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Types of segmentations %é

Oversegmentation Undersegmentation

Multiple Segmentations



Major processes for segmentation %

3

= Bottom-up: group tokens with similar features

= Top-down: group tokens that likely belong to the
same object

Bottom-up

[Levin and Weiss 2006]



Graph-based image segmentation, %\é
main ideas 4

= Convert an image into a graph.
» Graph vertices correspond to individual pixels.

« Additional graph vertices and edges encode
other constraints.
Example: a special node (source) denotes
objects and a special node (sink) denotes
background in object/background segmentation.
The source/sink concepts come from flow
networks.

= Manipulate the graph to segment the image.



Image segmentation using graphs, %\é
seminal papers

= Y. Boykov, M.-P. Jolly: Interactive Graph Cuts for Optimal Boundary &
Region Segmentation of Objects in N-D Images, ICCV 2001.

* A: Pixel classified as object or background. Novelty: adding
Interactivity.

* Minimize energy function E(A) = B(A) + AR(A), where B(A) = the cost
of all edges between object pixels and background pixels; R(A) =
the cost of deciding if a pixel is object or background.

= P.F. Felzenszwalb, D.P. Huttenlocher: Efficient Graph-based Image
Segmentation. International Journal of Computer Vision, 2004.

» Cluster the vertices based on edge weight.

= C. Rother, V. Kolmogorov, A. Blake: GrabCut: Interactive Foreground
Extraction using Iterated Graph Cuts. ACM Transactions on Graphics
(SIGGRAPH’04), 2004.



Subgraphs and connected %
components

* If G and H are graphs such that V(H) €V(G) and
E(H) €E(G), then H Is a subgraph of G.

= If H Is a connected subgraph of G and
« v£win G for all verticesv eH and w & H,

 (for any pair of vertices v, w € H it holds that
e,w EE(H) ife,,, EE(G)),

then H is a connected component of G.



Example, connected componens %%

A graph with three connected components.



Graph segmentation %\é

8

= To segment an image represented as a graph, we
want to partition the graph into a number of
separate connected components.

= The partitioning can be described either as a
vertex labeling or as a graph cut.



Vertex labeling %\é

= \We associate each vertex with an element in some
set L of labels, e.qg., L = {object, background}.

= Definition, vertex labeling

A (vertex) labeling 4 of G(V,e) and labels L Is
amapi:V—L.



Graph cuts %\é
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= Informally, a (graph) cut is a set of edges that, if
they are removed from the graph, separate the
graph into two or more connected components.

= Definition, Graph cuts

* LetS cE,and G =(V,E\S). If, foralle,,, €S, It
holds that v#w €G’, then Sis a (graph) cut
on G.



Example, cuts

= A set of edges (red) that
* Do not form a cut

* Form a cut
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Relation between labelings and cuts %
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Graph-based image segmanation %\é
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Useful graph algorithms

* Minimal spanning tree

Kruskal’s algorithm, using for image
segmentation

« Shortest path

Dijkstra’s algorithm, using for intelligent
SCISSOrs

e Source S — Sink T; max flow or min cut
Segmentating object from background



Main ideas %é
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= Convert an image into a graph
 Vertices for the pixels
* Edges between the pixels

« Additional vertices and edges to encode
other constraints

= Manipulate the graph to segment the image




An Image represented as a graph
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Undirected/directed graph /@
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Undirected graph Directed graph

¢ G =(V,E) is composed of ¢ G =(V,E) is composed of
vertices V' and undirected vertices V' and directed edges E
edges E representing a relation representing an ordered relation
between two vertices. between two vertices.

¢ If a weight w, is assigned to all ¢ Oriented edge € = (u,v) has the
edges then the graph becomes tail u and the head v (denoted
undirected weighted graph. by the arrow). The edge e is

different from ¢’ = (v, u) in
general.




