Geometry of two or more views

Václav Hlaváč

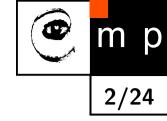
Czech Technical University in Prague Czech Institute of Informatics, Robotics and Cybernetics 160 00 Prague 6, Jugoslávských partyzánů 1580/3, Czech Republic http://people.ciirc.cvut.cz/hlavac, vaclav.hlavac@cvut.cz also Center for Machine Perception, http://cmp.felk.cvut.cz

Outline of the talk:

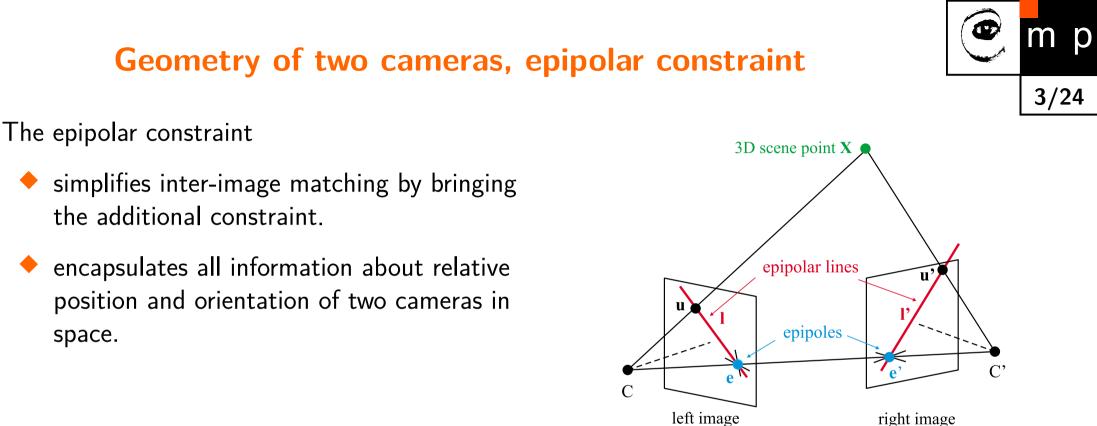
- Motivation = stereopsis.
- 🔶 Epipolar constraint.
- Fundamental matrix.

- Essential matrix.
- Eight point algorithm.
- Trinocular constraint and transfer.

Stereopsis



- Calibration of one camera and knowledge of the co-ordinates of one image point allows us to determine a ray in space uniquely.
- If two calibrated cameras observe the same scene point X then its 3D co-ordinates can be computed as the intersection of two such rays. This is the basic principle of stereo vision that typically consists of three steps:
 - 1. Camera calibration;
 - 2. Establishing point correspondences between pairs of points from the left and the right images;
 - 3. Reconstruction of 3D co-ordinates of the points in the scene.

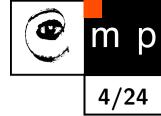


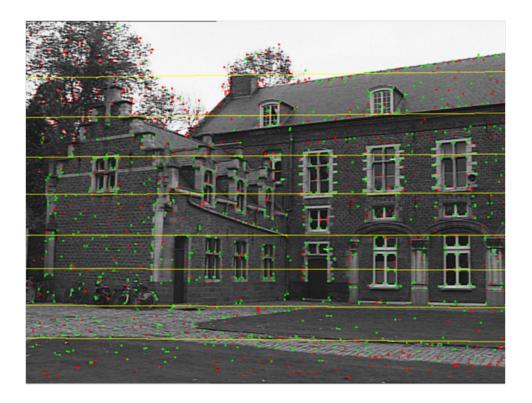
• Epipoles e, e', epipolar lines 1, 1'.

space.

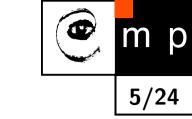
- \bullet e, e', l, l', C, C', X lie in a single plane.
- Knowing epipolar geometry enables seeking correspondences as 1D task, i.e., between two 1D signals. It is expressed algebraically as a bilinear relation between \mathbf{u} , \mathbf{u}' .

