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Outline of the talk:
� Motivation = stereopsis.

� Epipolar constraint.

� Fundamental matrix.

� Essential matrix.

� Eight point algorithm.

� Trinocular constraint and transfer.
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Stereopsis

� Calibration of one camera and knowledge of the co-ordinates of one image point allows us to
determine a ray in space uniquely.

� If two calibrated cameras observe the same scene point X then its 3D co-ordinates can be
computed as the intersection of two such rays. This is the basic principle of stereo vision that
typically consists of three steps:

1. Camera calibration;

2. Establishing point correspondences between pairs of points from the left and the right
images;

3. Reconstruction of 3D co-ordinates of the points in the scene.

http://cmp.felk.cvut.cz
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Geometry of two cameras, epipolar constraint

The epipolar constraint

� simplifies inter-image matching by bringing
the additional constraint.

� encapsulates all information about relative
position and orientation of two cameras in
space.

� Epipoles e, e′, epipolar lines l, l′.
� e, e′, l, l′, C, C ′, X lie in a single plane.
� Knowing epipolar geometry enables seeking correspondences as 1D task, i.e., between two 1D
signals. It is expressed algebraically as a bilinear relation between u, u′.

http://cmp.felk.cvut.cz
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Epipolar lines example

Courtesy: M. Polefeys, ETH Zürich

http://cmp.felk.cvut.cz
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Epipolar lines example, converging views

Courtesy: A. Zisserman, U of Oxford

http://cmp.felk.cvut.cz
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Epipolar lines example, move to the front

Courtesy A. Zisserman, U of Oxford

http://cmp.felk.cvut.cz
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Canonical configuration of cameras
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� Epipolar lines correspond to lines in images.
� It is often used when stereo correspondence is to be determined by a human operator who will
find matching points linewise to be easier.

� Any pair of images with known epipolar geometry can be converted to canonical configuration
by rectification.

http://cmp.felk.cvut.cz
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Disparity and depth
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Note: if Pr − Pl = 0 then z =∞.
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Fundamental matrix (1)

Left projection u and right projection u′ of the scene point X.

u ' [K|0]

[
X
1

]
= K X,

u′ ' [K ′R | −K ′R t]

[
X
1

]
= K ′(RX−R t) = K ′X′

� Coplanarity of X, X′ and t.
� Distinguish co-ordinates of the left and right cameras by the subscript L, R.
� Vector product ×.

http://cmp.felk.cvut.cz
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Fundamental matrix (2)

� Coordinates rotation X′R = RX′L, and hence X′L = R−1X′R.

� Coplanarity constraint X>L(t×X′L) = 0.

� Preparing for substitution XL = K−1u, X′R = (K ′)−1u′, and X′L = R−1(K ′)−1u′.

� Epipolar constraint in the vector form

(K−1u)>(t×R−1 (K ′)−1u′) = 0 .

� Equation is homogeneous with respect to t, so the scale is not determined.

� Absolute scale cannot be recovered without ‘yardstick’.

http://cmp.felk.cvut.cz


11/24
Fundamental matrix (3)

Replacement of a vector product by a matrix multiplication, Rodriques’ rotation formula,
[O. Rodriques, 1840], see derivation in Wikipedia.

The translation vector is t = [tx, ty, tz]>, and a skew symmetric matrix S(t) (i.e., S> = −S)
can be created from it if t 6= 0.

S(t) =

 0 −tz ty

tz 0 −tx

−ty tx 0


Note that rank(S) = 2 if and only if t 6= 0.

For any regular matrix A, we have
t×A = S(t) A .

http://cmp.felk.cvut.cz
https://en.wikipedia.org/wiki/Rodrigues's%27_rotation_formula
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Fundamental matrix (4)

� The vector product can be replaced by the multiplication of two matrices.

� From previous slide, for any regular matrix A, we have t×A = S(t) A.

� Consequently we can rewrite the epipolar constraint from the vector form

(K−1u)>(t×R−1 (K ′)−1u′) = 0 .

to a matrix form
(K−1u)> (S(t) R−1 (K ′)−1u′) = 0 ,

u>(K−1)>S(t)R−1(K ′)−1u′ = 0 .

http://cmp.felk.cvut.cz
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Fundamental matrix (5)

The middle part can be concentrated into a single matrix F called the fundamental matrix of two
views,

F = (K−1)>S(t)R−1(K ′)−1 .

With the substitution for F we finally get the bilinear relation (sometimes named after C.
Longuet-Higgins) between any two views

u> F u′ = 0 .

It can be seen that the fundamental matrix F captures all information that can be recovered from
a pair of images if the correspondence problem is solved.

http://cmp.felk.cvut.cz
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Relative motion of the camera
Essential matrix E

� A single camera moving in space, or two cameras with known calibration.

