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Recommended reading

� A. Papoulis: Probability, Random Variables and Stochastic Processes, McGraw Hill, Edition 4,
2002.

� H. Pishro-Nik: Introduction to probability, statistics, and random processes. Kappa Research
LLC, 2014. Freely available at https://www.probabilitycourse.com

� http://mathworld.wolfram.com/

� http://www.statsoft.com/textbook/stathome.html

http://cmp.felk.cvut.cz
https://www.probabilitycourse.com
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Probability, motivating example

� A lottery ticket is sold for the price EUR 2.
� 1 lottery ticket out of 1000 wins EUR 1000. Other lottery tickets win nothing. This gives the
value of the lottery ticket after the draw.

� For what price should the lottery ticket be sold before the draw?

� Only a fool would by the lottery ticket for EUR 2. (Or not?)
� The value of the lottery ticket before the draw is 1

10001000 = EUR 1 = the average value
after the draw.

The probability theory is used here..

A lottery question: Why are the lottery tickets being bought? Why do lotteries prosper?

http://cmp.felk.cvut.cz
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Statistics, motivating example

We have assumed so far that the parameters of the probability model are known. However, this is
seldom fulfilled.

Example – Lotto: One typically looses while playing Lotto because the winnings are set
according to the number of winners. It is of advantage to bet differently than others. For doing so,
it is needed what model do the other use.

Example – Roulette: Both parties are interested if all the numbers occur with the same
probability. More precisely said, what are the differences from the uniform probability distribution.
How to learn it? What is the risk of wrong conclusions?

Statistics is used here.

http://cmp.felk.cvut.cz
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Probability, statistics

� Probability: probabilistic model =⇒ future behavior.
• It is a theory (tool) for purposeful decisions when the outcome of future events depends

on circumstances we know only partially and the randomness plays a role.
• An abstract model of uncertainty description and quantification of the results.

� Statistics: behavior of the system =⇒ probabilistic representation.
• It is a tool for seeking a probabilistic description of real systems based on observing them

and testing them.
• It provides more: a tool for investigating the world, seeking and testing dependencies

which are not apparent.
• Two types: descriptive and inference statistics.
• Collection, organization and analysis of data.
• Generalization from restricted / finite samples.

http://cmp.felk.cvut.cz
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Random events, concepts

An experiment with random outcome – states of nature, possibilities, experimental results, etc.

A sample space is an nonempty set Ω of all possible outcomes of the experiment.

An elementary event ω ∈ Ω are elements of the sample space (outcomes of the experiment).

A space of events A is composed of the system of all subsets of the sample space Ω.

A random event A ∈ A is and element of the space of events.

Note: The concept of a random event was introduced in order to be able to define the probability,
probability distribution, etc.

http://cmp.felk.cvut.cz


7/42
Probability, introduction

� Classic. P.S. Laplace, 1812. It is not regarded to
be the definition of the probability any more. It is
merely an estimate of the probability.

P (A) ≈ NA
N

� Limit (frequency) definition

P (A) = lim
N→∞

NA
N

� Axiomatic definition (Andrey Kolmogorov 1930)
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Axiomatic definition of the probability, 1930

� Ω - the sample space.
� A - the space of events.

Three Kolmogorov’s axims:

1. P (A) ≥ 0, A ∈ A.
2. P (Ω) = 1.

Informally: Anytime this experiment is performed, something
happens.

3. If A∩B = ∅ then P (A∪B) = P (A)+P (B), A ∈ A, B ∈ B.

Andrej Nikolajevič
Kolmogorov

* 1903, † 1987

Fine, T. (2014). Theories of Probability: An Examination of Foundations. Academic Press.

Three Kolmogorov’s axioms do not: (a) Tell us where and when to apply the rules; (b) Give us guidelines or
procedures for calculating probabilities; (c) Provide any insights to the nature of random processes.

http://cmp.felk.cvut.cz
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Probability

is a function P , which assigns a number from the interval [0, 1] to events and fulfils the following
two conditions:

� P (true) = 1,

� P

( ⋃
n∈N

An

)
=
∑
n∈N

P (An), if the events An, n ∈ N, are mutually

exclusive.