Epipolar lines example

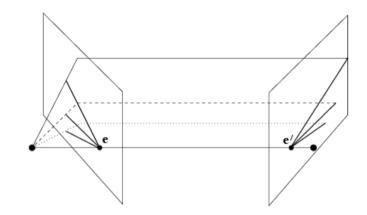


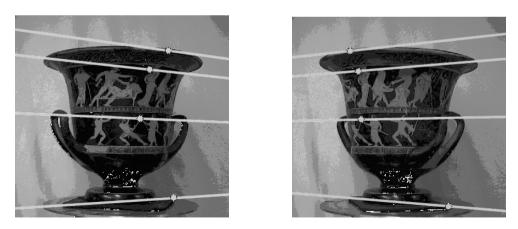


Courtesy: M. Polefeys, ETH Zürich



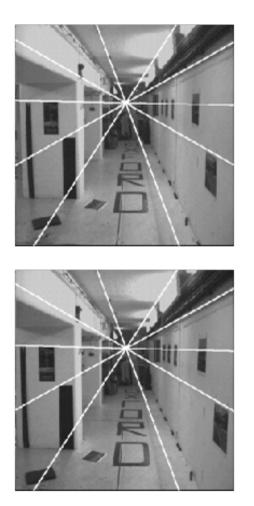
Epipolar lines example, converging views

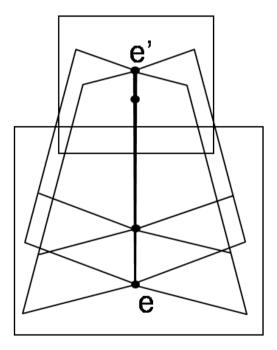




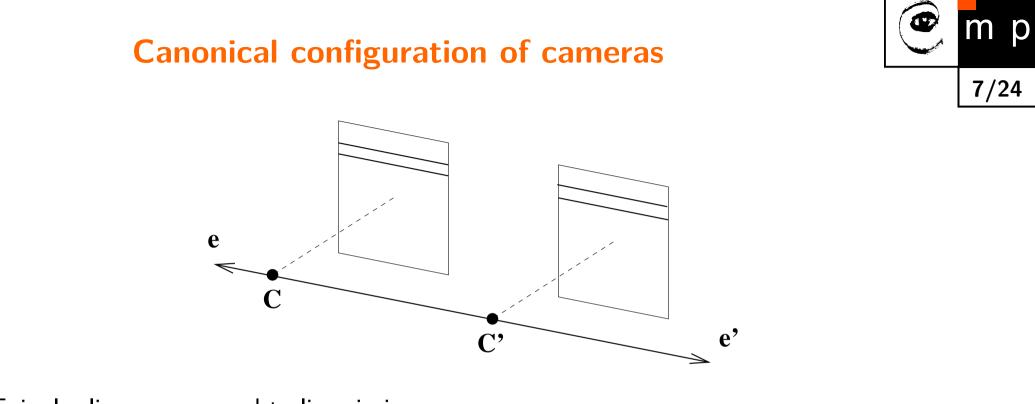
Courtesy: A. Zisserman, U of Oxford

Epipolar lines example, move to the front



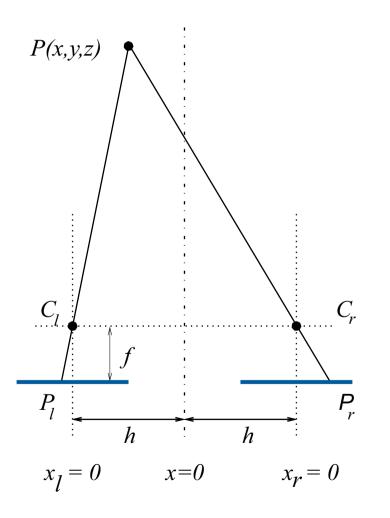


Courtesy A. Zisserman, U of Oxford



- Epipolar lines correspond to lines in images.
- It is often used when stereo correspondence is to be determined by a human operator who will find matching points linewise to be easier.
- Any pair of images with known epipolar geometry can be converted to canonical configuration by rectification.

