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C. Inferring object class movability

After every mapping session, m, the individual object
probabilities are updated. Grouping them according to object
class reveals valuable information about object movability
and allows to classify static and movable objects. Movability,
Mm,a 2 [0, 1], is the measure that captures whether an object
class, a, is static or movable. Movability is the complement
of the mean object probability for all the objects that belong
to an object class, na, defined by:

Mm,a = 1 �

P
i∈a p(oi)m

na
(6)

Movability for different object classes is inferred by the
robot based on its own experience in the environment.

VI. EXPERIMENTAL RESULTS

Experiments were conducted in an indoor environment (15
x 6) m2 using a Turtlebot 2 robot equipped with an Asus Xtion
depth camera. The robot gathered information in 20 different
mapping sessions during a month where 22 object were present
in the environment: 12 chairs, 3 sofas, 2 cups, 3 bottles, 1 plant
and 1 laptop.

All the experiments presented in this paper were performed
with the same values for the threshold for depth, θ, tolerance
factor for merging, α and false-negative rate, ξ (including
the experiments shown in Figures 1, 2 and 3). The value
of θ was set to 15 cm, α to 0.9 and ξ is assumed to be 0.
We have empirically evaluated that this choice is suitable for
different objects present in the environment and for different
environments, see Table I. The first three columns in Table I
refer to θ: d represents the average difference between depth
of neighboring pixels for each object class (cm); %d∗ refers
to the percentage of differences that are greater than 15 cm;
and %ε refers to the final error in size comparing the real
and calculated depth for the object. Although several objects
have differences between individual pixels higher than the
defined threshold, this only affects the chairs with a 5.91%
error (a 50 cm-wide object will be detected as 47.05 cm wide).
Next three columns refer to α: min(s) column shows the
minimum separation (m) between objects of the same class
present in any of the environments; max(D) column shows
the maximum diagonal value (m) for each of the objects
classes; and finally, 0.9max(D) refers to the area of influence
of the object. Although the maximum diagonal values for some
objects are larger than the minimum distance (what would lead
to an error), using the α value of 0.9 solves these possible
errors.

TABLE I
EVALUATION OF PARAMETERS � AND �

Object d %d� %" min(s) max(D) 0.9max(D)
chair 1.62 1.86 5.91 0.67 0.69 0.62
sofa 1.23 1.06 0 1.85 1.89 1.70
plant 1.57 1.41 0 - 0.63 0.57
cup 0.41 0 0 0.44 0.15 0.13

bottle 0.42 0 0 1.54 0.09 0.08
laptop 0.35 0 0 - 0.46 0.41

Images gathered by the robot during some of the mapping
sessions are shown in Figure 4. Red boxes highlight the
changes in the sample images. All the processing took place on
a PC with IntelCore i7-6500U CPU@2.50GHz 12GB RAM.

Fig. 4. Sample of images captured by the robot in three different mapping
sessions. Changes as movement of chairs, presence of new objects such as
cups or bottles are introduced between mapping sessions (red boxes).

Experiments presented in sections VI-A and VI-B show the
building and the adaptation process for the object-based pose
graph presented in this work. In addition, section VI-C shows
the improvement in object classification regarding movability.

A. Real-world experiments in a dynamic environment

This first experiment evaluates the performance of the
mapping system and its adaptation to the changes in the map.
For this purpose, two mapping sessions (m = 0 and m = 1)
are evaluated in detail. The initial map, generated in m = 0, is
shown in Figure 5 (a), the active elements for the next mapping

Fig. 5. Result for two mapping sessions. In (a) the objects of the first mapping
session are included (10 chairs, a plant and 2 sofas). In (b), the new objects
detected are shown (9 chairs, some of them were in a different position than
in the previous mapping session and 2 sofas). Finally, in (c), the adaptation
of the map to the new situation is shown.
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session are shown in Figure 5 (b), and, finally, Figure 5 (c)
shows the resulting map after the two mapping sessions. Every
object is represented using its cuboid, object class (color-
coded) and the connections to the poses where they were
detected.