From these conditions, it follows:
� P (false) = 0,
� P (¬A) = 1− P (A),
� if A ⊆ B then P (A) ≤ P (B).

Note: Strictly speaking, the space of events have to fulfil some additional conditions.

http://cmp.felk.cvut.cz
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Derived relations

� If A ⊂ B then P (B \A) = P (B)− P (A).
The symbol \ denotes the set difference.

� P (A ∪B) = P (A) + P (B)− P (A ∩B).

� Statistical independence: P (A ∩B) = P (A) P (B)

In words: Events A and B are independent, if knowing that A has happened does not say
anything about B happening.

http://cmp.felk.cvut.cz
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Joint probability, marginalization

� The joint probability P (A,B), also sometimes denoted P (A ∩B), is the probability that
events A, B co-occur.

� The joint probability is symmetric: P (A,B) = P (B,A).

� Marginalization (the sum rule, ignoring other variable(s)):
P (A) =

∑
B

P (A,B) allows computing the probability of a single event A from the joint

probability P (A,B) by summing P (A,B) over all possible events B.

� The probability P (A) is called the marginal probability.

http://cmp.felk.cvut.cz


12/42

Contingency table, marginalization
Example: orienteering race

Orienteering competition example, participants

Age <= 15 16-25 26-35 36-45 46-55 56-65 66-75 >= 76 Sum

Men 22 36 45 33 29 21 12 2 200

Women 19 32 37 30 23 14 5 0 160

Sum 41 68 82 63 52 35 17 2 360

Orienteering competition example, frequency

Age <= 15 16-25 26-35 36-45 46-55 56-65 66-75 >= 76 Sum

Men 0,061 0,100 0,125 0,092 0,081 0,058 0,033 0,006 0,556

Women 0,053 0,089 0,103 0,083 0,064 0,039 0,014 0,000 0,444

Sum 0,114 0,189 0,228 0,175 0,144 0,097 0,047 0,006 1

0,000

0,100

0,200

0,300

1 2 3 4 5 6 7 8

Marginal probability P(Age_group)

Marginal probability P(sex)

http://cmp.felk.cvut.cz
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Using partitioning

If events Ai are mutually exclusive and partition the event space Ω fully, i.e.

Ai ∩Aj = ∅, for ∀ i, j ,
⋃

i=1,...,n

Ai = Ω , then P (B) =

n∑
i=1

P (Ai ∩B)



BA1

A2 A3

A4

A5

http://cmp.felk.cvut.cz
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The conditional probability

� Let us have the probability representation of a system given by the joint probability P (A,B).
� If an additional information is available that the event B occurred then our knowledge about
the probability of the event A changes to

P (A|B) =
P (A,B)

P (B)
,



A B

which is the conditional probability of the event A under the condition B.
� The conditional probability is defined only for P (B) 6= 0.
� Product rule: P (A,B) = P (A|B)P (B) = P (B|A)P (A).
� From the symmetry of the joint probability and the product rule, the Bayes theorem can be
derived (to come in a more general formulation for more than two events).

http://cmp.felk.cvut.cz
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Properties of the conditional probability

� P (true|B) = 1, P (false|B) = 0.
� If A =

⋃
n∈N

An and events A1, A2, . . . are mutually exclusive then

P (A|B) =
∑
n∈N

P (An|B).

� Events A,B are independent, if and only if P (A|B) = P (A).
� If B ⇒ A then P (A|B) = 1.
� If B ⇒ ¬A then P (A|B) = 0.

� Events Bi, i ∈ I , constitute a complete system of events if they are mutually exclusive and⋃
i∈I

Bi = true.

� A complete system of events has such property that one and only one event of them occurs.

http://cmp.felk.cvut.cz
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Example: conditional probability

Consider rolling a single dice.

