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Abstract: The goal of our study is to test unsupervised learning methods in the process of grounding color, shape and spatial relation of two objects in 2D space. Our model consists of several types of neural networks (Self-
Organizing Map, RecSOM and Neural Gas) that constitute multimodal architecture being able to integrate information from visual and auditory inputs. Five-word sentences describing the scene (e.g. “Red box above green 
circle”) served as auditory (linguistic) inputs with phonological encoding and the described scenes were presented as the visual inputs (to an artificial retina). The visual scene was represented in SOM and the auditory 
description was processed by RecSOM, a recurrent SOM-based model for processing sequences. Both these primary representations were integrated in a multimodal module (SOM or NG) in the second layer. We tested this 
two-layer architecture with several modifications (visual SOM representing color shape and spatial relations vs. separate SOM for spatial relations and for shape and color, imitating what and where pathways) and several 
conditions (scenes with varying complexity with 2-3 colors, 2-5 object shapes and 4 spatial relations). In the scenes with higher complexity we reached better results in case of using NG algorithm in the multimodal layer 
compared to SOM. The poorer result of multimodal SOM could be attributed to fixed neighborhood function which is relaxed in NG algorithm. The results confirm theoretical assumptions about different natures of visual and 
auditory coding and effeciently integrates them reflecting their specific features.

Motivation

The overall goal of our project is design of modular architecture that 
demonstrates sensory-motor learning, social learning and language learning. 
We focus on neural network approach, with a dominant role of self-
organizing maps that are adopted in various parts of the model. Our emphasis 
on unsupervised learning is cognitively appealing and will be coupled with 
supervised learning only in cases when the teaching signal originates from the 
environment itself (e.g. linguistic labels entered via auditory modality), rather 
than being provided by an external teacher (designer), to avoid the grounding 
problem. 
Main objective is to test the limitations of machine learning in the process of 
building representations solely from the sensory inputs to propose a 
hierarchical architecture that is able to represent information from different 
modalities and to find the mapping between unimodal representations. This 
approach imitates the nature of human learning capabilities within the 
development.
We test the radical version of embodied cognition (Varela et al., 1991), 
arguing that the co-occurrence of inputs from the environment is a sufficient 
source of information to create an intrinsic representational system. These 
representations preserve constant attributes of the environment. We propose 
an alternative solution to the classical grounding architecture  (Harnad, 
1990). The difference is the way of processing symbolic input by a separate 
auditory subsystem and further integration of auditory and visual information 
in a multimodal layer. Multimodal layer incorporates the process of 
identification. Our approach is similar to “grounding transfer” (Riga, 
Cangelosi and Greco, 2004) based on SOM maps and supervised multi-layer 
perceptron, but our system works in fully unsupervised manner that implies 
different way of symbolic level creation. 
Our model is based on hierarchical processing. Top (multimodal) level is 
justified and modified from both modalities (the sequential “symbolic” 
auditory level and the parallel “conceptual” visual level). The separate 
multimodal level provides platform for the development of subsequent stages 
of the system (inference mechanisms etc.).

The models

We focus on learning spatial locations of two objects in 2D space and their 
linguistic description. This conceptual level is represented by the visual 
subsystem, the symbolic level is represented by the auditory system.
We tested two versions of the visual subsystem, keeping in mind the 
distinction between “what” and “where”  subsystems (Ungerleider, Mishkin, 
1982). The former learns to represent object features (shape and color), the 
latter object position. There were two models proposed for this task.
Model I: single SOM learns to capture both 'what' & 'where' information.
Model II: 'what' and 'where' systems are separated.
 
Visual layer
The visual subsystem is formed by artificial retina (28x28 neurons) that 
projects to primary (unimodal) visual layer, implemented by the unsupervised 
SOM, to build representations of visual scenes in topographic manner. The 
SOM was expected to differentiate various positions of two objects, as well as 
object types and their color in Model I. Model II consists of separate SOM for 
spatial locations (resembling where  system) and separate SOM for color and 
shape of objects (resembling what  system). The SOM was trained for 100 
epochs (training data size varied from 6400 to 45000 depending on the 
complexity of environment) with decreasing parameter values (neighborhood 
radius, learning rate).

