.5

Forward (NN) best 5
features 28.3/29.7 0.7/12.7 5.3/13.2 11.4/18.7

Forward optimized 22.9/37.4 16.9/13.5 9.5/16.7 16.4/22.5
Backward optimized 4.2/34.8 0.5/25.3 4.0/23.8 2.9/28
Branch&bound best 5
features 0.5/15.4 0.4/10.0 3.3/11.1 1.4/12.2

TABLE II
BEST FEATURE COMPONENTS VS. BEST SIGNAL FEATURES

Best feature compo-
nents Error rate Best signal features Error rate

Pz-2nd difference-
mean sig. 24.04 T5/T6-Coherence-

theta band 22.86

Fz-beta band 23.82 Fp1/F7-Coherence-
gamma band 29.12

Pz-1st differ.-wavelet
gamma 25.01 T3/T4-Coherence-

theta band 23.82

Fp1-wavelet alpha
band 27.03 T3-1st difference -

mean signal 31.98

Pz-2nd differ.-wavele
gamma 27.88 P4/O2-Coherence-

beta band 34.34

All best feature com-
ponents 2.08 All best signal fea-

tures 5.83

algorithms as feature components. There is a lower error
rate for the classification of feature components compared
to the signal features (Tab. I). The best results for both
feature components and signal features were obtained for
the forward algorithm based on inter-intra distance criterion
with fixed number of features and the quadratic classifier was
identified as the best method. We also tested whether both
procedures result in the selection of the identical electrodes
and features, so we compared the best feature components
and the best signal features (Tab. II). The analysis of the best
features/feature components selected by forward algorithm
uncovered only partial correspondence. Both methods iden-
tified differences of the egocentric and allocentric strategies
in the electrode Fp1, but in different band waves (namely
gamma and alpha). There is also partial overlap in parietal
lobe (P4 and Pz electrode), but there are different bandwaves
selected again. The differences should be attributed to the
specificity of the algorithm. ICA searches for dependencies
in data and groups them together that successfully decreases
the redundancy. This procedure should uncover new struc-
tures in the data that are different from the signal features.

At the next stage we visualized the best feature com-
ponents to test whether they constitute a coherent clusters
for the specific navigation strategies or there is standalone
cluster for each participant. The second option stands for
the ineffective adoption of the ICA algorithm caused by the

individual differences in the feature components. This results
should not be interpreted as the group differences between
participants adopting allocentric or egocentric strategy, but as
individual variability of the feature components. We tested
all selection methods for presence of individual differences
in feature components and found these differences in all
of them but the best classification method (forward selec-
tion method based on inter-intra distance criterion). This
method produced individual differences only for second
feature component (Fz-beta band), so we excluded it. The
visualization of first and third best feature components and
the quadratic classifier for the mentioned method is shown in
Fig.2. We also visualized individual differences of the feature
components in Fig.3.

[5]

Fig. 2. Visualization of the best feature components and the quadratic
classifier. There are feature components values for allocentric (blue) and
egocentric (red) strategy and classifier (black). The clusters are coherent so
the feature components are not influenced by individual differences.

IV. DISCUSSION

The adoption of the feature components method resulted
in a slight improvement of classification error compared to
the signal features. The main advantage of this approach lies
in the ability to localize sources of the EEG signal features.
This is a qualitative change in the EEG signal analysis as we
are able to localize not even sources of the raw EEG signal
but also to find the sources of the specific signal features (e.g.
gamma activity) and link them to the specific electrodes. The
disadvantages of this method are caused by the limitation of
the ICA algorithm. The electrode 2D scalp position is not
specified in the input to the ICA processing, so the algorithm
represents them as a 1D vector. This should result in the
deviation of a source localization. To be able to represent
electrode montages and to specify the 2D position of the
electrodes and their neighbourhood we need to implement
non-linear ICA algorithm. Solving non-linear ICA problem
is difficult and such algorithm needs additional information
about data. So we plan to implement this method in the
next stage of our research. The testing of the described
method within the experimental data in the area of spatial
navigation allows us to compare results with similar studies
in this area. Lin et al. [5] analyzed EEG signal and attributed
the egocentric processing to the Brodmann area (BA) 7 and



Fig. 3. Visualization of the individual differences in the feature compo-
nents. The visualization of best components for branch and bound algorithm
and quadratic classifier.

allocentric strategy to the BA 17, 18 and 19. Gramann et
al. [11] localized higher mean source activity in BA 7 for
the egocentric frame of reference, but the allocentric strategy
was linked to the activation in anterior cingulate cortex (BA
32). Their study employed the LORETA algorithm [13] to
reconstruct the information about the activity of cortical and
subcortical areas from the EEG signal. This method based
on source reconstruction is similar to ICA algoritm, but the
difference is in 3D (Loreta) versus 2D (ICA) reconstruction
and there are also other disimilarities. The comparison of the
classical feature selection method [6] with the Gramman et
al. study [11] reveals correspondence only in one of the best
features. On the other hand the feature components method
produces better results, because there were 3 best features
selected in the BA 7. Comparing to Lin et al. [5] there are
also best feature components more consistent with the results
than signal features. Also recent fMRI study based on the
navigation in the virtual environment [14] have attributed
the egocentric navigation to precuneus (BA 7). The results
are promising for the application of the feature components
method to other EEG data. To test the stability of the
proposed method, we would like to analyse data from other
experiments and also to research more theoretical aspects of
this method to confirm its suitability in the area of signal
processing.
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