
Corner Representation of Raster Images
Václav Hlaváč

Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics

Center for Machine Perception
http://cmp.felk.cvut.cz/˜hlavac, hlavac@fel.cvut.cz

2/24
Decompression before applying operation

Standard way

Losslessly
Compressed

Image 2

Raster
Image

Raster
Image 2

Losslessly
Compressed

Image

Image
operation

http://cmp.felk.cvut.cz

3/24
Operations on compressed images directly

Desired way, avoid decompression

Losslessly
Compressed

Image 2

Raster
Image

Raster
Image 2

Losslessly
Compressed

Image

Image
operation

http://cmp.felk.cvut.cz

4/24
Corner representation, motivation

� Idea due to M.I. Schlesinger, Kiev, Ukraine, 1985.

� Remained almost unnoticed.

� I learned about it in 1996.

� There is a wide class of transformations that can be performed on corner
compressed images.

� Let start with binary image v(x, y)→ {0, 1}.
(1 stands for object, 0 otherwise).

http://cmp.felk.cvut.cz

5/24
Corner representation, example

Kanji character (meaning near from here), 360 × 345 pixels, 15,902 bytes.
GZIPed 1,406 bytes.

Corner compressed, 1,194 corners, 1,736 bytes, 10.9% of the original.

http://cmp.felk.cvut.cz

6/24
Overview

� A five student software engineering project with the stress to cooperative
work in 1999.

� The goal was to create a public domain tool based on M.I. Schlesinger’s
corner representation of binary images.

� Implemented in C++. It is a very rough implementation only.

� It should have been followed by a vectorization and a structural lines analysis
project. This did not happen.

� A PhD thesis of Jaroslav Fojtík (2000] explored the idea to create an
adaptive corner based predictor for image compression.

� The idea of generalization to n-dimensions came as the side effect.

http://cmp.felk.cvut.cz

7/24
Corner representation, idea 1

� Corner representation stores only residuals of the simple nonlinear predictor.
� Predictor probe = 2× 2 window only.
� Unsuccessful predictions correspond to corners.
� There are only 24 = 16 possible configurations of the probe.

A B C D E F G H

p = 04

p = 14

http://cmp.felk.cvut.cz

8/24
Corner representation, idea 2

A B C D E F G H

p = 04

p = 14

� Corners K in the binary image v are given as
K(v) = {(x, y) | k(x, y) = 1},
where: k(x, y) = v(x, y) ⊕ v(x− 1, y) ⊕ v(x, y − 1) ⊕ v(x− 1, y − 1).

� Odd number of black pixels in the probe indicates corner.

http://cmp.felk.cvut.cz

9/24
Compressing and decompressing

� The compression pass creates a corner representation. The binary image v is
traversed by the 2× 2 mask starting from the lower left position to the right
and upward.

� The decompression pass starts again from the lower left corner of the
compressed image and moves mask to the right and upward.

� Images in corner representation are not implemented as matrix of corners.
The ordered list with pairs (x, y) corresponding to corners is used instead.

http://cmp.felk.cvut.cz

10/24
Compression into CR, an example

http://cmp.felk.cvut.cz

11/24
Decompression from CR, an example

http://cmp.felk.cvut.cz

12/24
How to store corners in a file?

ny

x

x

x

x x

y

y

n

n
32

21

1x2

1

2

x1

The x positions of differences

The number of elements in the 1D strip

The number o 1D stripes

The pointer to each separate 1D stripe

The y positions of 1D stripes

http://cmp.felk.cvut.cz

13/24
Operations working in corner representation

General properties

� Operations (Scale, Shift, AND, OR) can be performed in O(n) time, where
n is the sum number of corners in the image.

� XOR(A, B) ≡ A⊕B finds exclusive corners only. Complexity is O(n),
where n is smaller from number of corners in images A, B.

� NOT can be performed in constant time.

� There is usually less corners than object pixels in the image. The operations
are thus faster.

http://cmp.felk.cvut.cz

14/24
Shift, scale

Let c(A) be the corners of an image A.

c(A) = c1, . . . , cn = (x1, y1), . . . , (xn, yn)

Shift A′ = A + (a, b), a, b ∈ Z
for i = 1 to N do
(xi, yi)

′ = (xi, yi) + (a, b)

end for

Scale A′ = A · s, s ∈ R
for i = 1 to N do
(xi, yi)

′ = round((xi, yi) · s)
end for

http://cmp.felk.cvut.cz

15/24
Exclusive OR, E = A⊕B

Let #c(A) denote the number of corners in an image A.

