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Outline of the lecture:
� Image motion analysis, task formulations.

� Motion field, apparent motion.

� Optic flow.

� Lucas-Kanade solution.

� Motion detection by frames differencing.

� Mogion detection, background models.
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Dynamic scene analysis

x
t

y

� The input to the dynamic scene
analysis is a sequence of image
frames F (x, y, t) taken from the
changing world.

� x, y are spatial coordinates. Frames
are usually captured at fixed time
intervals.

� t represents t-th frame in the
sequence.
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Motion analysis vs. stereo

baseline

left right

Stereo

� The baseline is usually larger in
stereo than in motion.

� Stereo images are captured at
the same time.

t

Motion analysis

� Motion sequences ‘baselines’ are
smaller than in stereo.

� The hope is that disparities are
due to motion.
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Camera, scene objects – static vs. moving

� Assuming that the scene illumination does not change, the image changes
are due to relative motion between the scene objects and the camera
(observer).

� There are three possibilities:

• Stationary camera, moving objects.

• Moving camera, stationary objects.

• Moving camera, moving objects.
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Motion analysis tasks

� Correspondence problem.
Track corresponding pixels or interest points across frames.

� Segmentation problem.
What are the regions of the image plane which correspond to different
moving objects in the scene?

� Reconstruction problem, also called the shape from motion.
Given a number of corresponding elements in the image plane of different
video frames, and camera parameters, what can we say about the 3D motion
and structure of the observed scene?

http://cmp.felk.cvut.cz
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Involved tasks
from the application point of view

� Motion detection. Often from a static camera. Common in surveillance
systems. Often performed on the pixel level only (due to speed constraints).

� Object localization. Focuses attention to a region of interest in the image.
Data reduction. Often only interest points found which are used later to
solve the correspondence problem.

� Motion segmentation. Images are segmented into region corresponding to
different moving objects.

� Three-dimensional shape from motion. Called also structure from motion.
Similar problems as in stereo vision.

� Object tracking. A sparse set of features is often tracked, e.g., corner points.

� Pursuit. Consider two flies playing catch . . .
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Motion field

� Motion field is a 2D representation in the image plane of a (generally) 3D
motion of points in the scene (typically on surfaces of objects).

� Each point is assigned a velocity vector corresponding to the motion
direction and velocity magnitude:

• In the 3D scene: vector v.

• In the image plane after the projection: vector vi.

� Note: Inherent problem – the relation 3D scene → 2D image often needs
image interpretation (i.e., segmentation, knowledge what objects are). This
information is not available in general in the ‘intrinsic image sequence’.
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Role of matching in the image plane

� Match region of image to region of image (as in stereo). However, in motion:

• Motion (baseline in stereo terminology) is small.

• The epipolar constraint is unknown.

� Estimating motion field, differently formulated tasks:

1. Matching of objects. Interpretation needed. A sparse motion field.

2. Matching of interest points. A bit denser motion field. A more difficult
interpretation. Problems with repetitive structures.

3. Optic flow, a differential technique matching intensities on a pixel level,
exploring spatial and time variations. Ideally, a dense motion field.
Problems for textureless parts of images due to aperture problem (to be
explained).
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Motion field, derivation

image plane

lens

3D point Pr
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� z – unit vector in the axis z direction.

� f – focal length of a lens.

� vi =
d ri
d t – velocity in the image plane.

� v = d r
d t – velocity in the 3D space.
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Motion field, derivation 2

image plane

lens

3D point P
r

r z%

ri

Pi

v dt

vi dt

f

z

� Similar triangles ri
f = r

r·z

� Temporal derivative d
dt

(
ri
f

)
= vi

f = (r·z)·v−(r·z)·r
(r·z)2

= (r×v)×z
(r·z)2
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Example of motion fields 1

(a) (b)

Motion field of a pilot

1. looking straight ahead while approaching a fixed point on a landing strip.

2. looking to the right in the level flight.

Courtesy: Cordelia Fernmüller, U of Maryland

http://cmp.felk.cvut.cz


12/44
Example of motion fields 2

(a) (b) (c) (d)
1. Translation perpendicular to a surface.

