A temporary version for the 2018-04-11 lecture.

Nonparametric probability density estimation

Václav Hlaváč

Czech Technical University in Prague

Czech Institute of Informatics, Robotics and Cybernetics 166 36 Prague 6, Jugoslávských partyzánů 1580/3, Czech Republic http://people.ciirc.cvut.cz/hlavac, vaclav.hlavac@cvut.cz also Center for Machine Perception, http://cmp.felk.cvut.cz Courtesy: Vojtěch Franc, Min-Ling Zhang. Book Duda, Hart, Stork 2001.

Outline of the talk:

Decision making methods taxonomy.

♦ Towards non-parametric estimates.

Max. likelihood vs. MAP methods.

Parzen window method.

Histogramming as a core idea.

lacktriangle k_n -nearest-neighbor method.

Decision making methods taxonomy according to statistical models

2/12

Unimodal and multimodal probability densities

- Parametric methods are good for estimating parameters of unimodal probability densities.
- Many practical tasks correspond to multimodal probability densities, which can be only rarely modeled as a mixture of unimodal probability densities.

 Nonparametric method can be used for multimodal densities without the requirement to assume a particular type (shape) of the probability distribution.

There is the price to pay: more training data is needed.

4/12

Nonparametric density estimation

- Consider the observation $x \in X$ and the hidden parameter $y \in Y$ (a class label in a special case).
- In Naïve Bayes classification and in the parametric density estimation methods, it was assumed that either
 - The likelihoods $p(x|y_i)$ were known, or
 - their parametric form was known (cf. parametric density estimation methods explained already).
- Instead, nonparametric density estimation methods obtain the needed probability distribution from data without assuming a particular form of the underlying distribution.

Nonparametric density estimation methods; two task types

- There are two groups of methods enabling to estimate the probability density function:
 - 1. The likelihood, i.e. the probability density $p(x|y_i)$ depends on a particular hidden parameter y_i . The (maximal) likelihood is estimated using sample patterns, e.g. a by the histogram method, Parzen window method.
 - 2. Maximally aposteriori probability (MAP) $p(y_i|x)$ methods, e.g. nearest neighbor methods.

MAP methods bypass the probability density estimation. Instead, they estimate the decision rule directly.

Idea = counting the occurrence frequency

6/12

- **⇒** histogram
- lacktriangle Divide the sample (events) space to quantization bins of the width h.
- Approximate the probability distribution function at the center of each bin by the fraction of points in the dataset that fall into a corresponding bin,

$$\hat{p}(x) = \frac{1}{h} \frac{\text{count of samples in the particular bin}}{\text{total number of samples}}$$

ullet The histogram method requires defining two parameters, the bin width h and the starting position of the first bin.

Disadvantages of histogram-based estimates

- Discontinuities in the probability distribution estimates depend on the quantization bins density instead of the probability itself.
- Curse of dimensionality:
 - A fine representation requires many quantization bins.
 - The number of bins grows exponentially with the number of dimensions.
 - When not enough data is available, most of quantization bins remain empty.
- These disadvantages make the histogram-based probability density estimate useless with the exception of the fast data visualization in dimension 1 or 2.

Nonparametric estimates, ideas (1)

- The probability that the sample x appears in a bin R (or more generally in a region R in multidimensional case) is $P = \Pr[x \in R] = \int_{\mathcal{P}} p(x') \, \mathrm{d}x'$.
- lacktriangle Probability P is a smoothed version of the probability x.
- lacktriangle Inversely, the value p(x) can be estimated from the probability P.

Nonparametric estimates, ideas (2)

- Suppose that n samples (vectors) $x_1, x_2, \ldots x_n$ are drawn from the probability distribution. We are interested, which k of these vectors fall in the particular discretization bin. Such a situation is described by the binomial distribution.
- A binomial experiment is a statistical experiment with the following properties:
 - ullet The experiment consists of n repeated trials.
 - Each trial can result in just two possible outcomes (e.g. success, failure; yes, no; In our case, if a sample x_i , $i=1,\ldots n$, falls in a particular discretization bin).
 - The trials are independent, i.e. the outcome of a trial does not effect other trials.
 - ullet The probability of success P is the same on every experiment.

