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Problem formulation and introduction

Given: A pair of images of the same 3D scene
with known /unknown epipolar geometry.

Find: A (maximal) set of pairs of corresponding points.

Troubles:
® The task is inherently ambiguous.
¢ Uniform, non-textured regions.
¢ Self-occlusions.

¢ Broken ordering constraint
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Inherent troubles
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Ambiguity Occlusion Broken order

The pessimistic conclusion is that the task is not solvable in the general case at
all!
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Humans use the high level visual semantics to disambiguate the task.
What about computers? Model first!

e One smooth (object) surface and many cameras =
use a voxel representation and space carving (Kutulakos, Seitz, 2000).

e |f only a small number of corresponding points is needed =
use special point detectors and SIFT descriptors or MSER-s. (Matas,
2002)

e Two cameras, one smooth surface which is almost everywhere
binocularly visible =-
use dynamic programming, energy minimization, ... (Schlesinger, Flach,

2004)
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Notation
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¢ Left image: fi(u).

¢ Right image: f,(u,), where u;, u,, € Z* ’1

® Let U C Z2 denote the discrete 2D-domain
of the depth map. -

® Depth map: h: U4 — K, where K C Z
denotes the (discrete) depth range.
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A smooth surface seen by two cameras
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¢ One smooth surface (almost) everywhere seen by two cameras.
¢ Suppose (for simplicity) that the cameras are fully calibrated.

¢ Each discrete 3D-point (u, k) is mapped onto a pair of corresponding image
points (uy, u).

® We need a similarity measure in order to evaluate the quality of such a pair.
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The similarity measure

7/14

S(up,ur) = | filw) = fr(u)|?
Slupur) = Y | filu +v) = frlur + )|

veW
S(u, ur) = mgnZHfz(w+v)+c—fr(ur+v)H2
veW
S(ug, ur) = mibnZHb-fz(uz+v)+c—fr(ur+v)H2
© veW
S(up, uy) = min ;[/Hb-fl(ul+v)—|—c—fT(T(ur—|—v))\\2

For each 3D-position (u, k) +— (u;, u,-) we have a quality q(u, k) = S(uy, u,)
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Block matching
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Using the simple decision

h(u) = arg min q(u, k)
kEK

gives:

We have not yet modeled the smoothness assumption!
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Line by line methods
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¢ Consider one row of the depth profile

hi — h(u1 — i,UQ)

¢ Introduce penalties for big depth jumps, e.g.

g(hi, hiz1) ~ (hi — hit1)?

¢ Consider the optimisation problem for h =

(hi,...,hy)

n n—1
h* = arg}fnin [Z qi(hi) + Z g(hi, hz‘+1)}
1=1 1=1

How to solve it?
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Line by line methods
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By dynamic programming!
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2D-optimization, from the chain to the lattice
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Nodes u € U connect the nearest neighbors in the lattice by edges. Let us

denote the set of edges by F.
Define penalties g: K X K — R for depth jumps on edges, e.g.,

0 iflk—k|<0

+00 otherwise

g(k, k") = {
gk, k) =c-(k—K)
The optimization task reads

h* — arg}fnin[z qu(h(u)) -+ Z g(h(u), h(u’))}

ueU (u,u’)eE

(Min,+)-Task for graph labeling (a.k.a. Energy Minimization). These tasks
are NP-complete in general. They can be solved in polynomial time if the
edge functions are submodular.
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Define the joint probability to observe images f;, f.- and the depth map A by

p(fl)f?“) __eXp[ ZQu Z g(h(u)vh(u/))}

uel (u,u’)eE

The Bayes decision for h depends on the chosen loss function

h* = arg}fninzp(h’!fz-fr)c (R, h)
h/

a) The loss function C'(h', h) = 11{h’ #£ h} gives the (Min.+) problem
b) The loss function C(h/,h) =" o, (h(u) — h’(u))2 leads to a different

decision:
— Z k-p(h(u) = E|fi, fr)
ke K

The needed marginal a-posteriori probabilities p(h(u) = k|fi, fr) can be
calculated approximately by a Gibbs-Sampler
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The probabilistic model examples
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Locally additive loss

Right image Left image (Min,+) solution  Locally additive loss
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