2. Rotation about axis perpendicular to image plane.

3. Translation parallel to a surface at a constant distance.

4. Translation parallel to an obstacle in front of a more distant background.

Courtesy: Cordelia Fernmüller, U of Maryland
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Inherent problem = apparent motion

� The image sequence informs only about intensity changes which are not
necessarily related to the motion of points in the 3D scene.

� This is the apparent motion only, see B. Horn’s counterexample below:

Sphere rotates.
Illuminant is still.

Sphere is still.
Illuminant moves.


SphereMovingLight.avi
Media File (video/avi)
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Optic flow, where do pixels move to?

The optic flow problem can be inherently very difficult even if there is a causal
relation between intensity changes and motion field, for example:

A birch in the wind.

Idea: A presentation of M. Pollefeys, ETH Zürich. Video: V. Hlavac.


BrizaVeVetru.avi
Media File (video/avi)

http://cmp.felk.cvut.cz


15/44
Optic flow, initial problem formulation

� Optic flow = apparent motion of the same (similar) intensity patterns.

� Ideally, the optic flow can approximate projections of the three-dimensional
motion (i.e., velocity) vectors onto the image plane.

� Hence, the optic flow is estimated instead of the motion field (since the
latter is unobservable in general).

Time t
1

Time t
2

Optic flow
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Optic flow

� Optic flow in an approximation to the motion field which explores spatial
and temporal changes of the intensity in a temporal sequence of images.

� The approximation error is low at pixels with the high spatial gradient of the
intensity (under some additional simplifying assumptions).

� Ideally, the optical flow corresponds to the projection of 3D motion vectors
on some highly textured surfaces.

� Optic flow is sensitive to the aperture problem (will be explained shortly),
illumination changes and motion of unimportant objects (e.g., shadows).

� Optic flow computation is usually a first step followed by a subsequent
higher level processing.

http://cmp.felk.cvut.cz
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Image intensity, constancy assumption

� f(x, y, t) is the image intensity at a location x, y at a time t.

� Intensity constancy assumption f(x, y, t) = f(x + dx, y + dy, t + dt).

� Taylor series approximation of order 1,

f(x, y, t) = f(x, y, t) +
∂f

∂x
dx +

∂f

∂y
dy +

∂f

∂t
dt + approx. error . (1)

� Expected no change of intensity f implies the total derivative df
dt = 0, which

can be obtained by dividing equation (1) by dt. It writes as

df(x, y, t)

dt
≈ ∂f

∂x

dx

dt
+

∂f

∂y

dy

dt
+

∂f

∂t
= 0 .

� The ∂f
∂t is the derivative of the intensity across frames.
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Optic flow constraint
image intensity constancy equation

� Rewriting from the previous page,

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt
+

∂f

∂t
= 0 ;

� Introducing optic flow vector [u, v] =
[
dx
dt , dy

dt

]
;

� Provides image intensity constraint equation

∂f

∂x
u +

∂f

∂y
v +

∂f

∂t
= 0 ,

which is one equation of two unknowns u, v.

� Consequently, the optic flow calculation from image intensities changes is
underconstraint and generates so called aperture problem.
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Optic flow constraint, matrix form

� The image intensity constancy equation at a single image pixel x, y writes as

∂f(x, y)

∂x
u +

∂f(x, y)

∂y
v +

∂f(x, y)

∂t
= 0 .

� The previous equation can be rewritten into a matrix form,[
∂f(x, y)

∂x
,
∂f(x, y)

∂y

]
·
[

u

v

]
+

∂f(x, y)

∂t
= 0 .

� After introducing the spatial gradient within the frame
∇f(x, y) =

[
∂f(x,y)

∂x , ∂f(x,y)
∂y

]
,

the optic flow constraint equation writes as

∇f(x, y) ·
[

u

v

]
+

∂f(x, y)

∂t
= 0 .
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The aperture problem
geometric interpretation

� The optic flow constraint equation ∇f(x, y) ·
[

u

v

]
+ ∂f(x,y)

∂t = 0 is the

equation of a straight line in the velocity space vx, vy.

vx

vy f(x,y)

D

constraint line on which

[ ]u,v T
optical flow must lie

� The optic flow velocity has to lie in the straight line perpendicular to the
direction of the intensity gradient ∇f(x, y) locally at each point x, y.