Disparity and depth



baseline 2hdisparity $|P_l - P_r| > 0$ focal length f

Calculation of depth (similar triangles)

$$\frac{P_l}{f} = -\frac{h+x}{z}, \qquad \frac{P_r}{f} = \frac{h-x}{z}$$
$$z (P_r - P_l) = 2hf$$
$$z = \frac{2hf}{P_r - P_l}$$

Note: if
$$P_r - P_l = 0$$
 then $z = \infty$.

Fundamental matrix (1)

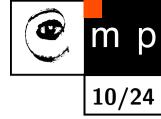
Left projection \mathbf{u} and right projection \mathbf{u}' of the scene point \mathbf{X} .

$$\mathbf{u} \simeq [K|\mathbf{0}] \begin{bmatrix} \mathbf{X} \\ 1 \end{bmatrix} = K \mathbf{X},$$
$$\mathbf{u}' \simeq [K'R| - K'R\mathbf{t}] \begin{bmatrix} \mathbf{X} \\ 1 \end{bmatrix}$$
$$= K'(R\mathbf{X} - R\mathbf{t}) = K'\mathbf{X}'$$

iglet Coplanarity of \mathbf{X} , \mathbf{X}' and \mathbf{t} .

- Distinguish co-ordinates of the left and right cameras by the subscript $_L$, $_R$.
- Vector product ×.

Fundamental matrix (2)



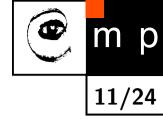
- Coordinates rotation $\mathbf{X}'_R = R \mathbf{X}'_L$, and hence $\mathbf{X}'_L = R^{-1} \mathbf{X}'_R$.
- Coplanarity constraint $\mathbf{X}_L^{\top}(\mathbf{t} \times \mathbf{X'}_L) = 0.$
- Preparing for substitution $\mathbf{X}_L = K^{-1}\mathbf{u}$, $\mathbf{X}'_R = (K')^{-1}\mathbf{u}'$, and $\mathbf{X}'_L = R^{-1}(K')^{-1}\mathbf{u}'$.
- Epipolar constraint in the vector form

$$(K^{-1}\mathbf{u})^{\top}(\mathbf{t} \times R^{-1} (K')^{-1}\mathbf{u}') = 0.$$

igstarrow Equation is homogeneous with respect to ${f t}$, so the scale is not determined.

Absolute scale cannot be recovered without 'yardstick'.

Fundamental matrix (3)



Replacement of a vector product by a matrix multiplication, Rodriques' rotation formula, [O. Rodriques, 1840], see derivation in Wikipedia.

The translation vector is $\mathbf{t} = [t_x, t_y, t_z]^{\top}$, and a skew symmetric matrix $S(\mathbf{t})$ (i.e., $S^{\top} = -S$) can be created from it if $\mathbf{t} \neq \mathbf{0}$.

$$S(\mathbf{t}) = \begin{bmatrix} 0 & -t_z & t_y \\ t_z & 0 & -t_x \\ -t_y & t_x & 0 \end{bmatrix}$$

Note that rank(S) = 2 if and only if $t \neq 0$.

For any regular matrix A, we have

$$\mathbf{t} \times A = S(\mathbf{t}) A \, .$$

Fundamental matrix (4)

- The vector product can be replaced by the multiplication of two matrices.
- From previous slide, for any regular matrix A, we have $\mathbf{t} \times A = S(\mathbf{t}) A$.
- Consequently we can rewrite the epipolar constraint from the vector form

$$(K^{-1}\mathbf{u})^{\top}(\mathbf{t} \times R^{-1} (K')^{-1}\mathbf{u}') = 0.$$

to a matrix form

$$(K^{-1}\mathbf{u})^{\top} (S(\mathbf{t}) R^{-1} (K')^{-1}\mathbf{u}') = 0,$$

$$\mathbf{u}^{\top} (K^{-1})^{\top} S(\mathbf{t}) R^{-1} (K')^{-1}\mathbf{u}' = 0.$$

