Graphs, graph algorithms (e.g. for image segmentation) ...in progress

Václav Hlaváč

Czech Technical University in Prague
Czech Institute of Informatics, Robotics and Cybernetics
166 36 Prague 6, Jugoslávských partyzánů 1580/3, Czech Republic
http://people.ciirc.cvut.cz/hlavac, vaclav.hlavac@cvut.cz
also Center for Machine Perception, http://cmp.felk.cvut.cz

Courtesy: Jaehyun Park, Jianbo Shi

Outline of the talk:

◆ Graph-based image segmentation, ideas
◆ Graphs, concepts
◆ Computer representation of graphs
◆ Shortest path (Dijkstra algorithm)
◆ Flow network, graph cut
◆ Minimum spanning tree
Graph-based image segmentation, main ideas

- Convert an image into a graph
 - Graph vertices correspond to individual pixels.
 - Edges connect neighboring pixels.
 - Additional graph vertices and edges encode other constraints.
 Example: a special node (source) denotes objects and a special node (sink) denotes background in object/background segmentation.
 The source/sink concepts come from flow networks.

- Manipulate the graph to segment the image.
Image segmentation related seminal papers

 - A: Pixel classified as object or background. Novelty: adding interactivity.
 - Minimize energy function $E(A) = B(A) + \lambda R(A)$, where $B(A)$ = the cost of all edges between object pixels and background pixels; $R(A)$ = the cost of deciding if a pixel is object or background.

 - Cluster the vertices based on edge weight.

- C. Rother, V. Kolmogorov, A. Blake: GrabCut: Interactive Foreground Extraction using Iterated Graph Cuts. ACM Transactions on Graphics (SIGGRAPH’04), 2004.
Prerequisites

- Time or memory asymptotic computational complexity:
 - $\mathcal{O}()$ bounds from below; i.e. not more than ... in the worst case;
 - $\Omega()$ bounds from above; i.e. not less than ... in the worst case.
An image represented as a graph

- Nodes correspond to pixels.
- Edges connect neighboring pixels. 4-neighbors are considered in the example.
- Edges weights express the similarity between the neighboring pixels (a binary relation).
Image regions, region adjacency graph

- Pixels are grouped to larger regions in the process of (iterative) segmentation.

- Superpixels are regions grouped from pixels of similar intensity or color, in which interpretation is not taken into account.

- Region Adjacency Graph.

input image regions (here superpixels) RAG

Courtesy: Images by Vighnesh Birodkar.
Graphs, concepts

- It is assumed that a student has studied related graph theory elsewhere. Main concepts are reminded here only.

- http://web.stanford.edu/class/cs97si/, lecture 6, 7
- https://www.cs.indiana.edu/~achauhan/Teaching/B403/LectureNotes/10-graphalgo.html

Concepts

- Graphs: directed, undirected
- Adjacency, similarity matrices
- Path in a graph
- Special graphs

Related graph algorithms

- Minimum spanning tree
- Shortest path
- Max graph flow = min graph cut
Undirected/directed graph

Undirected graph

- $G = (V, E)$ is composed of vertices V and undirected edges $E \subset V \times V$ representing an unordered relation between two vertices.
- No self-loops.
- The number of edges $|E| = O(|V|^2)$.

Directed graph

- $G = (V, E)$ is composed of vertices V and directed edges E representing an ordered relation between two vertices.
- Oriented edge $e = (u, v)$ has the tail u and the head v (shown as the arrow \rightarrow). The edge e is different from $e' = (v, u)$ in general.
Simple graph, multigraph

A simple graph is a graph, which has no loops and multiple edges.

Multiple edges loop

It is not simple.

It is a simple graph.
Complete graph

- Complete graph is a simple graph, in which every pair of vertices are adjacent.
- If number of graph vertices $= n$ then there are $n(n - 1)$ edges in a corresponding complete graph.
Dense/sparse graph

- Running times are typically expressed in terms of $|E|$ and $|V|$ (often dropping the “’s”).

- The graph is **dense** if $|E| \approx |V|^2$.

- The graph is **sparse** if $|E| \approx |V|$.

- Many interesting graphs are sparse.

 E.g., planar graphs, in which no edges cross, have $|E| = \mathcal{O}(|V|)$ by Euler’s formula.

- If you know you are dealing with dense or sparse graphs, different data structures may make sense.
Planar graph can be drawn on a plane such that no two edges intersect.
A **weighted graph** associates weights with either the edges or the vertices or both. E.g., a road map: graph edges are weighted with distances.
Path, graph cycle

- A path from a vertex u to a vertex v is a sequence (v_0, v_1, \ldots, v_k) of vertices, where $v_0 = v$, $v_k = u$, and $(v_i, v_{i+1}) \in E$ for $i = 0, 1, \ldots, k - 1$.

- A cycle of a graph G is a subset of the edge set of G that forms a path such that the first node of the path corresponds to the last node.

- Hamiltonian cycle is a cycle that uses each graph vertex of a graph exactly once. A very hard problem. Still unsolved.