Nonparametric estimates, ideas (3)

10/12

ullet The probability that k of n samples fall in the particular discretization bin is given by the binomial distribution

$$P(k) = \binom{n}{k} p^k (1-p)^{n-k}, \quad 0 \le k \le n,$$

where the binomial coefficient, i.e. the number of combinations is $\binom{n}{k} = \frac{n!}{k! (n-k)!}$ for $k \leq n$ and zero otherwise.

Note that a k-combination is a selection of k items from a collection of n items, such that the order (unlike permutations) of selection does not matter.

- ullet Binomial distribution is rather sharp at its expected value. It can be expectated that $\frac{k}{n}$ will be a good estimate of the probability P and consequently of the probability density p.
- The expected value $\mathcal{E}(k) = nP$; Consequently, $P = \frac{\mathcal{E}(k)}{n}$.

11/12

Nonparametric estimates, ideas (4)

- x is a point within the quantization bin R. We repeat from slide 8: $P = \Pr[x \in R] = \int_R p(x') \, \mathrm{d}x'.$
- Let assume the quantization bin R is small; V is the volume enclosed by R. $p(\cdot)$ hardly varies within R. $P \simeq p(x) \, V$.
- lacklet $P=rac{\mathcal{E}(k)}{n}$ and $P\simeq p(x)\,V$. Consequently, $p(x)=rac{\mathcal{E}}{N}$.
- X follows the binomial probability distribution, see slide 10. X peaks sharply about $\mathcal{E}(X)$ for large enough n.
- Let k be the actual value of X after observing the i.i.d. examples $x_1, x_2, \ldots x_n$. The consequence is that $k \simeq \mathcal{E}[X]$.
- It implies from the previous two items: $p(x) = \frac{\frac{\kappa}{n}}{V}$.

Parzen windows vs. k_n -nearest neighbor

- We like to show the explicit relation to number of dataset elements n (training samples in a special case in pattern recognition). We will denote the related quantities by the subscript n.
- Recall:

R is the quantization bin. k is the number of samples falling into R. p(x) is the probability that the sample x falls into the bin R.

$$R o R_n ext{ (containing } x)$$

$$p(x) = \frac{\frac{k}{n}}{V} \longrightarrow p_n(x) = \frac{\frac{k_n}{n}}{V_n}$$

Two basic probability density methods can be introduced:

- lacktriangle Parzen windows method: Fix the volume V_n and determine k_n .
- \bullet k_n -nearest-neighbor method: fix k_n and determine V_n .

Parzen Windows

$$p_n(\mathbf{x}) = \frac{k_n/n}{V_n}$$
 Fix V_n , and then determine k_n

Assume \mathcal{R}_n is a *d*-dimensional

hypercube (超立方体)

V

 $V_n = h_n^d$

The length of each edge is h_n

Determine k_n with window function (窗口函数), a.k.a. kernel function (核函数), potential function (势函数), etc.

Emanuel Parzen (1929-)

Window function:
$$\varphi(\mathbf{u}) = \left\{ egin{array}{ll} 1 & |u_j| \leq 1/2; & j=1,\ldots,d \\ 0 & \text{otherwise} \end{array} \right.$$

 $\varphi(\mathbf{u})$ defines a **unit hypercube** centered at the origin

$$\varphi\left(\frac{\mathbf{x} - \mathbf{x}_i}{h_n}\right) = 1$$

 \mathbf{x}_i falls within the hypercube of volume V_n centered at \mathbf{x}

$$k_n = \sum_{i=1}^n \varphi\left(\frac{\mathbf{x} - \mathbf{x}_i}{h_n}\right)$$

$$p_n(\mathbf{x}) = \frac{k_n/n}{V_n} \qquad p_n(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^n \frac{1}{V_n} \varphi\left(\frac{\mathbf{x} - \mathbf{x}_i}{h_n}\right)$$

$$k_n = \sum_{i=1}^n \varphi\left(\frac{\mathbf{x} - \mathbf{x}_i}{h_n}\right)$$

An average of functions of \mathbf{x} and \mathbf{x}_i

 $\varphi(\cdot)$ is not limited to be the hypercube window function of Eq.9 [pp.164]