What is the probability that the number > 3 comes up (event A) under the conditions that the
odd number came up (event B)?

Ω = {1, 2, 3, 4, 5, 6} , A = {4, 5, 6} , B = {1, 3, 5}

P (A) = P (B) =
1

2

P (A,B) = P ({5}) =
1

6

P (A|B) =
P (A,B)

P (B)
=

1
6
1
2

=
1

3

http://cmp.felk.cvut.cz
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Joint and conditional probabilities, example

Courtesy T. Brox

http://cmp.felk.cvut.cz
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The total probability theorem

Let Bi, i ∈ I , be a complete system of events and let it hold ∀i ∈ I : P (Bi) 6= 0.

Then for every event A holds

P (A) =
∑
i∈I

P (Bi)P (A|Bi) .

Proof:

P (A) = P

((∨
i∈I

Bi

)
∧A

)
= P

(∨
i∈I

(Bi ∧A)

)
=
∑
i∈I

P (Bi ∧A) =
∑
i∈I

P (Bi)P (A|Bi) .

http://cmp.felk.cvut.cz
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Bayes theorem

(Thomas Bayes *1702 - †1761)
Let Bi, i ∈ I , be a complete system of events and ∀i ∈ I : P (Bi) 6= 0.

For each event A fulfilling the condition P (A) 6= 0 the following holds

P (Bi|A) =
P (Bi) P (A|Bi)∑
i∈I P (Bi)P (A|Bi)

,

where P (Bi|A) is the posterior probability; P (Bi) is the prior probability; and P (A|Bi) are

known conditional probabilities (also likelihoods) of A having observed Bi.

Proof (exploring the total probability theorem):

P (Bi|A) =
P (Bi ∩A)

P (A)
=

P (Bi)P (A|Bi)∑
i∈I P (Bi)P (A|Bi)

.

http://cmp.felk.cvut.cz
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The importance of the Bayes theorem

� Bayes theorem is a fundamental rule for machine learning (pattern recognition). Given Bi,
i ∈ I is the partitioning of the sample space. Suppose that event A occurs. Bayes theorem
allows to asses optimally, which of events Bi occurred.

� The conditional probabilities (also likelihoods) P (A|Bi) are estimated from experiments or
from a statistical model.

� Having P (A|Bi), the posterior (also aposteriori) probabilities P (Bi|A) are determined
serving as optimal estimates, which event from Bi occurred.

� It is needed to know the prior (also apriori) probability P (Bi) to determine posterior
probability P (Bi|A).

� Informally: posterior ∝ (prior × conditional probability) of the event having some
observations.

� In a similar manner, we define the conditional probability distribution, conditional density of
the continuous random variable, etc.

http://cmp.felk.cvut.cz
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Maximum likely estimate (ML)
and the estimate with maximal aposteriori probability

(MAP)
Bayes theorem from the slide 19 is copied here

P (Bi|A) =
P (Bi) P (A|Bi)∑
i∈I P (Bi)P (A|Bi)

.

� The prior probability is the probability of P (Bi) without any evidence from observations
(measurements).

� The likelihood (conditional probability of the event A under the condition Bi) evaluates a
candidate output on the measurement. Seeking the output that maximizes the likelihood is
known as the maximum likelihood (ML) approach.

� The posterior probability is the probability of an event Bi after taking the observation
(measurement) into account. Its maximization leads to the maximum a-posteriori (MAP)
approach.

http://cmp.felk.cvut.cz
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Conditional independence

Random events A,B are conditionally independent under the condition C, if

P (A ∩B|C) = P (A|C)P (B|C) .

Similarly, a conditional independence of more events, random variables, etc. is defined.

http://cmp.felk.cvut.cz
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Independent events

Event A,B are independent ⇔ P (A ∩B) = P (A) P (B).

Example

The dice is rolled once. Events are: A > 3, event B is an odd number. Are these events
independent?

