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Outline of the talk:
� Three taxonomies.
� Maximum likelihood (ML) estimation.
� Examples: Gaussian, discrete distribution.

� ML for pattern rec., a coin example.
� Logistic regression.
� Bayesian estimate, a coin example.
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What if the statistical model is unknown?

� Bayesian and non-Bayesian methods allow designing the optimal classifier provided we have a
statistical model describing the observation x ∈ X and the hidden state y ∈ Y .

• Bayesian methods require posterior probability p(y|x).
• Non-Bayesian methods require the class-conditional probability p(x|y).

� In most practical situations, the statistical model is unknown and must be estimated from the
training multiset of examples{

(x1, y1), . . . , (xm, ym)
}
⇒ p̂(x, y) .

� The estimated p̂(x, y) replaces the true distribution p(x, y).

Note: Estimation (in statistics) is also called learning (in pattern recognition and machine learning).

http://cmp.felk.cvut.cz
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Taxonomy 1: according to the statistical model
Parametric × nonparametric

� Parametric: A particular form of the density function (e.g., Gaussian) is assumed to be known
and only its parameters θ ∈ Θ need to be estimated (e.g., the mean, the covariance).
Sought: p(x, θ);
Performed: {x1, . . . , xn} → θ̂.

� Nonparametric: No assumption on the form of the distribution. However, many more training
examples are required in comparison with parametric methods.
Sought: p(x);
Performed: {x1, . . . , xn} → p̂(x).

http://cmp.felk.cvut.cz
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Taxonomy 2: according to the input information
Supervised, unsupervised & semi-supervised

The goal is to estimate the probability density p(x, y) or p(x).

The probability density estimation methods can be categorized according to the information
available in the training multiset.

� Supervised methods: Completely labeled examples are available.
Sought: p(x, y; θ);
Performed: {(x1, y1) . . . , (xn, yn)} → θ̂.

� Unsupervised methods: Unlabeled examples of observations, used, e.g., for clustering.
Sought: p(x; θ);
Performed: {x1, . . . , xn} → θ̂.

� Semi-supervised methods: Both n labeled and m− n unlabeled examples.
Sought: p(x, y; θ);
Performed: {(x1, y1), . . . , (xn, yn), xn+1, . . . , xn+m

}
→ θ̂.

http://cmp.felk.cvut.cz
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Taxonomy 3: according to the estimation principle

� Maximum-Likelihood estimation:
Sought: p(x, y; θ), where θ is fixed but unknown.
Performed: θ̂ = argmax

θ
p(dataset|θ)

In words: The ML method seeks the solution, which is the best explanation of the
dataset X ∈ X using the likelihood function, i.e. the class-conditional probability distribution.

� Bayesian estimation:
Sought: p(x, y; θ). θ is a random variable with the known prior p(θ).
In words: Bayesian method estimates the optimal parameter Θ of the given probability
density, which maximizes the posterior probability distribution p(Θ|X).

� Minimax estimation: (suggested by M.I. Schlesinger, not explicated here)
Sought: p(x, y; θ)

Performed: θ̂ = arg max
θ

min
i=1,...,m

p(xi, θ)

http://cmp.felk.cvut.cz
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This lecture: supervised methods

� This lecture covers the supervised methods estimating a known probability distribution, i.e.,
parametric methods.

� There will be a separate lecture in this course on

• non-parametric metods
(as histogram-based; kernel density estimation; Parzen window estimation, k-Nearest
Neighbors estimation);

• unsupervised methods
(as K-means clustering; EM-algorithm).

http://cmp.felk.cvut.cz
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Maximum likelihood estimation

Assumptions
� The density function p(x; θ) is known up to a parameter θ ∈ Θ. The column vector of
parameters θ = [θ1, . . . , θd]

> ∈ Rd.
� i.i.d. assumption: A measured data (set of examples) D={x1, . . . , xn} independently drawn
from the identical distribution p(x; θ∗) is available.

� The true parameter θ∗ ∈ Θ is unknown but it is fixed.