Table II shows the detail of object probabilities. Objects not
entering the frustum of the camera (unknown) are listed with
- and their probabilities remain constant, undetected objects
(inactive) decrease their probabilities whereas detected objects
(active) increase them after the two mapping sessions (forth
column).

TABLE II
OBJECT PROBABILITY FOR THE TWO FIRST MAPPING SESSIONS

Object m = 0 m = 1 m = 0 & m = 1
0 0.4919 0.00 0.2460
1 0.4954 0.00 0.2477
2 0.4901 0.5956 0.5428
3 0.4961 0.6477 0.5719
4 0.4981 0.8087 0.6534
5 0.4861 0.5414 0.5138
6 0.4961 - 0.4961
7 0.4896 0.00 0.2448
8 0.4279 0.00 0.2139
9 0.4733 0.00 0.2366

10 0.4785 - 0.4785
11 0.4856 0.00 0.2428
12 0.4864 0.00 0.2432
13 0.4904 - 0.4904
14 - 0.4975 0.4975
15 - 0.4978 0.4978
16 - 0.4787 0.4787
17 - 0.4983 0.4983
18 - 0.4030 0.4030
19 - 0.4980 0.4980

B. Long-term inference of object movability

After validating the performance of the proposed method
for two mapping sessions, the map resulting from the com-
plete set of mapping sessions is evaluated. The initial map

Fig. 6. Results after 20 mapping sessions and the adaptation in the environ-
ment. (a) and (b) show the resulting map for the first and last mapping sessions
respectively, (c) shows the active elements for the last mapping session and
(d) shows the objects that are learned as static after the 20 mapping sessions.

(first mapping session) and the resulting map (all the objects
mapped along their probabilities) are shown in Figure 6 (a)
and (b), respectively. From the resulting map, the active map
(objects present in the last mapping session) and static map
(object probability > 50%) can be obtained as shown in Figure
6 (c) and (d). Figure 6 (c) shows the objects that were active
in the last mapping session. Figure 6 (d) shows the objects
that the robot considers static after including the complete set
of mapping sessions. They are the three sofas, the plant and
the three chairs, which corresponds to the elements that were
not moved during the experiments.

Updating object probabilities during 20 mapping sessions
results in a polarization between the objects that have not
being detected in most of the sessions (movable objects) and
those that remain for almost all the sessions (static objects).
As shown in Table III, object movability is scaled in a realistic
fashion and the robot has effectively learned which objects are
more movable (higher values of movability). The evolution of
movability within all the mapping sessions is shown in Figure
7.

TABLE III
MOVABILITY ACCORDING TO OBJECT CLASS

Object class Movability
Bottle 0.8765
Cup 0.8302

Laptop 0.7516
Chair 0.7343
Plant 0.3007
Sofa 0.2319

Fig. 7. Evolution of the movability for each object class during the mapping
sessions.

C. Comparison to binary object classification

Comparison to binary object classification is included to
further evaluate the performance of the method. Binary object
classification identifies objects as movable or static. Most of
the approaches that use binary classification are meant to map
the static objects and discard the movable ones [21], [22],
[23]. In order to replicate this behavior, only the objects that
have been labeled as active or unknown for all of the mapping
sessions are included in the resulting map as they are supposed
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to be static. Figure 8 (a) and (b) show the resulting static map
for binary classification and the static map of the proposed
method after evaluating the complete set of mapping sessions,
respectively.

Fig. 8. Comparison of object classification according to the movability of
objects between the binary classification method (a) and using the proposed
method (b) after evaluating all the mapping sessions.

As shown in Figure 8, the method proposed outperforms
binary object classification as object probability increases
the robustness of object classification. Binary classification
overlooks static objects just because they were not detected in
one mapping session, obtaining a 42.85% of successful static
objects mapped in contrast to the 100% of the method pro-
posed. Therefore, robustness is increased in our method thanks
to employing the proposed object movability calculation in
object classification. In addition, binary classification can just
infer about static and movable objects, but it does not give any
insight in the degree of movability.

