

Least squares

Václav Hlaváč

Czech Technical University in Prague (ČVUT) Czech Institute of Informatics, Robotics, and Cybernetics (<u>CIIRC</u>) Prague 6, Jugoslávských partyzánů 1580/3 Czech Republic

vaclav.hlavac@cvut.cz

http://people.ciirc.cvut.cz/hlavac/

Courtesy: Fred Pighin and J.P. Lewis, SIGGRAPH 2007 Course

Outline

- Linear regression
- Geometry of least-squares
- Discussion of the Gauss-Markov theorem

Find a line that represent the "best" linear relationship:

$$b = ax$$

 Problem: the data does not go through a line

$$e_i = b_i - a_i x$$

 Problem: the data does not go through a line

$$e_i = b_i - a_i x$$

 Find the line that minimizes the sum:

$$\sum_{i} (b_i - a_i x)^2$$

 Problem: the data does not go through a line

$$e_i = b_i - a_i x$$

 Find the line that minimizes the sum:

$$\sum_{i} (b_i - a_i x)^2$$

We are looking for that minimizes

Least squares example

v Praze

There are 3 mountains u, y, z that from one site have been measured as 2474 m, 3882 ague m, and 4834 m. But from u, y looks 1422 m taller and the z looks 2354 m taller, and from y, z looks 950 m taller. Set up the overdetermined system.

Want to minimize $||Ax-b||_2$

Approaches to solve Ax≈b

- Normal equations-quick and dirty
- QR- standard in libraries uses orthogonal decomposition
- SVD decomposition which also gives indication how linear independent columns are
- Conjugate gradient no decompositions, good for large sparse problems

Matrix notation

Using the following notations

$$\mathbf{a} = \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix}$

we can rewrite the error function using linear algebra as:

$$e(x) = \sum_{i} (b_i - a_i x)^2$$

$$= (\mathbf{b} - x\mathbf{a})^T (\mathbf{b} - x\mathbf{a})$$

$$e(x) = \|\mathbf{b} - x\mathbf{a}\|^2$$

Multidimentional linear regression

Using a model with *m* parameters

$$b = a_1 x_1 + \dots + a_m x_m = \sum_{j} a_j x_j$$

Multidimentional linear regression

Using a model with *m* parameters

$$b = a_1 x_1 + \dots + a_m x_m = \sum_{j} a_j x_j$$

and *n* measurements

$$e(\mathbf{x}) = \sum_{i=1}^{n} (b_i - \sum_{j=1}^{m} a_{i,j} x_j)^2$$

$$= \left\| \mathbf{b} - \left[\sum_{j=1}^{m} a_{i,j} x_j \right] \right\|^2$$

$$e(\mathbf{x}) = \left\| \mathbf{b} - \mathbf{A} \mathbf{x} \right\|^2$$

Matrix representation

in Prague

parameter 1

$$\mathbf{b} - \mathbf{A}\mathbf{x} = \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix} - \begin{bmatrix} a_{1,1} & \dots & a_{1,m} \\ \vdots & & \vdots \\ a_{n,1} & \dots & a_{n,m} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$
measurement n

$$= \begin{bmatrix} b_1 - (a_{1,1}x_1 + \dots + a_{1,m}x_m) \\ \vdots \\ b_n - (a_{n,1}x_1 + \dots + a_{n,m}x_m) \end{bmatrix}$$

Minimizing $e(\mathbf{x})$

 $e(\mathbf{x})$ is flat at \mathbf{x}_{\min}

$$\nabla e(\mathbf{X}_{\min}) = \mathbf{0}$$

 \mathbf{x}_{\min} minimizes $e(\mathbf{x})$ if

 $e(\mathbf{x})$ does not go down around \mathbf{x}_{min}

 $H_e(\mathbf{x}_{\min})$ is positive semi - definite

Positive semi-definite

A is positive semi-definite

 $\mathbf{x}^T \mathbf{A} \mathbf{x} \geq \mathbf{0}$, for all \mathbf{x}

Minimizing $e(\mathbf{x})$

Minimizing
$$e(\mathbf{x}) = \|\mathbf{b} - \mathbf{A}\mathbf{x}\|^2$$

Minimizing
$$e(\mathbf{x}) = \|\mathbf{b} - \mathbf{A}\mathbf{x}\|^2$$

$$\mathbf{A}^T \mathbf{A} \hat{\mathbf{x}} = \mathbf{A}^T \mathbf{b}$$

The *normal equation*

 \hat{x} minimizes e(x) if

 $2\mathbf{A}^T\mathbf{A}$ is positive semi - definite

Always true

• **b** is a vector in \mathbb{R}^n

- **b** is a vector in \mathbb{R}^n
- The columns of A define a vector space range(A)

- **b** is a vector in \mathbb{R}^n
- The columns of A define a vector space range(A)
- Ax is an arbitrary vector in range(A)

- **b** is a vector in \mathbb{R}^n
- The columns of A define a vector space range(A)
- Ax is an arbitrary vector in range(A)

• $A\hat{x}$ is the orthogonal projection of b onto range(A)

$$\Leftrightarrow \mathbf{A}^{T}(\mathbf{b} - \mathbf{A}\hat{\mathbf{x}}) = \mathbf{0} \Leftrightarrow \mathbf{A}^{T}\mathbf{A}\hat{\mathbf{x}} = \mathbf{A}^{T}\mathbf{b}$$

Existence: has always a solution

$$\mathbf{A}^T \mathbf{A} \hat{\mathbf{x}} = \mathbf{A}^T \mathbf{b}$$

Existence: $\mathbf{A}^T \mathbf{A} \hat{\mathbf{x}} = \mathbf{A}^T \mathbf{b}$ has always a solution

- ČVUT v Praze in Prague
- Uniqueness: the solution is unique if the columns of A are linearly independent

Existence: $\mathbf{A}^T \mathbf{A} \hat{\mathbf{x}} = \mathbf{A}^T \mathbf{b}$ has always a solution

ČVUT v Praze in Prague

 Uniqueness: the solution is unique if the columns of A are linearly independent

v Praze in Prague

v Praze in Prague

v Praze

- Poorly selected data
- One or more of the parameters are redundant

- Poorly selected data
- One or more of the parameters are redundant

Add constraints

$$\mathbf{A}^{T}\mathbf{A}\mathbf{x} = \mathbf{A}^{T}\mathbf{b}$$
 with $\min_{\mathbf{x}} \|\mathbf{x}\|$

How good is the least-squares?

Optimality: the Gauss-Markov theorem

Let $\{b_i\}$ and $\{x_j\}$ be two sets of random variables

and define:

$$e_i = b_i - a_{i,1}x_1 - \dots - a_{i,m}x_m$$

lf

A1: $\{a_{i,j}\}$ are not random variables,

A2: $E(e_i) = 0$, for all i,

A3: $var(e_i) = \sigma$, for all i,

A4: $cov(e_i, e_j) = 0$, for all i and j, is the

Then

best unbiased linear estimator

$$\hat{\mathbf{x}} = \operatorname{arg\,min}_{\mathbf{x}} \sum e_i^2$$