� Nothing is known about optical flow in the direction perpendicular to the
straight constraint line.
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Aperture problem, the illustration

motion
direction

normal
flow

normal
flow

normal
flow

aperture 1

aperture 2


BarberPole01.avi
Media File (video/avi)
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Solving the optic flow equation

� Optic flow estimation is an ill-posed problem.

� No correspondence can be established at occlusions (covered/uncovered
regions).

� Due to the aperture problem, the optical flow provides only one constraint
equation for two independent variables u, v.
Consequently, number of unknown variables is twice number of pixels.

� Additional assumptions or modeling is needed.

• Parametric models of motion: translational, affine (planar object,
orthography), perspective, bilinear.

• Non-parametric models aiming at dense motion estimation: smoothness
or uniformity constraints.

http://cmp.felk.cvut.cz
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Spatial motion models

Assume a parametric motion u = [u, v]> at the pixel [x, y]>.

� Translational (2 parameters ax, ay):
[

u

v

]
=

[
x

y

]
+

[
ax

ay

]
� Affine (6 parameters a1, . . . , a6):

[
u

v

]
=

[
a1 a2

a3 a4

] [
x

y

]
+

[
a5

a6

]
� Perspective (8 parameters) . . .

� Bilinear (8 parameters) . . .
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Translational model, SSD solution

� Registration of images f(x, y, t) and f(x, y, t + 1) = f(x + ax, y + ay, t).

� Optimization task, minimization of the sum of square differences (SSD)
criterion:

E(ax, ay) =
∑
x,y

(f(x + ax, y + ay, t)− f(x, y, t + 1))
2

.

� Simple SSD algorithm:

• For each offset ax, ay calculate E(ax, ay),

• Select such ax, ay which minimizes E(ax, ay).

� Problems: inefficient calculation, no subpixel accuracy.

http://cmp.felk.cvut.cz
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Lucas-Kanade method 1981 (1)

� Compensates missing equations due to aperture problem by assuming that
optic flow is smooth locally.

� This is implemented as a constant flow requirement over an image patch
(typically 5× 5 window W ).

0 =
∂f(pi)

∂x
u +

∂f(pi)

∂y
v +

∂f(pi)

∂t
.

� The constraint provides 25 linear equations per pixel pi = [xi, yi]
>,

i = 1 . . . 25 in the window W .
∂f(p1)

∂x , ∂f(p1)
∂y

∂f(p2)
∂x , ∂f(p2)

∂y
... , ...

∂f(p25)
∂x , ∂f(p25)

∂y


[

u

v

]
= −


∂f(p1)

∂t
∂f(p2)

∂t...
∂f(p25)

∂t

 .

Written in matrix form: Au = −b .
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Lucas-Kanade method (2)

� The goal is to minimize optimization criterion E(u, v) over a window W ,

E(u, v) =
∑
p∈W

(
∂f

∂x
u +

∂f

∂y
v +

∂f

∂t

)2

= ‖Au = −b‖ .

� The least squares solution to the overdetermined system of linear equations
Au+ b = 0 is sought

A>A︸ ︷︷ ︸
2×2

u︸︷︷︸
2×1

= A>b︸ ︷︷ ︸
2×1

⇒ optic flow vector u =
(
A>A

)−1
A>b .

A>A (which is a Hessian) =

 ∂f2(p)
∂x2 , ∂f2(p)

∂x ∂y

∂f2(p)
∂x ∂y , ∂f2(p)

∂y2

 .

Notice: that the same Hessian was used in Harris corner detector.
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Behavior of Lucas-Kanade method

Matrix A>A has to be invertible ⇒ full rank 2
≡ non-zero eigenvalues.

On the edge: A>A becomes singular, has rank 1
because there is no intensity change along edge.

In a homogeneous region: A>A has rank 0,
because

[
∂f
∂x, ∂f

∂y

]
≈ 0.

In a highly textured region: A>A is regular, both
eigenvalues are (safely) non-zero.

http://cmp.felk.cvut.cz
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Iterative matching refinement (1)

� Estimate velocity at each pixel using one iteration of Lucas-Kanade flow
field, u = (A>A)A>b.

� Warp older image frame to the newer one using the estimated flow field u

(actually, it is not easy in practice).