- Eulerian cycle (for undirected connected graphs) is a sequence of vertices that visits every edge exactly once and comes back to the starting vertex.
 - A single stroke/line drawing task.
 - Precondition: Each vertex has an even degree. L. Euler formulated this precondition on 7 bridges of Königsberg example in 1736.
Length of a path, connected graph

- A **simple path** is a path, in which all vertices, except possibly the first and the last, are different.

- The **length of a path** is defined as the number of edges in the path.

- If the graph is weighted then the length of the path is the sum of edges weights in the path.

- If the graph G is connected then there is a path between every pair of vertices.

$$|E| \geq |V| - 1.$$
Special graphs. Multigraph, bipartite graph

- A **multigraph** allows multiple edges between the same vertices. *E.g., the call graph in a program (a function can get called from multiple points in another function).*

- A **bipartite graph** has graph vertices decomposed into two disjoint sets such that no two graph vertices within the same set are adjacent. Used, *e.g.* for matching problems.

![Bipartite Graphs](https://i.imgur.com/3Q5Q5Q5.png)

- Bipartite graphs are equivalent to two-colorable graphs.

- A bipartite graph is a special case of a **k-partite graph** with $k = 2$.

 Courtesy: Wolfram MathWorld.
A special graph: acyclic graph

- A graph containing no cycles of any length is known as an **acyclic graph**. Other graphs are cyclic.
- An acyclic graph is bipartite.
- A cyclic graph is bipartite iff all its cycles are of even length.

Special graphs: forest, tree

- A **forest** is an acyclic graph.
- A **tree** is a connected acyclic graph.
- Tree is the most important type of special graphs because many problems are easy to solve on trees.
- Alternative equivalent tree definitions:
 - A connected graph G with $|E| = |V| − 1$ edges.
 - An acyclic graph with $|V| − 1$ edges.
 - There is exactly one path between every pair of vertices.
 - An acyclic graph but adding any edge results in a cycle.
 - A connected graph but removing any edge disconnects it.
The chromatic number of a graph G, written $\gamma(G)$, is the minimum number of colors needed to label the vertices so that adjacent vertices receive different colors.
Maps and their coloring

- A map is a partition of the plane into connected regions, e.g. a political country map.

- Can we can color the regions of every map using four colors at most so that neighboring regions have different colors?

- Map coloring \rightarrow graph coloring
 - A map region \rightarrow a graph vertex.
 - Adjacency between regions \rightarrow an edge in the graph.
Four color map theorem

- Four color map theorem states: given any separation of a plane into contiguous regions, producing a figure called a map, no more than four colors are required to color the regions of the map so that no two adjacent regions have the same color.

- Theorem was proved in 1976 as the first major theorem proved by computer.
Graph represented by the adjacency matrix

- **Adjacency relationship** is:
 - Symmetric if the graph G is undirected.
 - Not necessarily so if G is directed.

- **Adjacency matrix** A has elements a_{ij}, $i, j = 1, \ldots, |V|$.
 - Elements $a_{ij} = 1$ if graph vertices i, j share an edge; 0 otherwise.
 - Uses $\Omega(|V|)$ memory.

```
  a b c d
a  0 1 1 0
b  1 0 1 0
c  1 1 0 1
d  0 0 1 0
```
Degree of a vertex

- The degree of vertex i is the number of graph edges incident on vertex i.
- Directed graphs have in-degree, out-degree.

Degree of node: $d_i = \sum_j S_{ij}$

Courtesy: Jinbo Shi
Graph isomorphism (1)

- The isomorphism of graphs G, H denoted $G \cong H$ is the bijection f between their set of vertices $V(G)$, $V(H)$ written as $f: V(G) \to V(H)$ such that any two vertices $v_i, v_j \in V(G)$ adjacent in G and if and only if vertices $f(v_i)$ and $f(v_j)$ are adjacent in H.

- The function f is called the isomorphism.

- Said informally: Two graphs are isomorphic if they differ only in their drawing (i.e. how their vertices and edges are labeled).
Needed conditions for the existence of the graph isomorphism:

- The same number of graph vertices and graph edges.
- The degrees of all vertices are the same.

Finding the graph isomorphism is a very hard task in general.
Volume of a set

Volume of set:

$$\text{vol}(A) = \sum_{i \in A} d_i, \ A \subseteq V$$
In the case of the weighted graph, the adjacency matrix is generalized to the similarity matrix S of the graph.

Elements of A have value of the weight of the edge between two respective vertices, $a_{ij} = w_{ij}$.

\[
\begin{array}{cccc}
 & a & b & c & d \\
 a & 0 & 1 & 4 & 0 \\
b & 0 & 0 & 3 & 0 \\
c & 0 & 0 & 0 & 1 \\
d & 0 & 0 & 6 & 0 \\
\end{array}
\]
Similarity matrix \(S = [S_{ij}] \) is a generalized adjacency matrix.
Graph represented by the adjacency list

- Adjacency list: For each vertex \(v \in V \), store a list of vertices adjacent to \(v \) (in other words: going out of \(v \)).
 - Easy to iterate over edges incident to a certain node.
 - The lists have variable lengths.
 - Asymptotic bound of the space usage from above: \(\Omega(|E| + |V|) \).