The probability p(x; θ) assumes that n examples D were generated (measured) for a given Θ is
called the likelihood function

p(D; θ) =

n∏
i=1

p(xi; θ) .

Maximum likelihood estimation θ̂ML = argmax
θ∈Θ

p(D; θ) seeks for the parameter θ̂ML, which best
explains the examples D.

http://cmp.felk.cvut.cz
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Log-likelihood function L(θ)

� It is convenient to maximize the log-likelihood function

L(θ) = log p(D; θ) = log

n∏
i=1

p(xi; θ) =

n∑
i=1

log p(xi; θ)

� Because the logarithm is monotonically increasing, it holds

θ̂ML = argmax
θ∈Θ

p(D; θ) = argmax
θ∈Θ

n∑
i=1

log p(xi; θ)︸ ︷︷ ︸
L(θ)

= argmax
θ∈Θ

L(θ)

� Maximizing a sum of terms is always an easier task than maximizing a product; cf., the
difficulty of expressing derivative of a long product of terms. In particular, the logarithm of a
Gaussian is very easy.

http://cmp.felk.cvut.cz
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ML estimate of the log-likelihood function

The (maximally likely) ML estimate can be often obtained by finding the stationary point of the
log-likelihood function ∂L(θ)

∂ θj
= ∇θ L = 0.

∂L(θ)

∂ θj
=

∂

∂ θj

n∑
i=1

log p(xi; θ)

=

n∑
i=1

∂

∂ θj
log p(xi; θ)

=

n∑
i=1

1

p(xi; θ)

∂ p(xi; θ)

∂ θj
= 0

Provided L(θ) is convex, the found solution is the ML estimate θ̂ML.

http://cmp.felk.cvut.cz
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Example: Normal distribution, ML estimate (1)

Input

� D = {x1, x2, . . . , xn} ∈ Rn

� p(x; θ = (µ, σ)) = 1
σ
√

2π
exp

(
−(x−µ)2

2σ

)
� θ = {(µ, σ) | µ ∈ R, σ ∈ R+} .

Likelihood function p(D; θ) and its logarithm, i.e. log-likelihood function L(θ)

p(D; θ) =
n∏
i=1

p(xi; θ) =
n∏
i=1

1

σ
√

2π
exp

(
−(x− µ)2

2σ

)

L(θ) = log p(D; θ) =
n∑
i=1

(
− log σ − log

√
2π −

(xi − µ)2

2σ2

)

http://cmp.felk.cvut.cz
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Example: Normal distribution, ML estimate (2)

To compute θ̂ML = argmaxθ L(θ), we will solve ∇θL = ∂L(θ)
∂θ = 0.

L(θ) = log p(D; θ) =

n∑
i=1

(
− log σ − log

√
2π − (xi − µ)2

2σ2

)
� Mean value µ̂ML:

∂L

∂µ
=

n∑
i=1

(
−2(xi − µ)

2σ2

)
= 0 ⇒ µ̂ML =

1

n

n∑
i=1

xi

� Variance σ̂2
ML: ∂L

∂σ
=

n∑
i=1

(
−1

σ
− (xi − µ)2

2

(
−2

σ3

))
= 0

∣∣ · σ3

n∑
i=1

(
−σ2 + (xi − µ)2

)
= 0 ⇒ σ̂2

ML =
1

n

n∑
i=1

(xi − µ)2

http://cmp.felk.cvut.cz
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Properties of the estimates (1)

� θ̂ is a random variable. Consequently, we can talk
about its mean value (the most probable value) and
its variance.

� Bias – Tells how close is the estimate to the true
value.
Unbiased estimate: E

(
θ̂
)

= θ.

� Variance – How much does the estimate change for
different runs, e.g. for different datasets?

� Bias-variance tradeoff: In most cases, one can only
decrease either the bias or the variance at the expense
of the other.

http://cmp.felk.cvut.cz
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Properties of the estimates (2)

� Efficiency of the estimate: var
(
θ̂
)

= E
(
θ̂ − θ

)2

.

