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Problem formulation and introduction

Given: A pair of images of the same 3D scene
with known/unknown epipolar geometry.

Find: A (maximal) set of pairs of corresponding points.

Troubles:

� The task is inherently ambiguous.

� Uniform, non-textured regions.

� Self-occlusions.

� Broken ordering constraint
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Inherent troubles

Ambiguity Occlusion Broken order

The pessimistic conclusion is that the task is not solvable in the general case at
all!
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How to overcome troubles?

� Humans use the high level visual semantics to disambiguate the task.

� What about computers? Model first!

• One smooth (object) surface and many cameras ⇒
use a voxel representation and space carving (Kutulakos, Seitz, 2000).

• If only a small number of corresponding points is needed ⇒
use special point detectors and SIFT descriptors or MSER-s. (Matas,
2002)

• Two cameras, one smooth surface which is almost everywhere
binocularly visible ⇒
use dynamic programming, energy minimization, . . . (Schlesinger, Flach,
2004)

• . . .
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Notation

� Left image: fl(ul).

� Right image: fr(ur), where ul, ur, ∈ Z2.

� Let U ⊂ Z2 denote the discrete 2D-domain
of the depth map.

� Depth map: h : U → K, where K ⊂ Z
denotes the (discrete) depth range.
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A smooth surface seen by two cameras

� One smooth surface (almost) everywhere seen by two cameras.

� Suppose (for simplicity) that the cameras are fully calibrated.

� Each discrete 3D-point (u, k) is mapped onto a pair of corresponding image
points (ul, ur).

� We need a similarity measure in order to evaluate the quality of such a pair.

http://cmp.felk.cvut.cz


7/14
The similarity measure

S(ul, ur) = ‖fl(ul)− fr(ur)‖2

S(ul, ur) =
∑
v∈W

‖fl(ul + v)− fr(ur + v)‖2

S(ul, ur) = min
c

∑
v∈W

‖fl(ul + v) + c− fr(ur + v)‖2

S(ul, ur) = min
c,b

∑
v∈W

‖b · fl(ul + v) + c− fr(ur + v)‖2

S(ul, ur) = min
c,b,T

∑
v∈W

‖b · fl(ul + v) + c− fr
(
T (ur + v)

)
‖2

For each 3D-position (u, k) 7→ (ul, ur) we have a quality q(u, k) = S(ul, ur)
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Block matching

Using the simple decision

h(u) = arg min
k∈K

q(u, k)

gives:

We have not yet modeled the smoothness assumption!
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Line by line methods

� Consider one row of the depth profile

hi = h(u1 = i, u2)

� Introduce penalties for big depth jumps, e.g.

g(hi, hi+1) ∼ (hi − hi+1)2

� Consider the optimisation problem for h =
(h1, . . . , hn)

h∗ = arg min
h

[ n∑
i=1

qi(hi) +
n−1∑
i=1

g(hi, hi+1)
]

How to solve it?
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Line by line methods

By dynamic programming!

Image Block matching Dynamic programming
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2D-optimization, from the chain to the lattice
� Nodes u ∈ U connect the nearest neighbors in the lattice by edges. Let us
denote the set of edges by E.

� Define penalties g : K ×K → R for depth jumps on edges, e.g.,

g(k, k′) =

{
0 if |k − k′| ≤ δ
+∞ otherwise

g(k, k′) = c · (k − k′)2

� The optimization task reads

h∗ = arg min
h

[∑
u∈U

qu
(
h(u)

)
+

∑
(u,u′)∈E

g
(
h(u), h(u′)

)]
� (Min,+)-Task for graph labeling (a.k.a. Energy Minimization). These tasks
are NP-complete in general. They can be solved in polynomial time if the
edge functions are submodular.
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2D-Optimization, example

Block matching Dynamic programming (Min,+) solution
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A probabilistic model

Define the joint probability to observe images fl, fr and the depth map h by

p(fl, fr, h) =
1
Z

exp
[
−
∑
u∈U

qu
(
h(u)

)
−

∑
(u,u′)∈E

g
(
h(u), h(u′)

)]
The Bayes decision for h depends on the chosen loss function

h∗ = arg min
h

∑
h′

p(h′|fl.fr)C(h′, h)

a) The loss function C(h′, h) = 11{h′ 6≡ h} gives the (Min.+) problem
b) The loss function C(h′, h) =

∑
u∈U

(
h(u)− h′(u)

)2 leads to a different
decision:

h∗(u) =
∑
k∈K

k · p
(
h(u) = k|fl, fr

)
The needed marginal a-posteriori probabilities p

(
h(u) = k|fl, fr

)
can be

calculated approximately by a Gibbs-Sampler
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The probabilistic model examples

Block matching Dynamic program. (Min,+) solution Locally additive loss

Right image Left image (Min,+) solution Locally additive loss
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