
Grayscale mathematical morphology
Václav Hlaváč

Czech Technical University in Prague
Czech Institute of Informatics, Robotics and Cybernetics

160 00 Prague 6, Jugoslávských partyzánů 1580/3, Czech Republic
http://people.ciirc.cvut.cz/hlavac, vaclav.hlavac@cvut.cz

also Center for Machine Perception, http://cmp.felk.cvut.cz

Courtesy: Petr Matula, Petr Kodl, Jean Serra, Miroslav Svoboda

Outline of the talk:
� Set-function equivalence.

� Umbra and top of a set.

� Gray scale dilation, erosion.

� Top-hat transform.

� Geodesic method. Ultimate erosion.

� Morphological reconstruction.
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A quick informal explanation

� Grayscale mathematical morphology is the generalization of binary morphology for images
with more gray levels than two or with voxels.

� The point set A ∈ E3. The first two coordinates span in the function (point set) domain and
the third coordinate corresponds to the function value.

� The concepts supremum ∨ (also the least upper bound), resp. infimum ∧ (also the greatest
lower bound) play a key role here. Actually, the related operators max, resp. min, are used in
computations with finite sets.

� Erosion (resp. dilation) of the image (with the flat structuring) element assigns to each pixel
the minimal (resp. maximal) value in the chosen neighborhood of the current pixel of the
input image.

� The structuring element (function) is a function of two variables. It influences how pixels in
the neighborhood of the current pixel are taken into account. The value of the (non-flat)
structuring element is added (while dilating), resp. subtracted (while eroding) when the
maximum, resp. minimum is calculated in the neighborhood.

http://cmp.felk.cvut.cz
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Grayscale mathematical morphology
explained via binary morphology

� It is possible to introduce grayscale mathematical morphology using the already explained
binary (black and white only) mathematical morphology.
R.M. Haralick, S.R. Sternberg, X. Zhuang: Image analysis using mathematical morphology,
IEEE Pattern Analysis and Machine Intelligence, Vol. 9, No. 4, 1987, pp. 532-550.

� We will start with this explanation first and introduce an alternative way using sup, inf later.

� We have to explain the concepts top of the surface and umbra first.

http://cmp.felk.cvut.cz
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Equivalence between sets and functions

� A function can be viewed as a stack of decreasing sets.
Each set Xλ is the intersection between the umbra of
the function and a horizontal plane (line).

Xλ = {X ∈ E, f(x) ≥ λ}
⇒ f(x) = sup{λ:x ∈ Xλ(f)}

� It is equivalent to say that f is upper semi-continuous
or that Xλ-s are closed.

� Conversely, given {Xλ} of closed set such that λ ≥ µ
⇒ Xλ ⊆ Xµ and Xλ = ∩{Xµ, µ < λ} then there
exist a unique an upper semi-continuous. function f
whose sections are {Xλ}.
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Top of the surface

x1

x2

support F

set A

top surface T[A]

y=f(x , x )1 2

� Let A ⊆ En is a domain F = {x ∈ En−1 for some y ∈ E,
(x, y) ∈ A}.

� The top surface, top of the set A, is denoted T [A] is a
mapping F → E defined as
[A](x) = max{y, (x, y) ∈ A}.

1D function example

x

f(x, y=const)

An arbitrary set

x

f(x, y=const)

Top surface

http://cmp.felk.cvut.cz


6/42
Umbra

x1
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set A

umbra U[T[A]]

y=f(x , x )1 2

top surface T[A]

� Let F ⊆ En−1 and f :F → E.

� The Umbra of a function (set) f , denoted U [f ],
U [f ] ⊆ F × E, U [f ] = {(x, y) ∈ F × E, y ≤ f(x)}

1D function example

x

f(x, y=const)

Top surface

x

f(x, y=const)

Umbra
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Gray scale dilation, erosion by binary dilations, erosions

� The umbra function (set) U and the top surface function (set) T are used.

� Dilation:
f ⊕ k = T [U [f ]⊕ U [k]]

� Erosion:
f 	 k = T [U [f ]	 U [k]]

http://cmp.felk.cvut.cz
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Grayscale dilation, 1D example
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Grayscale erosion, 1D example
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Grayscale dilation/erosion via lattice

� This is the alternative approach which uses the order structure in T in the lattice of
functions TE.