� Algorithm c(E) = c(A)⊕ c(B).
� The following holds #c(E) ≤ #c(A) + #c(B).
� The complexity of ⊕ depends on number of corners in images with less
number of corners.

=+

http://cmp.felk.cvut.cz

16/24
Negation, A = A

� A = A⊕ 1,
where the number 1 represents the entirely black image.

� Four operations are needed only, i.e. the number of operations does not
depend neither on the number of pixels nor number of corners.

ANY IMAGE

x

http://cmp.felk.cvut.cz

17/24
Connected components counting 1

� Performed directly in corner representation. One pass suffices.
� Corners represent well the contour of the connected component (region).
� Principle of line-wise calculation:

1. Finding contours;
2. Determining which contour is inner and which outer;
3. Update counter of connected components.

� Additional region features can be calculated (area, perimeter, moments, . . .).

http://cmp.felk.cvut.cz

18/24
Connected components counting 2

� Line-wise, pairs of corners are read from the left-hand side.

� 4 possible configurations possible only.

� It is decided if contour is inner one or outer one (recall Jordan curve,
odd-even number of intersections).

� The connected component counter is updated.

http://cmp.felk.cvut.cz

19/24
Coloring connected components (segmentation)

� 2 passes through corner represented image.
� Similar to counting connected components. The color attribute is added to
each connected component in the first pass.

� Conflicts of colors are solved in the second pass.
� Use of coloring:

• Selection of individual regions.
• Filtering out regions of certain properties, typically small ones that

correspond to noise.

http://cmp.felk.cvut.cz

20/24
Skeleton, the concept

Introduced by Blum (1964) by a grass fire scenario.

A skeleton of a binary object is traditionally defined as a union of centers of
inscribed circles.

Two approaches: (a) Sequentional thinning; (b) Middle of the abscissa to the
“opposite point of the contour”.

http://cmp.felk.cvut.cz

21/24
Skeletonization in corner represented image

� We define skeleton as union of centers of maximal squares.
� The basic skeleton consists of vertical and horizontal lines only. It is typically
discontinuous.

� Auxiliary skeleton (direction modulo 45o) join basic skeleton components to
preserve topology.

http://cmp.felk.cvut.cz

22/24
Calculation of the skeleton, “divide and conquer”

� The skeleton of a rectangle is trivial. The idea is to decompose the region
into rectangles.

� Key to decomposition is the dissective square grows from concave (L-shape)
corner and it is one of maximal squares.

� If such a maximal square does not exist then it is one of the closure of set of
maximal squares.

� Dissective squares define auxiliary skeleton.

http://cmp.felk.cvut.cz

23/24
Ragged skeleton

� Real skeletons are ragged due to noise.
� The homomotopy of the region can be represented by a graph.
� Postprocessing of the graph allows to smooth (interpolate) the skeleton.

http://cmp.felk.cvut.cz

24/24
Our research contribution

� Use of idea of corner representation (adaptive predictor) to compress grey
level images. Treated as stacked bit-planes.

� Generalization into three dimensions.
Original 3D object - the cube

x

y
z

3D differences (corners) of the cube

Axes for computing differences

http://cmp.felk.cvut.cz

	First page
	ccmp Decompression before applying operation
	ccmp Operations on compressed images directly
	ccmp Corner representation, motivation
	ccmp Corner representation, example
	ccmp Overview
	ccmp Corner representation, idea 1
	ccmp Corner representation, idea 2
	ccmp Compressing and decompressing
	ccmp Compression into CR, an example
	ccmp Decompression from CR, an example
	ccmp How to store corners in a file?
	ccmp Operations working in corner representation
	ccmp Shift, scale
	ccmp Exclusive OR, $E= A oplus B$
	ccmp Negation, $overline {A} = A$
	ccmp Connected components counting 1
	ccmp Connected components counting 2
	ccmp Coloring connected components (segmentation)
	ccmp Skeleton, the concept
	ccmp Skeletonization in corner represented image
	ccmp Calculation of the skeleton, ``divide and conquer''
	ccmp Ragged skeleton
	ccmp Our research contribution
	Last page

