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Outline of the talk:
� Global picture: detection, description, matching.

� The aim – create a detector.

� Properties of a good detector.

� Harris corners and MSERs, briefly.

� Harris corners in a more detail.

�
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Establishing correspondence across views, a motivation

1. Detection identifies the interest points (also
keypoints) or regions.

2. Description calculates descriptors (feature
vectors) from the local neighborhood of each
interest point or region.

3. Matching compares feature description pairwise
across views, ranks them, and selects the most
prominent one (or a few most prominent ones
to increase robustness).

feature vector 1 feature vector 2

http://cmp.felk.cvut.cz
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Some applications of detections/descriptions

� Image alignment

� 3D reconstruction

� Motion tracking

� Indexing and retrieval in the image database

� Object recognition

� Robot navigation

http://cmp.felk.cvut.cz
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The aim

Design a detector/descriptor that finds interest points or interest regions in an image such that:

� There is only a small number of isolated interest points/regions detected as compared to the
entire number of pixels in the image.

� Image semantics is not taken into account.

� The interest points/regions and related descriptors are reasonably invariant

• to small geometric changes as affine transformations, e.g., rotation and scale,

• to small radiometric variations, e.g., a slight illumination change.

• different sampling and quantization.

Note: The seminal detector satisfying these requirements is e.g. the Harris corner detector from
1988. However, the idea was around already earlier.

http://cmp.felk.cvut.cz
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Interest points used in matching, overview, procedure

1. Find a set of distinctive interest
points.

2. Define a region around each
interest point.

3. Extract and normalize the region
content.

4. Compute a local descriptor from
the normalized region.

5. Match local descriptors.

Courtesy K. Grauman.

http://cmp.felk.cvut.cz
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Desired properties of good detections/descriptions

� Repeatability – The same detections with similar descriptors can be found in slightly different
images despite geometric and photometric distortions.

� Saliency – Detections/descriptions are distinctive.

� Compactness and efficiency – Significantly less detections/features than image pixels are used.

� Locality – The descriptor is calculated from a small neighborhood of a detection. It brings
robustness to clutter and occlusion.

� Invariance to small geometric/photometric changes – Enables the use in diverse applications,
cf. next slide.

Points of interest or salient regions are usually stable across viewpoint or illumination changes and
provide a good localization (cf. a line vs. a cross).

http://cmp.felk.cvut.cz
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ZOO of useful detectors

Hessian & Harris [Beaudet 1978], [Harris 1988]
Laplacian, DoG [Lindeberg ‘98], [Lowe 1999]
Harris-/Hessian-Laplace [Mikolajczyk & Schmid 2001]
Harris-/Hessian-Affine [Mikolajczyk & Schmid 2004]
EBR and IBR [Tuytelaars & Van Gool 2004]
MSER [Matas et al. 2002]
Salient Regions [Kadir & Brady 2001]
Others . . .

Abbreviations:
DoG – Difference of Gaussians; EBR – edge-based region; IBR – intensity-based region; MSER –
maximally stable extremal regions.

http://cmp.felk.cvut.cz
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Corner detection, the basic idea pictorially

� The interest point should be detected locally. Consider prospecting the image by a small
shifting viewing window.

� A slight shift of this viewing window in any direction should yield a large change in intensity.

� Around a corner, the image gradient has two or more dominant directions.

Idea: A. Efros

“ flat” region:
no change in 
all directions

“edge” �
no change along 
the edge 
direction

“corner” :
significant 
change in all 
directions

http://cmp.felk.cvut.cz
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Maximally Stable Extremal Regions (MSERs)
The basic idea

� MSERs (Matas et. al 2002) are regions characterized by an almost uniform intensity. The
detected regions are surrounded by a contrasting background.

� MSERs are constructed by trying multiple thresholds while selecting those regions, which
maintain the same area over changing thresholds.

orig. gray scale landscape thresholds MSERs

http://cmp.felk.cvut.cz
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MSER, idea, 3D animation video


http://cmp.felk.cvut.cz
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MSER, street image illustration
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Harris corners in more detail
Autocorrelation function

� How similar is the image function I(x, y) at point (x, y) to itself, when shifted by (∆x,∆y)?