� The function g represents a structuring element.
� Dilation (f ⊕ g)(x) = sup

y∈Y
{f(y) + g(x− y)}

� Erosion (f 	 g)(x) = inf
y∈Y
{f(y)− g(x− y)}

Image courtesy Petr Matula
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Dilation/erosion with a flat structuring element

� Flat structuring elements g are defined to be equal to zero on a compact set K and to the
value max(T ) elsewhere

� We can write
f ⊕ g = sup

y∈E, x−y∈K
f(y) = sup

y∈Kx
f(y)

f 	 g = inf
y∈E, x−y∈K

f(y) = inf
y∈K̆x

f(y)

Image courtesy Petr Matula
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Remarks, flat structuring element

� Erosion

(f 	 g)(x) = inf
y∈E, x−y∈K

f(y) = inf
y∈K̆x

f(y)

� Positive peaks are shrunk. Valleys are expanded.

� Dilation provides the dual effect.

(f ⊕ g)(x) = sup
y∈E, x−y∈K

f(y) = sup
y∈Kx

f(y)
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Courtesy J. Serra for the image idea.
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Example: dilation, erosion with the flat structuring element

Image courtesy Petr Matula
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Example: grayscale morphological preprocessing

(a) original (b) eroding dark

(c) dilating dark in (b) (d) reconstr. cells

http://cmp.felk.cvut.cz
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Remarks on grayscale dilation/erosion

� Dilations and erosions with a flat structuring element on grayscale images are equivalent to
applying max and min filters.

� It is recommended to work on grayscale images as long as possible and defer thresholding at
later times.

� Dilation/erosion compared with convolution

Convolution: (f ∗ g)(x) =
∑
y∈Y

f(x− y) · g(y)

Dilation: (f ⊕ g)(x) = sup
y∈Y
{f(y) + g(x− y)}

Convolution Dilation/erosion Remark
Summation ↔ sup or inf nonlinar
Product ↔ Summation linear

http://cmp.felk.cvut.cz
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Opening, closing

� Recall from the binary morphology lecture that a filter
is a morphological filter if and only if it is increasing
and idempotent.

� Grayscale dilation and erosion are morphological
filters.

� Opening: γB(X) = X ◦B = (X 	B)⊕B

� Closing: φB(X) = X •B = (X ⊕B)	B

http://cmp.felk.cvut.cz
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Opening and closing examples

Image courtesy Petr Matula
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Grayscale hit or miss operation

� Dilations and erosion are more powerful when combined.

� E.g., introducing grayscale hit or miss operation which serves for template matching. Two
structuring elements with a common representative point (origin). The first structuring
element is the foreground pattern Bfg, the second one is the background pattern Bbg.

� Grayscale hit or miss operator is defined as

X ⊗B = (X 	Bfg) ∩ (X 	Bbg)

http://cmp.felk.cvut.cz
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Top hat tranform

� Definition: X \ (X ◦K).

� It is used for intensity-based object segmentation in the situation, in which the background
intensity changes slowly.

� Parts of image larger than the structuring element K are removed. Only removed parts
remain after subtraction, which are objects on the more uniform background now. The objects
can be found by thresholding now.

Top hat Threshold

Opened imageGray-scale image

http://cmp.felk.cvut.cz
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Example: Production of glass capillaries for thermometers

Top-hat transform illustrated on the industrial example.

Original Erosion with struct. Opening with the Resulting
512×256 elem. 1×20 same struct. elem. segmentation

http://cmp.felk.cvut.cz
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Geodesic method in mathematical morphology

� A geodesic method change morphological operations in such a manner that they operate on
the part of the object only.

� Geodesic methods offer a unifying framework describing the local geometry of images and
surfaces. Fast and efficient algorithms compute geodesic distances to a set of points and
shortest paths between points.

� Example: Assume that we have reconstruct the object from the marker, say a cell from the
cell nucleus. In such a case, it is desirable to prevent the growth outside of the cell.

� We will see later that the structuring element can change in every pixel based on image
function values in a local neighborhood.

http://cmp.felk.cvut.cz
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Geodesic distance

� Geodesic distance dX(x, y) is the length of the shortest path between two points x, y under
the condition that they belong to the set X .

� If there is no path connecting x, y then the geodesic distance is defined as dX(x, y) = +∞.

d   (x,y)X

w

x

y

set X

Xd   (w,y) = 
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Geodesic circle (ball, hyperball)

� Geodesic circle (ball, hyperball for the space dimension
> 3) is a circle (ball, hyperball) constrained to set X .