Ω = {1, 2, 3, 4, 5, 6} , A = {4, 5, 6} , B = {1, 3, 5}

P (A) = P (B) =
1

2

P (A ∩B) = P ({5}) =
1

6

P (A) P (B) =
1

2
· 1

2
=

1

4

P (A ∩B) 6= P (A) P (B)⇔ The events are dependent.

http://cmp.felk.cvut.cz
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The random variable

� The random variable is an arbitrary function X : Ω→ R, where Ω is a sample space.

� Q: Why is the concept of the random variable introduced?
A: It allows to work with concepts as the probability distribution function, probability density
function, expectation (mean value), etc.

� There are two basic types of random variables:

• Discrete – a countable number of values. Examples: rolling a dice, the count of number
of cars passing through a street in a hour.
The discrete probability is given as P (X = ai) = p(ai), i = 1, . . .,

∑
i p(ai) = 1.

• Continuous – values from some interval, i.e. infinite number of values. Example: the
height persons.
The continuous probability is given by the distribution function or the probability density
function.

http://cmp.felk.cvut.cz
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Distribution function of a random variable

The probability distribution function of the random variable X is a function F : X → [0, 1]
defined as F (x) = P (X ≤ x), where P is a probability.

Properties:

1. F (x) is a non-decreasing function, i.e. ∀ pair x1 < x2 it holds F (x1) ≤ F (x2).

2. F (X) is continuous from the right, i.e. it holds lim
h→0+

F (x+ h) = F (x).

3. � It holds for every distribution function lim
x→−∞

F (x) = 0 a lim
x→∞

F (x) = 1. Written
more concisely: F (−∞) = 0, F (∞) = 1.

� If the possible values of F (x) are from the interval (a, b) then F (a) = 0, F (b) = 1.

Any function fulfilling the above three properties can be understood as a distribution function.

http://cmp.felk.cvut.cz


26/42
Continuous distribution and density functions

� The distribution function F is called (absolutely) continuous if a nonnegative function f
(probability density) exists and it holds

F (x) =

∫ x

−∞
f(u) du for every x ∈ X.

� The probability density function fulfills∫ ∞
−∞

f(x) dx = 1 .
x

f(x)

Area = 1

� If the derivative of F (x) exists in the point x then F ′(x) = f(x).
� For a, b ∈ R, a < b, it holds P (a < X < b) =

∫ b
a
f(x) dx = F (b)− F (a)

http://cmp.felk.cvut.cz
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Example, normal (= Gaussian) distribution

The plot for µ = 0, σ = 1

F (x) f(x) = 1√
2πσ2

e
−−x

2

2σ2

Distribution function Probability density function

http://cmp.felk.cvut.cz
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Example: The difference between the probability
and the probability density function

Assume a thermometer with the Gaussian error distribution,
µ = 25◦C and σ = 6.1◦C.

� Q1: What is the probability that the measured temperature
is exactly 31.5◦C?

� A1: This probability is zero in a limit.

� Q2: What is the probability that the measured temperature
is in the interval between 30◦C and 33◦C?

� A2: The probability is given by the area of under the
probability density (also the probability distribution
function), i.e. approximately 0.11 as calculated for the
graph at the right side.

Temperature probility density

oTemperature [ C]

m

s=6.1

http://cmp.felk.cvut.cz
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The difference between the probability and likelihood (1)

� In statistics, the likelihood function (simply likelihood) is the probability that
some fixed outcome was generated by a random distribution with a specific
unknown parameter.

� Probability predicts future outcome (events) given a fixed parameter(s)
value(s).

� Consider a probability model with parameters Θ. p(x|Θ) has two
interpretations and names.

• Probability of X given parameters Θ.
Probability is the area under fixed probability distribution.