� This is given by the autocorrelation function

c(x, y; ∆x,∆y) =
∑

(u,v)∈W (x,y)

w(u, v)
(
I(u, v)− I(u+ ∆x, v + ∆y)

)2
where
• W (x, y) is a window centered at point (x, y)

• w(u, v) is either constant or (better) Gaussian exp
−(u− x)2 − (v − y)2

2σ2
.

(Further on, we will replace
∑

(u,v)∈W (x,y)

w(u, v) with
∑
W

for simplicity)

http://cmp.felk.cvut.cz
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Quadratic approximation
of the autocorrelation function (1)

Approximate the shifted function by the first-order Taylor expansion:

I(u+ ∆x, v + ∆y) ≈ I(u, v) + Ix(u, v)∆x+ Iy(u, v)∆y

= I(u, v) + [ Ix(u, v), Iy(u, v) ]

[
∆x
∆y

]
,

where Ix, Iy are partial derivatives of I(x, y).

http://cmp.felk.cvut.cz
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Quadratic approximation
of the autocorrelation function (2)

Autocorrelation function c(x, y; ∆x,∆y):

c(x, y; ∆x, ∆y) =
∑
W

(
I(u, v)− I(u + ∆x, v + ∆y)

)2

≈
∑
W

(
[ Ix(u, v), Iy(u, v) ]

[
∆x

∆y

] )2

= [ ∆x, ∆y ] Q(x, y)

[
∆x

∆y

]
,

where Q(x, y) =
∑
W

[
Ix(x, y)2 Ix(x, y)Iy(x, y)

Ix(x, y)Iy(x, y) Iy(x, y)2

]

=

[ ∑
W Ix(x, y)2 ∑

W Ix(x, y)Iy(x, y)∑
W Ix(x, y)Iy(x, y)

∑
W Iy(x, y)2

]

http://cmp.felk.cvut.cz
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Quadratic approximation
of the autocorrelation function (3)

� The autocorrelation function has been approximated by a quadratic function

c(x, y; ∆x,∆y) ≈ [ ∆x,∆y ]Q(x, y)

[
∆x
∆y

]
= [ ∆x,∆y ]

[
A B
B C

] [
∆x
∆y

]

� Elongation and size of the uncertainty ellipse is given by eigenvalues λ1, λ2 of Q(x, y)

� The rotation angle of the ellipse is given by eigenvectors of Q(x, y). We do not need the
rotation information here.

� Uncertainty ellipses have the equation [ ∆x,∆y ]Q(x, y)

[
∆x
∆y

]
= 1:

http://cmp.felk.cvut.cz
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Uncertainty ellippses, illustration

flat region edge corner
both eigenvalues small one small, one large both eigenvalues large

http://cmp.felk.cvut.cz
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How to find isolated feature points?

� Characterize ‘cornerness’ H(x, y) by eigenvalues of Q(x, y):
• Q(x, y) is symmetric and positive definite ⇒ λ1, λ2 > 0

• λ1λ2 = detQ(x, y) = AC −B2, λ1 + λ2 = traceQ(x, y) = A+ C

• Harris suggested: Cornerness H = λ1λ2 − 0.04(λ1 + λ2)2

• Image I(x, y) and its cornerness H(x, y):

� Find corner points as local maxima of cornerness H(x, y):
• Local maximum in the image is defined as a point greater than its neighbors (in 3× 3 or

even 5× 5 neighborhood)

http://cmp.felk.cvut.cz
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Harris corners, typical result (on a larger image)

http://cmp.felk.cvut.cz
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Harris corners, the algorithm summary

� Compute partial derivatives Ix(x, y), Iy(x, y) by finite differences:
Ix(x, y) ≈ I(x+ 1, y)− I(x, y), Iy(x, y) ≈ I(x, y + 1)− I(x, y)

Before this, it is good (but not necessary) to smooth image with Gaussian with σ ∼ 1, to
eliminate noise.

� Compute images

A(x, y) =
∑
W

Ix(x, y)
2
, B(x, y) =

∑
W

Ix(x, y) Iy(x, y), C(x, y) =
∑
W

Iy(x, y)
2

E.g., image A(x, y) is just the convolution of image Ix(x, y)2 with the Gaussian. Use
MATLAB function conv2.

� Compute cornerness H(x, y)

� Find local maxima in H(x, y). This can be parallelized in MATLAB by shifting the whole
image H(x, y) by one pixel left/right/up/down.

http://cmp.felk.cvut.cz
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