Fundamental matrix (5)

The middle part can be concentrated into a single matrix F called the fundamental matrix of two views,

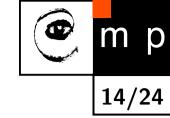
$$F = (K^{-1})^{\top} S(\mathbf{t}) R^{-1} (K')^{-1} .$$

With the substitution for F we finally get the bilinear relation (sometimes named after C. Longuet-Higgins) between any two views

 $\mathbf{u}^{\top} F \mathbf{u}' = 0 .$

It can be seen that the fundamental matrix F captures all information that can be recovered from a pair of images if the correspondence problem is solved.

Relative motion of the camera Essential matrix E



- A single camera moving in space, or two cameras with known calibration.
- Known calibration matrices K, K' allows us to normalize measurement in left and right images $\breve{\mathbf{u}}$, $\breve{\mathbf{u}}'$.

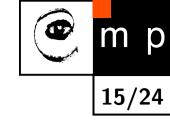
$$\breve{\mathbf{u}} = K^{-1}\mathbf{u}, \quad \breve{\mathbf{u}}' = (K')^{-1}\mathbf{u}'$$

Substitute into

$$\mathbf{u}^{\top}(K^{-1})^{\top}S(\mathbf{t})R^{-1}(K')^{-1}\mathbf{u}' = 0$$

 $\mathbf{\breve{u}}^{\top} S(\mathbf{t}) R^{-1} \mathbf{\breve{u}}' = 0$ $\mathbf{\breve{u}}^{\top} E \mathbf{\breve{u}}' = 0$

The essential matrix E captures all the information about the relative motion from the first to the second position of the calibrated camera.

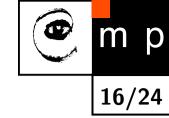


Properties of the essential matrix E

• The essential matrix E has rank 2.

• Let t be the translational vector, and $\mathbf{t}' = R \mathbf{t}$. There holds $E \mathbf{t}' = 0$ and $\mathbf{t}^{\top} E = 0$.





Properties of the essential matrix E

SVD decomposes E as $E = UDV^{\top}$ for a diagonal D;

$$D = \left[\begin{array}{rrrr} k & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & 0 \end{array} \right]$$

m p 17/24

Rotation R and translation t from E

[Hartley 1992] We have seen $E = S(\mathbf{t})R^{-1}$.

$$\mathbf{\breve{u}}^{\top} S(\mathbf{t}) R^{-1} \, \mathbf{\breve{u}}' = 0 \,, \quad \mathbf{\breve{u}}'^{\top} RS(\mathbf{t}) \, \mathbf{\breve{u}} = 0 \,, \quad E = RS(\mathbf{t})$$

$$G = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \,, \quad Z = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

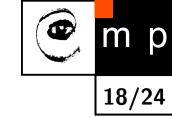
The rotation matrix R can be calculated using SVD: $E = UDV^{\top}$.

$$R = U G \, V^\top$$
 or $R = U G^\top \, V^\top$

Components of the translation vector can be derived from the matrix $S(\mathbf{t})$ expressed as 3×3 matrix.

$$S(\mathbf{t}) = VZ \ V^{\mathsf{T}}$$

Properties of the fundamental matrix \boldsymbol{F}



• rank(E) = 2. As $F = (K^{-1})^{\top} E K'^{-1}$ and the calibration matrices are regular $\Rightarrow F$ rank(F) = 2.

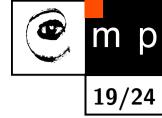
• Consider two epipoles e, e'.