The best estimate has the minimal dispersion.

� Consistent estimate E
(
θ̂
)

= θ for n→∞; var
(
θ̂
)

= 0 for n→∞.
The growing amount of samples induces that statistical characteristics converge to the true
value. (The consequence of the rule of large numbers.)

http://cmp.felk.cvut.cz
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2D illustration of the estimate bias and efficiency

Compare with the terminology used in engineering measurements: precision, repeatibility.

http://cmp.felk.cvut.cz
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ML estimate of the m-variate Gaussian

� One data sample xi ∈ X = (x1, x2, . . . , xm)>.

� It can be derived similarly that the Maximum Likelihood parameter estimate yields the sample
mean vector and the sample covariance matrix.

� Sample mean vector

µ̂ML =
1

n

n∑
i=1

xi

� Sample covariance matrix

Σ̂ =
1

n

n∑
i=1

(xi − µ̂)(xi − µ̂)>

http://cmp.felk.cvut.cz
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Example: Discrete distribution, ML estimate (1)

� D = {x1, x2, . . . , xn}

� Discrete range (quantization levels)
x ∈ X = {1, 2, . . . ,m}

p(x; θ) =


p(x = 1) = θ1

p(x = 2) = θ2...
p(x = m) = θm


Likelihood function; δ is Dirac function

p(x1, . . . , xn; θ) =

n∏
i=1

p(xi) =

n∏
i=1

∑
x∈X

p(x) · δ(xi = x) =
∏
x∈X

p(x)n(x)

Logarithm of the likelihood function

L(θ) = log p(x1, . . . , xn; θ) =
∑
x∈X

n(x) log p(x)

http://cmp.felk.cvut.cz
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Example: Discrete distribution, ML estimate (2)

Logarithm of the likelihood function L(θ) =
∑
x∈X

n(x) log p(x) is minimized

under the condition
∑
x∈X

p(x) = 1 , p(x) ≥ 0

Lagrange multipliers method is used

F (θ) =
∑
x∈X

n(x) log p(x) + λ

(∑
x∈X

p(x)− 1

)

∂ F (θ)

∂ p(x)
=
n(x)

p(x)
+ λ = 0 , for ∀x

http://cmp.felk.cvut.cz
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Example: Discrete distribution, ML estimate (3)

Rewritten from the previous slide:

∂ F (θ)

∂ p(x)
=
n(x)

p(x)
+ λ = 0 , for ∀x

n(x) = −λ p(x) ⇒ p(x) =
n(x)

−λ
It follows from the constraint:∑

x∈X

p(x) = 1 =
∑
x∈X

n(x)

−λ
=

1

−λ
∑
x∈X

n(x) =
n

−λ

λ = −n

p(x) =
−n(x)

λ
=
n(x)

n

http://cmp.felk.cvut.cz
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Maximum likelihood estimate
if there is no analytical solution

If the analytical solution to θ̂ML = argmaxθ L(θ) does not exist then the ML estimation task can
be solved numerically:
1. Using standard optimization techniques like gradient methods or Newton methods.
2. Using the Expectation-Maximization algorithm when

p(x; θ) =
∑
h∈H

p(x, h; θ)

For example, in the case of the mixture models

p(x; θ) =

H∑
h=1

p(x|h; θ) p(h; θ)

http://cmp.felk.cvut.cz
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Properties of the ML estimate

Pros:
� ML has favorable statistical properties. It is asymptotically (i.e., for n→∞) unbiased, it has
the smallest dispersion, and it is consistent.

� ML leads to simple analytical solution for many “simple distributions” as was demonstrated in
the Gaussian example.

Cons:
� There can be several solutions with the same quality.
� There is a single global solution (the value of the quality). However, it is difficult to find it.
� There is no analytical solution for the mixture of Gaussians. In this case, EM algorithm is used
often (and mentioned in this lecture later).