Graph based image segmentation

= Bottom-up segmentation

fes
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Original Image Incorrect Segmentation Correct Segmentation

= Based on Kruskal’s minimum-spanning-tree
algorithm



Graph based image segmentation /%é

Define G(V,E) and maximal distance M é)@ ®®

1. Start with segmentation S,, where eac
vertex v; IS in its own component

2. Merge nearest components smallest

weight
3. Repeat step 3 until distance betweer \(%)@ @®
components is lesser than M 0
| ®
next edge

no more edges that satisfy the combine components @
predicate ®

@@ @%«— 0%



Grid graph based %é
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= Every pixel is connected to its 4 neighboring pixels

= Weights are determined by the difference in intensities

* For color images - the algorithm runs three times using R values,
then using G values and finally B values. Two pixels in the same
component only if they appear in the same component in all three
colors.

= Features

* Preserves small components, doesn’t have problem with small
changes in gradient




Nearest-neighbor image %

segmentation -0

Project every pixel into feature space defined by (x,y,r,g,b)
Weight between pixels ale determined using Euclidian distance
Edges are chosen for only top 10 nearest neighbors in feature space

Features

* Non Spatially connection regions of the image can be placed in the
same component. (see flowers or tower and lights)




Using shortest path algorithm

= Dijkstra’s shortest path algorithm
= Used for intelligent scissors

Mortenson and Barrett (SIGGRAPH 1995)
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Intelligent scissors %é

= Formulation: find good boundary between seed *

points
= Challenges
e Minimize interaction time
* Define what makes a good boundary
 Efficiently find it




Intelligent scissors %é
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A good image boundary has a short path through
the graph.

Start

End

Mortenson and Barrett (SIGGRAPH 1995)



Dijkstra’s shortest path algorithm

Initialize, given seed s:

Compute cost,(q, r) % cost for boundary from pixel g
to nelghborlng pixel r

cost(s) = % total cost from seed to this point
A = {s} % set to be expanded

E =4} % set of expanded pixels

P(g) % pointer to pixel that leads to q

Loop while A 1s not empty

1.
2.
3.

q = pixel In A with lowest cost
Add g to E

for each pixel r i1in neighborhood of g that 1s not iIn
E

a) cost_tmp = cost(q) + cost,(q,r)
b) IFf (r 1s not 1n A) OR (cost_tmp < cost(r))

1 cost(r) = cost_tmp

1. P(r) =
111 Add r to A

fes

24



Intelligent scissors: method (1) %

1. Define boundary cost between neighboring pixels2

2. User specifies a starting point (seed)

3. Compute lowest cost from seed to each other
pixel

4. Get path from seed to cursor, choose new seed,
repeat

5




Intelligent scissors: method (2)
Define boundary cost between neighboring pixels %%

a)

Lower if edgel is present (e.g., with edge(im,
‘canny’))

Lower if gradient magnitude is strong
Lower if gradient direction matches the boundary
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Gradients, edgels, and path cost
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Intelligent scissors: method (3) %é
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1. Define boundary cost between neighboring pixels

2. User specifies a starting point (seed)
*  Shapping




Intelligent scissors: method (4) /@
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1. Define boundary cost between neighboring pixels

2. User specifies a starting point (seed)

3. Compute lowest cost from seed to each other
pixel
* Dijkstra’s shortest path algorithm




Intelligent scissors: method (5) /%é
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1. Define boundary cost between neighboring pixels

2. User specifies a starting point (seed)

3. Compute lowest cost from seed to each other
pixel

4. Get new seed, get path between seeds, repeat




Intelligent scissors: improving %
Interaction -

1. Snap when placing first seed
2. Automatically adjust to boundary as user drags

3. Freeze stable boundary points to make new
seeds




Using minimal graph cuts in image %
segmantation 32

= Main aim iIs to segment the object from
background

« User defines ,seeds” for object and background

fa) A woman from a village {b] A church in Mozhaisk (near Mosoow)



Flow network, flow %

33

¢ A flow network is a directed graph with nonnegative edge weights (called
also capacities).