- Our example:

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b, c</td>
</tr>
<tr>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>c</td>
<td>empty</td>
</tr>
<tr>
<td>d</td>
<td>c</td>
</tr>
</tbody>
</table>

- Variation: For oriented graphs, it is possible to store the list of graph edges coming into the vertex.
Implementing adjacency list

Three solutions:

1. Using linked lists
 - Too much memory / time overhead.
 - Using dynamically allocated memory or pointers is bad.

2. Using arrays of vectors
 - Easier to code, no bad memory issues.
 - Very slow.

3. Using arrays
 - Assuming the total number of edges $|E|$ is known.
 - Very fast and memory efficient.
Implementation using arrays, example

<table>
<thead>
<tr>
<th>ID</th>
<th>To</th>
<th>Next Edge ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>From</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Last Edge ID</td>
<td>4</td>
<td>8</td>
<td>6</td>
<td>7</td>
<td>-</td>
</tr>
</tbody>
</table>

Courtesy: Jaehyun Park, Stanford University
Graphs. Implementation using arrays (1)

- Have two arrays; E of size $|E|$ and LE of size $|V|$.
 - E contains the edges.
 - LE contains the starting pointers of the edge lists.
- Initialize LE[i] = -1 for all i
 - LE[i] = 0 is also fine if the arrays are 1-indexed.
- Inserting a new edge from vertex u to vertex v with ID k
 E[k].to = v
 E[k].nextID = LE[u]
 LE[u] = k
- Iterating over all edges starting at u
 for (ID = LE[u]; ID != -1; ID = E[ID].nextID
 // E[ID] is an edge starting from u
Graphs. Implementation using arrays (2)

- Once built, it is hard to modify the edges.
- The graph better be static!
- However, adding more edges is easy.
Dijkstra algorithm
for the shortest path in general graphs

- s – source node
- $d(j)$ – the minimal distance from node s to node j
- $\text{pred}(j)$ – predecessor of the node j

Dijkstra algorithm (1956) finds the shortest node from the source node s to all nodes.

% \mathcal{N} – set of all graph nodes
$V := s$ % visited nodes;
$U := \mathcal{N} \setminus s$ % unvisited nodes;
d(s) := 0, $i := s$;

while $|V| < |\mathcal{N}|$ do
 choose(i, j):
 $d(j) := \min_{k, m}\{d(k) + c_{km} | k \in V, m \in U\}$;
 $U = U \setminus \{j\}$;
 $V = V + \{j\}$;
 $\text{pred}(j) := i$;
end

Performance $\mathcal{O}(|\mathcal{N}|^2)$ with the heap reshuffling $\mathcal{O}(|\mathcal{N}| \log |\mathcal{N}|)$.
A flow network is a directed graph with nonnegative edge weights (called also capacities).

A flow f is a real-valued (often integer) function, which satisfies the following three properties:

1. Capacity c constraint
 For all $u, v \in V$, $f(u, v) \leq c(u, v)$.

2. Skew symmetry
 For all $u, v \in V$, $f(u, v) = -f(v, u)$.

3. Flow conservation
 For all $u \in (V \setminus \{s, t\})$, $\sum_{v \in V} f(u, v) = 0$.
Cut in a graph

\[\text{cut}(A, \overline{A}) = \sum_{i \in A, j \in \overline{A}} S_{i,j} \]

Courtesy: Jinbo Shi
A cut is a set of edges $C \subset E$ such that two vertices (called terminals) became separated on the induced graph $G' = (V, E \setminus C)$.

Denoting a source terminal as s and a sink terminal as t, a cut (S, T) of $G = (V, E)$ is a partition of V into S and $T = V \setminus S$, such that $s \in S$ and $t \in T$.
Visual summary of a graph terminology

- **Similarity matrix**: $S = [S_{ij}]$

- **Degree of node**: $d_i = \sum_j S_{ij}$

- **Volume of set**: $\text{Vol}(A)$

- **Graph Cuts**

Courtesy: Jinbo Shi
Definition: A spanning tree T of an undirected graph G is a subgraph that is a tree which includes all of the vertices of G.

In general, a graph may have several spanning trees.

If a graph that is not connected will not contain a spanning tree. (cf. spanning forest).

If all of the edges of G are also edges of a spanning tree T of G, then G is a tree and is identical to T (that is, a tree has a unique spanning tree and it is itself).
Minimum Spanning Tree

- **Given**: Given an undirected weighted graph \(G = (V, E) \).
- **Task**: Find a subset of \(E \) with the minimum total weight that connects all the nodes into a tree.

Kruskal’s algorithm

- Takes \(\mathcal{O}(|E| \log |E|) \) time.
- Easy to code.
- Generally slower than Prim’s algorithm.

Prim’s algorithm

- Time complexity depends on the implementation. Can be \(\mathcal{O}(|V|^2 + |E|) \), \(\mathcal{O}(|E| \log |V|) \), or \(\mathcal{O}(|E| + |V| \log |V|) \).
- More difficult to code.