Note: The ML estimate has often mentioned properties. In general, however, these properties
cannot be guaranteed because the estimate values need not be real numbers. Thus we cannot
claim what their distribution was.

http://cmp.felk.cvut.cz
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ML estimation in pattern recognition (1)

� D = {(x1, y1), (x2, y2) . . . , (xn, yn)} ∈ (X × Y)n

� x ∈ X . . . discrete (a finite set) or continuous (an infinite set),
typically X ∈ Rm

� y ∈ Y . . . discrete (a finite set)

� p(x, y; θ) = p(x|y; θy) p(y; θA)

θ =


θ1

θ2...
θ|Y|
θA



The likelihood function p(D; θ) reads

p (D; θ) =

n∏
j=1

p(xj, yj; θy) =

n∏
j=1

p(xj|yj; θyj) p(yj; θA)

http://cmp.felk.cvut.cz


22/38
ML estimation in pattern recognition (2)

L(θ) = log p (D; θ) =

n∑
j=1

log p(xj|yj; θyj) +

n∑
j=1

log p(yj; θA)

=
∑
y∈Y

∑
j∈{i|yi=y}

log p(xj|y; θy) +

n∑
j=1

log p(yj; θA)

The original maximization task decomposes into |Y|+ 1 simpler independent tasks:

θ̂y = argmax
θy

∑
j∈{i|yi=y}

log p(xj|y; θy) , ∀y ∈ Y

θ̂A = argmax
θA

n∑
j=1

p(yj|θA)

http://cmp.felk.cvut.cz
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Example: Is the coin fair? (ML case 1)

� Assume a coin flipping experiment with the training set
D = {head,head, tail,head, . . . , tail}.

� Let n be the length of the experiment (number of tosses) and k the number of heads
observed in experiments.

� The probabilistic model of the unknown coin is: p(x = head|θ) = θ and
p(x = tail|θ) = 1− θ.

� The likelihood of θ ∈ Θ = [0, 1] is given by Bernoulli distribution,

p(D|θ) =

n∏
j=1

p(xj|θ) = θk(1− θ)n−k

http://cmp.felk.cvut.cz
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Example: Is the coin fair? (ML case 2)

� Repeated from previous slide: p(D|θ) =
∏n
j=1 p(xj|θ) = θk(1− θ)n−k

� ML estimate θ̂ = argmax
θ

p(D|θ) = k
n.

� The optimal value is illustrated as the red dot.

Example: What if only m = 2 samples are available?

0 0.5 1
0

0.5

1

θ

p(
D

|θ
)

0 0.5 1
0
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1

θ

p(
D

|θ
)

0 0.5 1
0

0.05

0.1

0.15

0.2

θ

p(
D

|θ
)

p
(
m=2
k=2 | θ

)
= θ2 p

(
m=2
k=0 | θ

)
= (1− θ)2 p

(
m=2
k=1 | θ

)
= θ(1− θ)

http://cmp.felk.cvut.cz
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Use of ML in unsupervised learning (1)

� DX = {x1, x2, . . . , xn} . . . only observable states.
� p(x, y; θ) = p(x|y; θy) p(y, θA) . . . the statistical model considers an unknown hidden
state y.

p(Dx; θ) =

n∏
j=1

p(xj; θ) =

n∏
j=1

∑
y∈Y

p(xj, y; θ) =

n∏
j=1

∑
y∈Y

p(xj|y; θ) p(y; θA)

L(θ) = log p(D; θ) =

n∑
j=1

log
∑
y∈Y

p(xj|y; θ) p(y; θA)

=
n∑
j=1

log

∑
y∈Y

p(xj|y; θ) p(y; θA)



http://cmp.felk.cvut.cz
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Use of ML in unsupervised learning (2)

The quality of the solution is copied from the previous page,

L(θ) =

n∑
j=1

log

∑
y∈Y

p(xj|y; θ) p(y; θA)

 (1)

∇θL(θ) = 0 does not have the analytical solution!