¢ A flow is a real-valued (often integer) function, which satisfies the following
three properties:

1. Capacity ¢ constraint
For all u,v €V, f(u,v) < e(u,v).
2. Skew symmetry

For all u,v €V, f(u,v) = —f(v,u).

3. Flow conservation

For all w € (V \ {s,t}), > f(u,v)=0.

velV



A cut of agraph %

34

® A cutis a set of edges C' C E such that two vertices (called terminals)
became separated on the induced graph G' = (V, E'\ C).

¢ Denoting a source terminal as s and a sink terminal as ¢, a cut (S,7") of

G = (V,F) is a partition of V into S and T =V \ S, such that s € S and
tel.



Max flow (1) /@

35
= Directed graph with one source & one sink node

= Directed edge = pipe
= Edge label = capacity
= What is the max flow from source to sink?




Max flow (2) /@

. . 36
= Graph with one source & one sink node

= Edge = pipe

= Edge label = capacity

= What is the max flow from source to sink?
= 1st step: find any path with free capacity

e Path can go in the opposite way Iif there is any flow. The
value of the flow Is then substracted.

0 0 -0
0,40

0,

0,60

10




Max flow (3) /@

37

= 2nd step: Fill the path with the maximal capacity

20,30

0,15@ 0.10



Max flow (4) %
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= 3d step: return to step 1 until there is no free path

OO 0.0 @ ()
10,15 10,10



Max flow (5) /@

= What is the max flow from the source s to sinkt ? *°
= Look at a residual graph

 min cut is at the boundary between two
connected components




Equivalence of min cut and max flow /@

: : 40
= The three following statements are equivalent

e The maximum flow iIs f

* The minimum cut has weight f

* The residual graph for flow f contains no
directed path from source to sink




Problem with min cuts

Min. cuts favors isolated clusters




Normalize cuts in a graph

* (edge) Ncut = balanced cut @ @

Neut(A, B) = cut(4, B)(wz(A) vol(B)




Pixel-based statistical model /@

43

P(foreground | image)

has limitations because of existing relations to other
pixels.



Solution: encode dependences /%é

between pixels »

P(foegoun |image)

Normalizing constant called “partition function”
\

P(y;6,data) = H p.(y;;6.data) | [ p,(y;,y;;6,data)

\ o \ o \

Labels to be predicted Individual predictions  Pairwise predictions



Writing likelihood as an energy /@
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P(y;0,data) = H p.(y;;0,data) || p,(y;. ;6. data)

iI=1..N I, jeedges

l - log(.)

Energy(y;6,data) =) w,(y;;6,data)+ > w,(y;,y;;0,data)

/ I, jeedges y\

Cost of assignment Y; Cost of pairwise assignment Y; Y;



Notes on energy-based formulation %\é

46

Energy(y; 6,data) = Z%(Y. 0,data)+ > w,(y;,y;;0,data)

I, jeedges

= Primarily used when one only cares about the
most likely solution (not the confidences).

= Can think of it as a general cost function.

= Can have larger “cligues” than 2. The clique is the
set of variables that go into a potential function.



Markov Random Fields %

47

Node Y;: pixel label

/

PR

Edge:
constrained pairs

Cost to assign a label to Cost to assign a pair of labels
each pixel \ to connected pixels

Energy(y;0,data) = Zz//l(y,,é’ data)+ > w,(y;,y;:6,data)

I, jeedges



Label smoothing grid example @

48
Unary potential

0: - logP(y; = 0 | data)
1: - logP(y; = 1 | data)

/ Pairwise Potential
0 1 k>0

00 K
1K 0

Energy(y; 6, data) = Zz,yl(y,,é’ data)+ > w,(y;,y;;6,data)

I, jeedges

%

-



Creating the graph from image %\é
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= Each pixel has a corresponding vertex

= Additionally, a source (“object”) and a sink
(“background”)

= Each pixel vertex has an edge to its neighbors
(e.g. 4 adjacent neighbors in 2D), an edge to
the source, an edge to the sink

