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" Linear regression

=" Geometry of least-squares
= Discussion of the Gauss-Markov theorem



One-dimensional regression
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One-dimensional regression %\é
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Find a line that represent the
"best” linear relationship:

b = ax
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e Problem: the data does not
go through a line




One-dimensional regression %‘%

CVUT
v Praze
in Prague

e Problem: the data does not
go through a line

e Find the line that minimizes
the sum:

Z(bi — 4, X)




One-dimensional regression @

e Problem: the data does not
go through a line

e Find the line that minimizes
the sum:

Z(bi — 4, X)

e We are looking for that
minimizes

e(x) = Z(bi _aix)2




Least squares example %@
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There are 3 mountains U, Y, z that from one site have been measured as 2474 m, 388&%ague

m, and 4834 m. But from U, y looks 1422 m taller and the z looks 2354 m taller, and
fromy, z looks 950 m taller. Set up the overdetermined system.

AN
"1 0 o /2474
/

0 1 0 u __ |3882 _ b

AX= 0 0 1 y 4834

1 1 0 L/ 1422

1 0 1 2354

950

. 0 -1 1) 990 ]

Want to minimize ||[Ax-b||,
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=" Normal equations-quick and dirty

= QR- standard in libraries uses orthogonal
decomposition

= SVD - decomposition which also gives indication
how linear independent columns are

= Conjugate gradient - no decompositions, good
for large sparse problems



Matrix notation %
CvuT

Using the following notations

a=| : and b=

we can rewrite the error function using linear algebra as:

e(x) = Z (b, —ax)’
=(b—xa)' (b —xa)

e(x) = b —xa’
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Multidimentional linear regression

Using a model with m parameters
b=a,% +..+a,X, = Y a;X;
J

b 4
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Multidimentional linear regression %@
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Using a model with m parameters
b=a,% +..+a,X, = Y a;X;
J

and n measurements

(=20 -2a,x)

_ 112

e(x) =[b - Ax|’
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Matrix representation

parameter 1

b — AX

A

A m

Einj.

d

n,m

b, —(a, ;% +...+a

n,m m)

\ measurement n

i bl _(al,lxl +"'+a1,mxm) )
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Minimizing e(X)

X min Minimizes e(x)if <

e(x)

min

fes

e(x)Is flat at x EvuT

v Praze

Ve(x min) =0 in Prague

e(X) does not go down

around x .

H,. (X ) IS positive

\_ semi - definite
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Positive semi-definite

A Is positive semi-definite
S
x ' Ax >0, forall x

In 1-D
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Minimizing e(x)

e(x)

X
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1 - A
—X H_ (X)X
; - (X)
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Minimizing e(x) = b — Ax|] s
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e(x):%xTHe(i)x

X
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Minimizing e(x) = b — Ax|’ ft
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4 .
ATAX =A"b

The normal equation

X minimizes e(x) if <

2A" A is positive
semi - definite

\ Always true
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Geometric interpretation

= P is avectorin R"

fes

CVUT
v Praze
in Prague

19



Geometric interpretation %é
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= b is a vector in R" n Prague
= The columns of A define a vector space range(A)
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Geometric interpretation

= b is a vector in R"
" The columns of A define a vector space range(A)

= AX is an arbitrary vector in range(A)
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Geometric interpretation

= b is a vector in R"
" The columns of A define a vector space range(A)

= AX is an arbitrary vector in range(A)
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Geometric interpretation

" Axis the orthogonal projection of b onto range(A)

A" (b-AX)=0 = ATAX =A"b
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he normal equation: ATAX =A'b %‘%
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he normal equation: ATAX =A'b %é
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» Existence: has always a solution n Prague
ATAX =A'b
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= Existence: ATAX = A"b has always a solution
" Unigueness: the solution is unique if the columns of A are
linearly independent

he normal equation: ATAXx = A'b %é
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he normal equation: ATAX = A"b %\%
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= Existence: AT AX = A'b has always a solution b
" Unigueness: the solution is unique if the columns of A are

linearly independent

27



Under-constrained problem %\%
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Under-constrained problem %\%
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Under-constrained problem %\%
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Under-constrained problem %\%

= Poorly selected data
= One or more of the
parameters are redundant
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Under-constrained problem %\%
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" Poorly selected data
= One or more of the
parameters are redundant

Add constraints

ATAx =A'b with min, x|
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How good is the least-squares?

= Optimality: the Gauss-Markov theorem
Let{b; | and {xj} be two sets of random variables

and define:

If

Then

el :bl_al’lxl_..._a. X

i,m”m

Al:{a; jare not random variables,
A2:E(e )=0,for alli,
A3:var(e )=o,for alll,

A4 :cov(e;,e;)=0,for alliand |,
is the
best unbiased linear estimator

PN

X =argmin, > e°
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no errors in @
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errors in a,

no errors in @
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homogeneous errors
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homogeneous errors

non—homogeneous errors
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no outliers
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outliers

outliers

no outliers
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