Expectation-Maximization (EM) algorithm
� is often used for this unsupervised learning task. It is an iterative method, which can be used
to find the ML estimate of Equation (1).

� It can be used if we are able to perform ML estimate from DX .
� One lecture is dedicated to EM algorithm later in this course.

http://cmp.felk.cvut.cz
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Logistic regression (1)

� Given examples D = {(x1, y1), . . . , (xn, yn)} ∈ (Rn × {+1,−1})n.
Assuming the examples were i.i.d. drawn.

� The goal is to find the posterior model p(y|x) needed for the classification.
� Let assume that the logarithm of the likelihood ratio is a linear function

log
p(y = +1|x)

p(y = −1|x)
= 〈x,w〉+ b

� Under this assumption, we get that the p(y = 1|x) is the logical function (i.e., yielding the
value TRUE or FALSE)

p(y|x;w) =
1

1 + exp
(
− y(〈x,w〉+ b)

)
� The likelihood of the parameters θ = (w, b) given the examples D reads

p(D;w, b) =

n∏
i=1

p(xi, yi;w, b) =

n∏
i=1

p(yi|xi;w, b) p(xi)

http://cmp.felk.cvut.cz
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Logistic regression (2)

� Bayes classifier does not require the model of p(x) and hence

(ŵ, b̂) = argmax
w,b

n∏
i=1

p(yi|xi;w, b) p(x) =

= argmax
w,b

(
n∑
i=1

log p(yi|xi;w, b) +
n∑
i=1

log p(xi)

)
= argmax

w,b

n∑
i=1

log p(yi|xi;w, b)

� The maximization task is concave in variables w, b. However, the task does not have the
analytical solution.

� Bayes classifier minimizing the classification error leads to the linear rule

log
p(y = +1|x)

p(y = −1|x)
= 〈x,w〉+ b q(x) =

{
+1 if 〈x,w〉+ b ≥ 0
−1 if 〈x,w〉+ b < 0

http://cmp.felk.cvut.cz
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Bayesian estimate, the introduction

Our uncertainty about the parameters Θ is represented by the probability distribution in the
Bayesian approach.

� Before we observe the data, the parameters are described by a prior density p(Θ), which is
typically very broad reflecting the fact that we know little about its true value.

� Once we obtain data, we use the Bayes theorem to find the posterior p(Θ|X). Ideally, we
want the data to sharpen the posterior p(Θ|X). Said differently, we want to reduce our
uncertainty about the parameters.

� However, it has to be kept in mind that our goal is to estimate the density p(x) or, more
precisely, the density p(x|X), the density given the evidence provided by the dataset X .

http://cmp.felk.cvut.cz
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Bayesian estimate
of the probability density parameters (1)

� D = {x1, x2, . . . , xn} . . . observed data.

� p(D, θ) . . . joint probability distribution of D and θ.

� θ ∈ Θ . . . is understood as a realization of the random variable (in the contrast to ML
estimate) with the known prior distribution p(x|θ).

� The likelihood function p(D|θ) =
n∑
j=1

p(xj|θ).

� Bayesian estimation seeks the posterior distribution of the parameter θ best explaining the
observed data D. It is obtained by Bayes formula: p(D|θ) =

n∏
j=1

p(xj|θ).

http://cmp.felk.cvut.cz
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Use of Bayesian estimation

What is the posterior distribution p(θ|D) = p(D|θ) p(θ)
p(D) good for?

1. Marginalize over the parameter θ (numerically expensive)

p(x|D) =

∫
θ∈Θ

p(x, θ|D) dθ =

∫
θ∈Θ

p(x|θ) p(θ|D) dθ

2. Compute the point estimate by minimizing the expected risk

θ̂ = argmin
θ′

∫
θ∈Θ

W (θ′, θ) p(θ,D) dθ ,

where W : Θ×Θ→ R is a penalty function penalizing incorrectly estimated parameters.

http://cmp.felk.cvut.cz
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Bayesian estimation: Examples of loss functions

� Zero-one penalty function
W (θ′, θ) =

{
0 if θ′ = θ
1 if θ′ 6= θ

leads to the Maximum Aposteriori (MAP) estimate θ̂ = argmax
θ

p(θ|D).