� Refine the estimate by repeating the iterations.

xx0

f(x)

f (x)1

f (x)2

estimated

optic flow u

Iteration 1
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Iterative matching refinement (2)

� Estimate velocity at each pixel using one iteration of Lucas-Kanade flow
field, u = (A>A)A>b.

� Warp older image frame to the newer one using the estimated flow field u

(actually, it is not easy in practice).

� Refine the estimate by repeating the iterations.

x

f(x)

f (x)1

f (x)2

x0

Iteration 2

estimated

optic flow u
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Iterative matching refinement (3)

� Estimate velocity at each pixel using one iteration of Lucas-Kanade flow
field, u = (A>A)A>b.

� Warp older image frame to the newer one using the estimated flow field u

(actually, it is not easy in practice).

� Refine the estimate by repeating the iterations.

x

f(x)

f (x)1

f (x)2

Iteration 3

estimated

optic flow u

x0
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Iterative matching refinement (4)

� Estimate velocity at each pixel using one iteration of Lucas-Kanade flow
field, u = (A>A)A>b.

� Warp older image frame to the newer one using the estimated flow field u

(actually, it is not easy in practice).

� Refine the estimate by repeating the iterations.

x

f(x)

f (x)1

f (x)2

Converged

x0
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Iterative matching refinement
implementation notes

� Warping is not easy. It has to be checked that errors in warping are smaller
than the estimate refinement.

� It is often useful to low-pass filter the images before motion estimation. The
derivative estimation and linear approximations to image intensity become
better.

� Warp older image, take derivatives of the newer one in order not to
re-compute the gradient after each iteration.

Method pitfalls and way around them:

� Intensity constancy assumption does not work. é Use interest point-based
method.

� A point does not move as its neighbors. é Use regularization-based
algorithms (as Horn-Schunk and it followers).

� Motion is not small and/or aliasing problems. é Multiscale analysis.
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Temporal aliasing problems

� Temporal aliasing problems occurs because many pixels can have same
intensity.

� In matching, ambiguities occur because the source pixel can be matched to
many target pixels.

x

f(x)

f (x)1

f (x)2

estimated

optic flow u

correct

optic flow u
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Lukas-Kanade on the multi-scale

Frame f(.,.,t) Frame f(.,.,t+1)

Gaussian pyramids

run Lucas-Kanade

run Lucas-Kanade

match, upsample

match, upsample
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Problems of the differential motion analysis

(a) A shifted rectangle.

(b) The observed difference.

(c) The aperture problem – ambiguous motion.
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Simplifying object motion assumptions

� Maximum velocity (a).

� Small acceleration (b).

� Common motion.

� Mutual correspondence (c).
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Differential motion detection

d(i, j) =

 0 if |f1(x, y)− f2(x, y)| ≤ ε

1 otherwise
Problem: d(i, j) does not show the direction of motion.

t
i

d

t
i+1
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Differential analysis, example (1)

Frame 1 of 5 Frame 2 of 5
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Differential analysis, example (2)

Frame 5 of 5 Difference between 1 and 2 (inverted)
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Cumulative difference image

dcum(i, j) =

n∑
k=1

ak|f1(i, j)− fk(i, j)|

� Used if direction of motion has to be detected or trajectory of small object
followed.

� f1 is the first frame of the sequence (reference image).

� ak is a weight coefficient.

� Resulting value shows how many times the gray value was different (if not
weighted) in comparison to reference image.
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Cumulative difference image, example
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Problems with differential
motion detection

� Motion detected only at places where objects were and newly appeared
(ideally).

� Changing illumination causes changes in brightness too.

� Way around: updated reference image, often only averaging with forgetting.

� More advanced solution: detect moving blobs, treat the rest as background
⇒ background subtraction (called also motion segmentation).

http://cmp.felk.cvut.cz
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Background model

� Methods try to estimate the most probable background model.

� Each pixel is compared to the background model with a tolerance bound.

� Parameters of the background model and tolerance bounds are updated
through the sequence.

http://cmp.felk.cvut.cz
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Three prominent background models

� Three frames differencing, VSAM project, Carnegie-Mellon Robotics
Institute, Collins 2000.

� Introducing chromaticity, McKenna 2000.

� Mixture of Gaussians, MIT Stauffer & Grimson 1999.

http://cmp.felk.cvut.cz
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