= Pixels connected with seeds have an infinite
capacity




Edge weights between pixels %é

50

= Welight of edges between pixel vertices are
determined by the function expressing
dependence between two pixels

= Low score when boundary is likely to pass
between the vertices

= High score when vertices are probably part
of the same element

= E.g. the difference in pixel intensities, the
Image gradient



Solving MRFs with graph cuts %gg

51
Source (Label 0)

-
-—————

Sink (Label 1)

Energy(y;6,data) =Y w,(y;;6,data)+ > w,(y;,y;;0,data)

I, jeedges



Solving MRFs with graph cuts %é
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Source (Label 0)

Red

/
4 Cost to assign to 1

Cost to split nodes

-
————————
- -

Cost to assign to O

O Sink (Label 1)

Energy(y;6,data) = Zyxl(y,,@ data)+ > w,(y;,y;:6,data)

I, jeedges



Graph cut, Boykov & Jolly 2001 %\é

53
Foreground

(source)

\ Min Cut

SN\

[Image

Background
(sink)

Cut: Separating source and sink; Energy: collection of edges

Min Cut: Global minimal energy in polynomial time



Minimal graph cuts and image

labeling

(a) Image with seeds.

4

Background
™) terminal

Object
terminal

(b) Graph.

Minimum graph cut segmentation of a 3x3 image. [Boykov and V.

Kolmogorov]

(d) Segmentation results.

1

Background
") terminal

----
-

terminal

(c) Cut.

54



Normalized cut %\é

A minimum cut penalizes large segments

e This can be fixed by normalizing the cut by
component size

 The normalized cut cost Is:
cut(A, B) N cut(A, B)
assoc(A,V) assoc(B,V)

assoc(A, V) = sum of weights of all edges in V that touch A

* The exact solution is NP-hard but an
approximation can be computed by solving a
generalized eigenvalue problem

J. Shi and J. Malik. Normalized cuts and image segmentation. PAMI 2000

55


http://www.cs.berkeley.edu/%7Emalik/papers/SM-ncut.pdf

GrabCut segmentation %

Carsten Rother et al. 2004

User provides rough indication of foreground region.

Goal: Automatically provide a pixel-level segmentation.
e Less user input, rectangle only.
e Handles color



GrabCut segmentation %\é

1. Define graph >/
e usually 4-connected or 8-connected
= Divide diagonal potentials by sqgrt(2)
2. Define unary potentials

e Color histogram or mixture of Gaussians for
background and foreground
g g [ P(C(X)’ gforeground))

unar otential (x) =—1o
v potential ) =109 5y

ackground )

3. Define pairwise potentials

C(X)C(yy}

20

edge _ potential (x,y) =k, +k, exp{
4. Apply graph cuts

5. Return to 2, using current labels to compute
foreground, background models



GrabCuts and graph cuts

Magic Wand Intelligent Scissors
(198?) Mortensen and Barrett (1995)

User
Input

Result

Regions Boundary

Source: C. Rother



Color model (1)

Foreground &
Background

Gaussian Mixture Model (typically 5-8 components)

Source: K. Rother
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Color model (2)

R 7
Foreground & J
Background .~

B
BT /
a e 2
(P o e

22
Background (G

Iterated
graph
cut

A
R

/" Background G

P

Gaussian Mixture Model (typically 5-8 components)

Source: K. Rother



What is easy or hard about these cases
for graphcut-based segmentation?




Easier examples




More difficult examples

Initial AT

| ;; ‘“". F'

Rectangle “#1" ™
- ] g, ':-_:‘.::. A

Initial
Result




Using graph cuts for recognition %

-

b

f‘i\‘hf;h!
o sky slcy building
&

tree

body -3 road airplane

Ehc2 grass grass

building ~ pgrass t COW skySS airplane  water,
classes

bicycle = flower Sign bird ook chair road cat

TextonBoost (Shotton et al. 2009 1JCV)
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Other applications of minimal graph cuts %é

65
* Image restoration

= Stereo disparity
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