� Geodesic circle BX(p, n) with the center p ∈ X and
the radius n is defined

BX(p, n) = {p′ ∈ X, dX(p, p′) ≤ n} .

� We can use dilation/erosion only inside the the subset
Y of the image X .

p

X

B (p,n)X 
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Conditional dilation

� Serves as the basis of geodetic transformations and morphological reconstruction.

� Conditional dilation of a set X (called marker) by a structuring element B using a reference
set R (called mask)

δ
(1)
R,B = (X ⊕B) ∩R ,

where the superscript (n) gives the size of the dilation, in this special case n = 1.

� It is obvious that δ(1)
R,B ⊆ R.

� The set B is usually small (often a basic structuring element induced by the underlying grid).
Set B is often omitted in subscripts.

http://cmp.felk.cvut.cz
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Conditional geodesic dilation and erosion

� Geodesic dilation δ(n)
X (Y ) of size n of a set Y inside the set X ,

δ
(n)
X (Y ) =

⋃
p∈Y

BX(p, n) =
{
p
′ ∈ X, ∃p ∈ Y, dX(p, p

′
) ≤ n

}
.

� Geodesic erosion ε(n)
X (Y ) of size n of a set Y inside the set X ,

ε
(n)
X (Y ) =

{
p ∈ Y, BX(p, n) ⊆ Y

}
=
{
p ∈ Y, ∀p′ ∈ X \ Y, dX(p, p

′
) > n

}
.

δX (Y) εX (Y)
X X

XX
Y

Y
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Geodesic dilation, erosion, implementation

� The simplest geodesic dilation of size one (δ(1)
X ) of a set Y (marker) inside X is obtained as

the intersection of the unit-size dilation of Y (with respect to the unit ball B) with the set X

δ
(1)
X = (Y ⊕B) ∩X .

� Larger geodesic dilations are obtained by iteratively composing unit dilations n times

δ
(n)
X = δ

(1)
X

(
δ

(1)
X

(
δ

(1)
X . . . (δ

(1)
X )
))︸ ︷︷ ︸

n times

.

� The fast iterative way to calculate geodesic erosion is similar.

http://cmp.felk.cvut.cz
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Morphological reconstruction, motivation

� Assume that we want to reconstruct objects of a given shape from a binary image that was
originally obtained by thresholding segmentation. The set X is a union of all connected
components of all thresholding results.

� However, only some of the connected components were marked either manually or
automatically by markers that represent the set Y .

� The task is to reconstruct marked regions

Reconstruction of X (shown in light gray) from markers Y (black). The reconstructed result is
shown in green on the right side.

http://cmp.felk.cvut.cz
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Morphological reconstruction

� Successive geodesic dilations of the set Y inside the set X
reconstruct the connected components of X marked initially
by Y .

� When dilating from markers Y , connected components of X
not containing Y disappear.

� Geodesic dilations terminate when all connected components set
X previously marked by Y are reconstructed, i.e., idempotency
is reached, i.e. ∀n > n0, δ(n)

X (Y ) = δ
(n0)
X (Y ).

� This operation is called reconstruction and denoted by ρX(Y ).
Formally ρX(Y ) = limn→∞ δ

(n)
X (Y ).

� Reconstruction by dilation is an opening w.r.t. Y and closing
w.r.t. X .

Y

Y

X

X

 (Y)X
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Automatic object marking, the idea

� The idea: Consider the convex region in the binary image and its shape only. The region can
be represented by the marker ‘inside the region’.

� It holds for non-touching circles trivially.
� The situation is more complicated in general.
� The sequential erosion is used. The residual region, i.e. the region which disappears at last
while sequentially eroding is used as the marker. This motivates the ultimate erosion concept.

� Nonconvex regions are usually divided into simpler convex parts.

� The explanation plan:
• Quench function – associates each point of the skeleton to a radius of an inscribed circle.
• Several types of extremes in digitized functions (images).
• Ultimate erosion.

http://cmp.felk.cvut.cz


30/42
Sequential eroding, the example

Original 1st erosion 2nd erosion

3rd erosion 4th erosion 5th erosion

http://cmp.felk.cvut.cz
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Quench function

� The binary point set (a 2D region) X can be equivalently representeed using maximal balls B.
� Every point p of the skeleton S(X) by maximal balls has an associated ball B of radius
qX(p).

� The term quench function is used for this association.
� Example: Quench function for two overlapping discs.
c1, c2 are centers of discs. R1. R2 are respective disc radii.
The quench function qX(p) is on the right side of the figure.