Note: ML estimate θ̂ = argmax
θ

p(D|θ) can be seen as the MAP estimate with an
uninformative prior p(θ).

� Quadratic penalty function W (θ′, θ) = (θ′ − θ)2 leads to the estimate of the expected value
of the parameter

θ̂ =

∫
θ∈Θ

θ p(θ|D) dθ

http://cmp.felk.cvut.cz
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Bayesian estimate
of the probability density parameters (2)

� The estimate θ̂ = Ψ(D) is formulated as in Bayesian decision with the penalty function
W : Θ×Θ→ R.

� Bayesian risk
R(Ψ) =

∑
D

∑
θ

p(D, θ)W (θ,Ψ(D))

� The optimal decision function (strategy, rule)

Ψ∗(D) = argmin
Ψ

R(Ψ) = argmin
ψ

∑
θ

p(D, θ)W (θ,Ψ(D))

http://cmp.felk.cvut.cz
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Bayesian estimate for the
W (θ,Ψ(D)) = (θ − ψ(D))2

After the substitution Ψ∗(D) = argmin
Ψ

∑
θ

p(D, θ) (θ −Ψ)2, it must hold for the minimal loss

∂

∂Ψ

(∑
θ

p(D, θ) (θ −Ψ)2

)
= 0

Ψ∗
∑
θ

p(D, θ) =
∑
θ

θ p(D, θ)

Ψ∗(D) =

∑
θ θ p(D, θ)
p(D)

=

∑
θ θ p(θ|D) p(D)

p(D)
=

——p(D)
∑
θ θ p(θ|D)

——p(D)

Ψ∗(D) =
∑
θ

θ p(θ|D)

http://cmp.felk.cvut.cz
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Example: Is the coin fair? (Bayesian case 1)

� (The same slide as in the ML case. The slide No. 23 is repeated here.)
� Assume a coin flipping experiment with the training set
D = {head,head, tail,head, . . . , tail}.

� Let n be the length of the experiment (number of tosses) and k the number of heads
observed in experiments.

� The probabilistic model of the unknown coin is: p(x = head|θ) = θ and
p(x = tail|θ) = 1− θ.

� The likelihood of θ ∈ Θ = [0, 1] is given by Bernoulli distribution,

p(D|θ) =

n∏
j=1

p(xj|θ) = θk(1− θ)n−k

http://cmp.felk.cvut.cz
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Example: Is the coin fair? (Bayesian case 2)

� Assume the uniform prior p(Θ) =

{
1 for θ ∈ [0, 1],
0 otherwise.

θ̂B = p(x = head|D) = Ψ∗(D) =

∫ 1

0
θ p(D|θ) p(θ) dθ

p(D)

=

∫ 1

0
θk+1(1− θ)n−k dθ∫ 1

0
θk(1− θ)n−k dθ

=
k + 1

n+ 2
.

� Note 1: θ̂ML = k
n.

� Note 2: For n→∞, it also holds Θ̂B → Θ̂ML.

http://cmp.felk.cvut.cz
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Example: Is the coin fair? (Bayesian case 3)

ML estimate θ̂ML = k
n (red dot) versus Bayesian estimate θ̂B = k+1

n+2 (black dot).

Example: What if only m = 2 samples are available?
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Relationship between the
Maximal likelihood and Bayesian estimation

� By definition, the parameter-conditional probability p(X|Θ) peaks at the ML estimate. If this
peak is relatively sharp and the prior is broad then the outcome will be dominated by the
region around the ML estimate.
Thus, the Bayesian estimate will approximate the ML solution.

� When the number of available data increases, the posterior p(Θ|X) tends to sharpen.

• Therefore, the Bayesian estimate of p(x) will approach the ML estimate for number of
samples N →∞.

• In practice, when we have a limited number of observations, the two approaches will yield
different results.
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