� Known calibration matrices K, K ′ allows us to normalize measurement in left and right
images ŭ, ŭ′.

ŭ = K−1u, ŭ′ = (K ′)−1u′

� Substitute into
u>(K−1)>S(t)R−1(K ′)−1u′ = 0

ŭ> S(t)R−1 ŭ′ = 0

ŭ> E ŭ′ = 0

� The essential matrix E captures all the information about the relative motion from the first
to the second position of the calibrated camera.

http://cmp.felk.cvut.cz
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Properties of the essential matrix E

� The essential matrix E has rank 2.

� Let t be the translational vector, and t′ = R t.
There holds E t′ = 0 and t>E = 0.

e e’ C’
C

left image
right image

K K’

tR,

http://cmp.felk.cvut.cz
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Properties of the essential matrix E

SVD decomposes E as E = UDV > for a diagonal D;

D =

 k 0 0
0 k 0
0 0 0



http://cmp.felk.cvut.cz
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Rotation R and translation t from E

[Hartley 1992] We have seen E = S(t)R−1.

ŭ> S(t)R−1 ŭ′ = 0 , ŭ
′>RS(t) ŭ = 0 , E = RS(t)

G =

 0 1 0
−1 0 0

0 0 1

 , Z =

 0 −1 0
1 0 0
0 0 0


The rotation matrix R can be calculated using SVD: E = UDV >.

R = UG V > or R = UG> V >

Components of the translation vector can be derived from the matrix S(t) expressed as 3× 3
matrix.

S(t) = V Z V >

http://cmp.felk.cvut.cz
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Properties of the fundamental matrix F

� rank(E) = 2. As F = (K−1)>EK ′
−1 and the calibration matrices are regular ⇒ F

rank(F ) = 2.

� Consider two epipoles e, e′.
e>F = 0 and F e′ = 0

� SVD of the fundamental matrix gives F = UDV >, where

D =

 k1 0 0
0 k2 0
0 0 0

 , k1 6= k2 6= 0

http://cmp.felk.cvut.cz
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Estimating F , 8-point algorithm

� Epipolar geometry has 7 degrees of freedom. Epipoles e, e′ have two co-ordinates each
(giving four DOF), while another three come from the mapping of any three epipolar lines in
the first image to the second image.

� Thus the correspondence of 7 points in left and right images enables the establishment of the
fundamental matrix F using a nonlinear 7-points algorithm, numerically unstable.

� If there are eight non-coplanar corresponding points available then the linear 8-point
algorithm is easier to use. We prefer to apply its overconstrained and robust version.

• Least squares solution using SVD on (many) equations from 8 pairs of correspondences.

• Enforce det(F ) = 0 constraint using SVD on the fundamental matrix F .

http://cmp.felk.cvut.cz
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8-point algorithm (2)

ui
> F u′i = 0 , u> = [ui, vi, 1]

The 3× 3 fundamental matrix F has only eight unknowns as it is only known up to
scale ⇒ 8 correspondences.

[ui, vi, 1] F

 u′i
v′i
1

 = 0

http://cmp.felk.cvut.cz
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8-point algorithm (3)

� Rewriting the elements of the fundamental matrix as a column vector with nine elements
f> = [f11, f12, . . . , f33], can be rewritten as a system of linear equations;
Consider we have available n points in correspondence.

 u1u
′
1 u1v

′
1 u1 v1u

′
1 v1v

′
1 v1 u′1 v′1 1

...
unu′n unv′n un vnu′n vnv′n vn u′n v′n 1




f11
f12...
f33

 = A f = 0

� Instead of solving Af = 0, we seek f , which minimizes the algebraic error ||Af ||.

� There is a better alternative, minimizing the geometric error (units = pixels)
min

∑
j ||x

j
1 − F xj

2||2.

http://cmp.felk.cvut.cz
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8-point algorithm (4)

8-point algorithm used to determine parameters of the fundamental matrix F (or analogously of
the essential matrix E)
1. Solve a system of (overconstraint) homogeneous linear equations

(a) Write down the system of linear equations Af = 0

(b) Solve f from Af = 0 using SVD
MATLAB:
[U, S, V] = svd(A);
f = V(:, end);
F = reshape(f, [3 3]);

2. Resolve det(F ) = 0 constraint using SVD
MATLAB:
[U, S, V] = svd(F);
S(3,3) = 0;
F = U * S * V’;

http://cmp.felk.cvut.cz
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Trinocular constraint (also trifocal constraint)

http://cmp.felk.cvut.cz
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Trinocular constraint, transfer

http://cmp.felk.cvut.cz
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