R1 R2

S(X)

X

c1
c1 c2 c2

q (p)X

Skeleton S(X) of the binary image X consisting of two overlapping discs.
� Later, analyzing various types of quench function maxima will be used in the ultimate erosion
definition.

http://cmp.felk.cvut.cz
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A region as a union of maximal balls

� Recall from previous slide that every point p of the skeleton S(X) by maximal balls has an
associated ball B of radius qX(p).

� If the quench function qX(p) is known for each point of the skeleton then the original
underlying point set (a 2D region) X can be reconstructed as the union of maximal balls B

X =
⋃

p∈S(X)

(p+ qX(p)B) .

http://cmp.felk.cvut.cz
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Three types of extremes of the grayscale image function I

� The global maximum of the image (also image function) I(p) is represented by the pixel
(pixels) p having the highest value of I(p) (analogy to the highest point in the landscape).

� The local maximum is pixel p iff it holds for each neighboring pixel q of the pixel p that
I(p) ≥ I(q).

� The regional maximum M of the image I(p) is a contiguous set of pixels with the image
function value h (landscape analogy: plateau at the altitude h), where each pixel neighboring
to the set M has a lower value than h.

neighborhood

point (pixel)

regional maximum

local maximum
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Not all local maxima are regional maxima

neighborhood

point (pixel)

regional maximum

local maximum

� Each pixel of the regional maximum M of the image function I is also the local maximum.

� The contrary does not hold, i.e. there are local maxima, which are not regional maxima.

http://cmp.felk.cvut.cz
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Ultimate erosion Ult(X)

� The ultimate erosion outcome is often used as automatically created markers of convex
objects in binary images.

� The situation becomes more complicated when convex regions overlap, which may induce
non-convexity. Recall two overlapping circles example in slide 31.

� Ultimate erosion Ult(X) is the set consisting of quench function qX(p) regional maxima.
� Example: Ultimate erosion as a union of connected component residuals before they disappear
while eroding.

Original binary image Ultimate erosion outcome

http://cmp.felk.cvut.cz
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Ultimate erosion expressed as the reconstruction

� N is the set of natural numbers, which will serve us to characterize growing circle radii.

� Ultimate erosion can be expressed as

Ult(X) =
⋃
n∈N

((X 	 nB) \ ρX	nB(X 	 (n+ 1)B)) .

� An effective calculation of the ultimate erosion relies on the distance transform algorithm
which was explained in the lecture Digital image.

http://cmp.felk.cvut.cz
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Fast calculations using the distance tranformation

� Distance transformation (function) distX(p) assigns to each pixel p from the set X the size
of the first erosion of a set, which does not contain the pixel p, i.e.

∀p ∈ X, distX(p) = min {n ∈ N , p not in (X 	 nB)} .

� distX(p) is the shortest distance between the pixel p and the set complement XC.

The distance function has two direct uses:

� The ultimate erosion of a set X is constituted by a union of regional maxima of the distance
function of the set X .

� The skeleton created by maximal circles of the set X is given by the set of local maxima of
the distance function X .

http://cmp.felk.cvut.cz
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Skeleton by influence zones (SKIZ)

� Let X be composed of n connected components Xi, i = 1, . . . , n.
� The influence zone Z(Xi) consists of points which are closer to set Xi than to any other
connected component of X .

Z(Xi) =
{
p ∈ Z2, ∀i 6= j, d(p,Xi) ≤ d(p,Xj)

}
.

� The skeleton by influence zones denoted SKIZ(X) is the set of boundaries of influence zones{
Z(Xi)

}
.

SKIZ(X) =

(⋃
i

Z(Xi)

)C
.

� Properties:
• SKIZ(X) is not necessarily connected (even if XC is).
• SKIZ(X) ⊆ Skeleton(X).

http://cmp.felk.cvut.cz
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SKIZ idea, example

http://cmp.felk.cvut.cz
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SKIZ(X) ⊆ Skeleton(X)

http://cmp.felk.cvut.cz
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SKIZ(X) ⊆ Skeleton(X), particles example

http://cmp.felk.cvut.cz
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Several markers for a region, issues
Geodesic influence zone

� In some applications, it is desirable that one connected component of X is marked by several
markers Y .

� If the above is not acceptable then the notion of influence zones can be generalized to
geodesic influence zones of the connected components of set Y inside X .

http://cmp.felk.cvut.cz
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