 $\mathbf{e}^{\top}F = 0$ and $F \, \mathbf{e}' = 0$

• SVD of the fundamental matrix gives $F = UDV^{\top}$, where

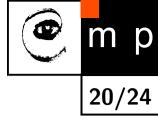
$$D = \begin{bmatrix} k_1 & 0 & 0 \\ 0 & k_2 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \ k_1 \neq k_2 \neq 0$$

Estimating F, 8-point algorithm



- Epipolar geometry has 7 degrees of freedom. Epipoles e, e' have two co-ordinates each (giving four DOF), while another three come from the mapping of any three epipolar lines in the first image to the second image.
- Thus the correspondence of 7 points in left and right images enables the establishment of the fundamental matrix F using a nonlinear 7-points algorithm, numerically unstable.
- If there are eight non-coplanar corresponding points available then the linear 8-point algorithm is easier to use. We prefer to apply its overconstrained and robust version.
 - Least squares solution using SVD on (many) equations from 8 pairs of correspondences.
 - Enforce det(F) = 0 constraint using SVD on the fundamental matrix F.

8-point algorithm (2)



$$\mathbf{u}_i^{\top} F \mathbf{u}'_i = 0, \quad \mathbf{u}^{\top} = [u_i, v_i, 1]$$

The 3×3 fundamental matrix F has only eight unknowns as it is only known up to scale \Rightarrow 8 correspondences.

$$\begin{bmatrix} u_i, v_i, 1 \end{bmatrix} F \begin{bmatrix} u'_i \\ v'_i \\ 1 \end{bmatrix} = 0$$

8-point algorithm (3)

(() ()() () () () () () () () () () () () () ()

Rewriting the elements of the fundamental matrix as a column vector with nine elements $\mathbf{f}^{\top} = [f_{11}, f_{12}, \dots, f_{33}]$, can be rewritten as a system of linear equations; Consider we have available n points in correspondence.

$$\begin{bmatrix} u_{1}u'_{1} & u_{1}v'_{1} & u_{1} & v_{1}u'_{1} & v_{1}v'_{1} & v_{1} & u'_{1} & v'_{1} & 1 \\ \vdots & & & & \\ u_{n}u'_{n} & u_{n}v'_{n} & u_{n} & v_{n}u'_{n} & v_{n}v'_{n} & v_{n} & u'_{n} & v'_{n} & 1 \end{bmatrix} \begin{bmatrix} f_{11} \\ f_{12} \\ \vdots \\ f_{33} \end{bmatrix} = A \mathbf{f} = 0$$

• Instead of solving $A\mathbf{f} = 0$, we seek f, which minimizes the algebraic error $||A\mathbf{f}||$.

• There is a better alternative, minimizing the geometric error (units = pixels) $\min \sum_j ||x_1^j - F x_2^j||^2$.

8-point algorithm (4)

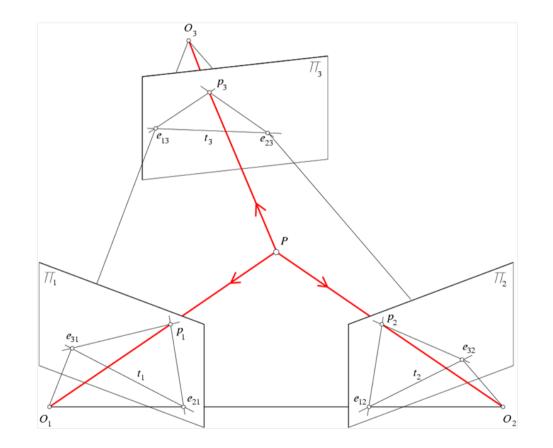
8-point algorithm used to determine parameters of the fundamental matrix F (or analogously of the essential matrix E)

- 1. Solve a system of (overconstraint) homogeneous linear equations
 - (a) Write down the system of linear equations $A{f f}=0$
 - (b) Solve f from Af = 0 using SVD MATLAB:

```
[U, S, V] = svd(A);
f = V(:, end);
F = reshape(f, [3 3]);
```

2. Resolve det(F) = 0 constraint using SVD MATLAB:

```
[U, S, V] = svd(F);
S(3,3) = 0;
F = U * S * V';
```

Trinocular constraint, transfer