D. Discussion

Quantitative results of the proposed method and comparison
to binary classification have been presented in this section.
Comparison to other methods that define the movability of
the environment elements is not appropriate as those works
map the environment using features instead of objects. Al-
though both methods pursue the same objective, as they do
not use equivalent information, methods based on feature
descriptors cannot be applied to objects. The only possible
way to compare these approaches is through the improvement
in localization, which is beyond the scope of this paper.
Therefore, we give an extensive discussion on how our method
presents a contribution in the light of these prior works.

Feature-based approaches [3], [4], [5] gather information
from the salient regions of images, scans or point clouds.
Features can be merged, removed or assigned a probability
that could be registered for dynamic environments, but the
meaning of these features is not easy to transfer to the real
world. Features represent an abstraction level that allows to
know which regions of the environment are prone to changes,
but they need a second step to determine which elements
are located in that region to gain environment understand-
ing. In contrast, object-based approaches implicitly provide
environment understanding, as changes are directly associated
to objects. They also share the advantages of feature-based
approaches, as they determine the regions of the environment
that change more.

Although it was not possible to compare to any other spe-
cific method, the movability of objects can be calculated with

other well-known methods, such as Bayesian filtering. Here we
briefly discuss the comparison of our method with a standard
Kalman filter [27]. Kalman filters can estimate the belief of a
specific object remaining static or being movable. As proposed
for our method, object class movability can be calculated by
grouping the objects probabilities (or beliefs) for each object
class. Kalman filter and our method can be compared through
the results obtained regarding object class movability as shown
in Figure 9. Our method (red) and three instances of Kalman
filter (blue) are compared for a static object and a highly
movable object. The process model for the Kalman filter is
initialized with µ0 = 0.5 and Σ0 = 0.2, and it is assumed
to be static if measurements are not received (µt = µt−1 and
Σt = Σt−1). The measurement model is defined by each new
observation and the measurement noise covariance, Rt. The
results show that noisier measurements (higher Rt) lead to
a slow evolution of object movability, being more difficult
to distinguish between static and movable objects. On the
contrary, more precise measurements (lower Rt) lead to a
more polarized estimation of object movability, especially for
movable objects. Our method performs similarly to a Kalman
filter of Rt = 0.2 for increasing movability (bottle). However,
our performance for static objects is increased (sofa), as the
system infers faster that the object is static. For these reasons,
we conclude that our method performs better than Bayesian
filtering for the task of object movability estimation.

Fig. 9. Comparison of object movability between the Kalman filter and our
method.

Some advantages can also be found regarding the resulting
map. In our method, object probability and active objects are
maintained through the different mapping sessions resulting in
an improvement compared to other works. Active elements for
each mapping session are included, as for [9], [10]. Also the
static and dynamic maps of the environment, as for [6], [7].
Comparing the different representations, we can say that the
resulting map for the proposed method gives more complete
and representative information of the environment than other
state-of-the-art methods.

VII. CONCLUSIONS AND FUTURE WORK
We have proposed a method for mapping and map adapta-

tion through object-based pose graphs for low dynamic indoor
environments. This new method calculates and maintains
object probability depending on whether an object is seen
again or not and capturing whether it is static or movable.
As shown in the experimental results, including object proba-
bility improves the resulting map. In addition, it provides the
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robot with a realistic estimation of the movability of objects
according to its class gathered from its own experience that
outperforms object classification using a binary method.

Overall, this paper strengthens the idea that real-world
environments have to be treated as dynamic environments
consisting of objects that may be more or less movable and
important information can be obtained from capturing their
movability. The method proposed in this paper allows for
a straightforward extension to improve other tasks such as
localization or object search. Therefore, future research in-
cludes developing a localization algorithm that builds upon the
method proposed in this work and improves the localization
of the robot thanks to the individual object probabilities and
object class movability. In addition, improvements to this work
include the recalculation of the path (not only the objects),
as the original path could become impassable and new paths
could be created to overcome this situation.
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