• Likelihood of parameters Θ given that x was observed.
Likelihood L is the y axis value for fixed data points x with distribution
that can be moved.
In the example in the bottom right figure:
L = p(Gaussian, µ = 25, σ = 6.1|temperature = 30◦C) = 0.048.

oTemperature [ C]

o
Temperature [ C]

m

m

s=6.1

s=6.1

probability

versus

likelihood

0.048

http://cmp.felk.cvut.cz
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The difference between the probability and likelihood (2)
� Let us recall from the previous slide: We assume the Gaussian distribution of errors while
measuring temperature using a particular thermometer with µ = 25◦C and σ = 6.1◦C.

� We measured the temperature 30◦C. The corresponding likelihood was estimated as, cf.
figure left, L = p(Gaussian, µ = 25, σ = 6.1 | temperature = 30◦C) = 0.048.

� If we shifted the distribution over that µ′ = 30, cf. figure right, the new likelihood would be
0.065. The value on the right side of the conditional probability p(x|y) is fixed.

o
Temperature [ C]

o
Temperature [ C]

m m’

s=6.1 s=6.1

0.048

0.065

shift

http://cmp.felk.cvut.cz
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The law of large numbers

The law of large numbers says that if very many independent
experiments can be made then it is almost certain that the
relative frequency will converge to the theoretical value of the
probability density.

� Gerolamo Cardano (Italian mathematician, * 1501, † 1576)
stated without proof that the accuracies of empirical
statistics tend to improve with the number of trials.

� Jakob Bernoulli, Ars Conjectandi: Usum & Applicationem
Praecedentis Doctrinae in Civilibus, Moralibus &
Oeconomicis, 1713, Chapter 4.

* 1655 Basel
† 1705 Basel, Switzerland

http://cmp.felk.cvut.cz
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Expectation

� (Mathematical) expectation = the average of a variable under the probability distribution.

� Continuous definition: E(x) = µ =
∞∫
−∞

x f(x) dx.

� Discrete definition: E(x) = µ =
∑
x
x P (x).

� The expectation can be estimated from a number of samples by E(x) ≈ 1
N

∑
i

xi. The
approximation becomes exact for N →∞ and statistically independent experiments.

� Expectation over multiple variables: Ex(x, y) =
∞∫
−∞

(x, y) f(x) dx

� Conditional expectation: E(x|y) =
∞∫
−∞

x f(x|y) dx.

http://cmp.felk.cvut.cz
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Basic characteristics of a random variable

Continuous distribution Discrete distribution

Expectation

E(x) = µ =
∞∫
−∞

x f(x) dx E(x) = µ =
∑
x
x P (x)

k-th (general) moment

E(xk) =
∞∫
−∞

xk f(x) dx E(xk) =
∑
x
xk P (x)

k-th central moment

µk =
∞∫
−∞

(x− E(x))k f(x) dx µk =
∑
x

(x− E(x))k P (x)

Dispersion, variance, 2nd central moment

D(x) =
∞∫
−∞

(x− E(x))2 f(x) dx D(x) =
∑
x

(x− E(x))2 P (x)

Standard deviation σ(x) =
√
D(x)

http://cmp.felk.cvut.cz
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Central limit theorem (1)

The Central limit theorem describes the probability characteristics of the ‘population of the
means’, which has been created from the means of an infinite number of random population
samples of size N , all of them drawn from a given ‘parent population’. The Central limit theorem
predicts characteristics regardless of the distribution of the parent population.

1. The mean of the population of means (i.e., the means of many times randomly drawn samples
of size N from the parent population) is always equal to the mean of the parent population.

2. The standard deviation of the population of means is always equal to the standard deviation
of the parent population divided by the square root of the sample size N .

3. The distribution of sample means will increasingly approximate a normal (Gaussian)
distribution as the size N of samples increases.

http://cmp.felk.cvut.cz
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Central limit theorem (2)

� A consequence of the Central limit theorem is that if we
average measurements of a particular quantity, the
distribution of our average tends toward a normal
(Gaussian) one.

� In addition, if a measured variable is actually a
combination of several other uncorrelated variables, all
of them ‘contaminated’ with a random error of any
distribution, our measurements tend to be contaminated
with a random error that is normally distributed as the
number of these variables increases.