Auditory layer
Auditory input (English sentence), in the form phonetic feature vectors feeds 
into the primary RecSOM (Voegtlin, 2002), a recurrent SOM-based 
architecture, that learns to represent inputs (words) in temporal contexts 
(hence capturing sequential information). The sentences are presented one 
word at a time. RecSOM output, in terms of map activation, feeds to the 
multimodal layer, to be integrated with the visual pathway. Like SOM, 
RecSOM is trained by competitive, Hebbian-type of learning. 

Multimodal layer
In agreement with the theory of perceptual symbol systems (Barsalou, 1999), 
a multimodal layer forms the core of the system. Its role is to identify unique 
categories and represent them by merging different sources of information. 
We tested two implementations of the multimodal layer: a SOM and Neural 
Gas. The layer size is set to allow the unique localist representation of all 
combinations of  objects in the considered scenario (29x29 = 841 neurons). 
Inputs for this layer are taken as unimodal SOM activations (from both 
modalities) using the k-WTA mechanism (k  most active units are 
proportionally turned on, all other units are reset to zero).  The output 
representation in the multimodal layer is localist for better interpretation of 
results. 

Training data
There were inputs with increasing complexity presented to the system starting 
from 2 colors, 2 objects and 4 spatial locations. The most difficult task 
involves 3 colors (red, green, blue), 5 object types (box, ball, table, cup, bed,) 
and 4 spatial relations. Unlike color, spatial relations and are fuzzy in the 
visual (conceptual) domain (with prototypes above, below, left, right,  for 
which linguistic labels exist).

Results
We trained the system for each size of unimodal SOM for 100 epochs and tested it using a novel set of inputs. Then we measured the 
effectiveness of this system, based on the percentage of correctly classified test inputs. The error rate was lower for the auditory layer 
compared to the visual subsystem in the Model I. This should be attributed to the smaller variability of the inputs because there is the 
same sentence, describing the spatial location of the trajector that varies in the different position in the specific area. There is also a 
difference between the what and where system effectiveness in the Model II. The where system is more accurate in the representation of 
spatial locations and the what system represents color and shape of trajector with smaller error. 
We obtain best results for the Model II and Neural Gas in the multimodal layer.. There is a visualization for the environment with 3 
colors, 3 shapes and 4 spatial terms in Fig.2. In the most complex scenario the error rate for the Neural Gas was 20% on average 
compared to 70% for the SOM map. The poorer result of multimodal SOM could be attributed to fixed neighborhood function which is 
relaxed in NG algorithm. The poorer result of multimodal SOM could be attributed to fixed neighborhood function which is relaxed in 
NG algorithm. 
  

Discussion
Our system is able to map the words in the sentence with fixed grammar to the objects in the environment without any prior knowledge 
in fully unsupervised manner. In this task the system was able to solve the binding problem. The system learns to unambiguously map 
the pairs of output vectors (from the unimodal layers) to single units. This mapping is actually a clustering process. If (at least) one 
perceptual input source creates discrete clusters, successful clustering learning can be achieved. In case of two fuzzy sources of 
information, it is difficult to create a system that is able (without any additional information) to provide a successful mapping, e.g. to 
learn a new meaning of spatial position in the middle of two spatial areas (below and right) and the auditory information, i.e. “beright.” 

Future steps

● Representation of causal relations both in visual (spatiotemporal)     
   and auditory (linguistic) domains 
● Inference processes based on multimodal layer
● Backward transfer from the symbolic to the conceptual level
● Representation of reference frames and frame-dependent linguistic   
   descriptions of the scene
● Representation of  homonymic words (see Fig. 3) 
● Hierarchical representation of abstract terms
● Implementation into a robotic simulator and real robot for testing in 
   the real environment (see Fig 4.)
●  

We are open for cooperation 
and looking for partners.

Fig 1. Comparison of the Model I and II. There is the separate layer for representing shape and color in Model II

Fig 2. Error rates of the multimodal layer. Model I and II are compared with respect to the specific algorithms (SOM and Neural Gas). Each window shows the 
error rate for the specific part of the sentence (trajector color, trajector shape, spatial term, base color, base shape) and also for the whole sentence. These are 
results for the medium-complex environment with 3 colors, 3 shapes and 4 spatial terms. 
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Fig 3.Representation of homonyms. Comparison of the hybrid and 
the multimodal architectures.

Fig 4.Impementation of the architecture to the iCub simulator
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