� Thus, the Central limit theorem explains the ubiquity of
the bell-shaped ‘Normal distribution’ in the
measurements domain.

http://cmp.felk.cvut.cz
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Central limit theorem (3), the application view

� It is important for applications that there is no need to generate a big amount of population
samples. It suffices to obtain one big enough population sample. The Central limit theorem
teaches us what is the distribution of population means without the need to generate these
population samples.

� What can be considered a big enough population sample? It is application dependent.
Trespassing the lower bound of 30-50 random observation is not allowed by statisticians.
Recall samples with about 1000 observations serving to estimate outcomes of elections.

� The confidence interval in statistics indicates the reliability of the estimate. It gives the degree
of uncertainty of a population parameter. We have talked about sample mean only so far. See
a statistics textbook for details.

http://cmp.felk.cvut.cz
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Statistical principal of noise filtration

Let us consider almost the simplest image statistical model.

Assume that each image pixel is contaminated by the additive noise:
� which is statistically independent of the image function,
� has a zero mean µ,
� and has a standard deviation σ.

Let have i realizations of the image, i = 1, . . . n. The estimate of the correct value is

g1 + . . .+ gn
n

+
ν1 + . . .+ νn

n
.

The outcome is a random variable with µ′ = 0 and σ′ = σ/
√
n.

The thought above is anchored in the probability theory in its powerful Central limit theorem.

http://cmp.felk.cvut.cz
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Random vectors

� The concept “random vector” extends the concept “random number”. A random X vector is a
(column) vector that assigns random variables x1, x2, . . . xn to the outcome of the
experiment, i.e., to elementary events ω ∈ Ω.

� Given the random vector X = (x1, x2, . . . xn)>, the probability distribution function and the
probability density function are extended as the
• joint probability distribution function

FX(x) = PX ((X1 ≤ x1) ∩ (X2 ≤ x2) ∩ . . . ∩ (Xn ≤ xn))

• joint probability density function

fX(x) =
∂nFX(x)

∂x1∂x2 . . . ∂xn

http://cmp.felk.cvut.cz
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Simpler characterizations of random vectors,
mean vector, covariance matrix

� We keep in mind that a random vector is fully characterized by its joint probability
distribution function or its joint probability density function.

� Analogically as we did with random variables, it is practical to use simpler descriptive
characteristics of random vectors as

• Mean (expectation) vector

E(X) = (E(x1), E(x2), . . . , E(xn))> = µ = (µ1, µ2, . . . , µn)>

• Covariance matrix (Generalizes the concept of variance to multiple dimensions.)

ΣX(i, k) = cov(X) = E((X− µ) (X− µ)>) =

 σ2
1 . . . c1n
. . . . . . . . .
cn1 . . . σ2

n



http://cmp.felk.cvut.cz
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Covariance matrix Σ, properties

� The covariance matrix indicates the tendency of each pair of features (elements of the
random vector) to vary together (co-vary).

� The covariance matrix has several important properties
• The covariance matrix Σ is symmetric (i.e. Σ = Σ>) and positive-semidefinite, which

means that x?Mx ≥ 0 for all x ∈ C. The notation x? means a complex conjugate of x.
• If xi and xk tend to increase together then cik > 0.
• If xi tends to decrease when xk increases then cik < 0.
• If xi and xk are uncorrelated then cik = 0.
• |cik| ≤ σ2

i , where σi is the standard deviation of xi.
• cii = σ2

i = D(xi).
� The covariance terms can be expressed as cii = σ2

i and cik = ρik σi σk, where ρik is called
the correlation coefficient.

http://cmp.felk.cvut.cz


41/42
Covariance terms, graphical illustration

http://cmp.felk.cvut.cz


42/42
Quantiles, median

� The p-quantile Qp: P (X < Qp) = p.

� The median is the p-quantile for p = 1
2, i.e. P (X < Qp) = 1

2.

Note: Median is often used as a replacement for the mean value in robust statistics.

http://cmp.felk.cvut.cz
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