 $\varphi(\cdot)$ could be any pdf function:

$$\varphi(\mathbf{u}) \ge 0$$

$$\int \varphi(\mathbf{u}) \, d\mathbf{u} = 1$$

$$\frac{1}{n} p_n(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^n \frac{1}{V_n} \varphi\left(\frac{\mathbf{x} - \mathbf{x}_i}{h_n}\right) \qquad (V_n = h_n^d)$$

$$\varphi(\cdot)$$
 being a pdf function $p_n(\cdot)$ being a pdf function

$$\int p_n(\mathbf{x}) d\mathbf{x} = \frac{1}{nV_n} \sum_{i=1}^n \int \varphi\left(\frac{\mathbf{x} - \mathbf{x}_i}{h_n}\right) d\mathbf{x}$$
 Integration by substitution (換元积分)
$$\det \mathbf{u} = (\mathbf{x} - \mathbf{x}_i)/h_n$$

$$= \frac{1}{nV_n} \sum_{i=1}^n \int h_n^d \varphi\left(\mathbf{u}\right) d(\mathbf{u}) = \frac{1}{n} \sum_{i=1}^n \int \varphi\left(\mathbf{u}\right) d(\mathbf{u}) = 1$$

 $\begin{array}{c} \text{window function} \\ \text{(being pdf)} \ \varphi(\cdot) \end{array} + \begin{array}{c} \text{window} \\ \text{width } h_n \end{array} + \begin{array}{c} \text{training} \\ \text{data } \mathbf{x}_i \end{array}$

Parzen pdf:
$$p_n(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^n \frac{1}{V_n} \varphi\left(\frac{\mathbf{x} - \mathbf{x}_i}{h_n}\right) \quad \left(V_n = h_n^d\right)$$

 $\varphi(\cdot)$ being a pdf function $p_n(\cdot)$ being a pdf function

$$\delta_n(\mathbf{x}) = \frac{1}{V_n} \varphi\left(\frac{\mathbf{x}}{h_n}\right) \qquad \qquad p_n(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^n \delta_n(\mathbf{x} - \mathbf{x}_i)$$

$$p_n(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^n \delta_n(\mathbf{x} - \mathbf{x}_i)$$

- What is the effect of h_n ("window width") on the Parzen pdf?
- **口** $p_n(\mathbf{x})$: superposition (叠加) of *n* interpolations (插值)
- \square \mathbf{x}_i : contributes to $p_n(\mathbf{x})$ based on its "distance" from x (i.e. " \mathbf{x} - \mathbf{x}_i ")

The effect of h_n ("window width")

$$\delta_n(\mathbf{x}) = \frac{1}{V_n} \varphi\left(\frac{\mathbf{x}}{h_n}\right) = \underbrace{\frac{1}{h_n^d}}_{\mathbf{T}} \varphi\left(\frac{\mathbf{x}}{h_n}\right)$$

Affects the *amplitude* (vertical scale, 幅度)

What do "amplitude" and "width" mean for a function?

Affects the width (horizontal scale, 宽度)

For $\varphi(\mathbf{u})$:

$$|\varphi(\mathbf{u})| \le a$$
 (amplitude)

$$|u_j| \le b_j \text{ (width)}$$

 $(j = 1, \dots, d)$

For $\delta_n(\mathbf{x})$:

$$|\delta_n(\mathbf{x})| \le (1/h_n^d) \cdot a$$

$$|x_j| \le h_n \cdot b_j \ (j = 1, \dots, d)$$

$$\delta_n(\mathbf{x}) = \frac{1}{V_n} \varphi\left(\frac{\mathbf{x}}{h_n}\right) = \frac{1}{h_n^d} \varphi\left(\frac{\mathbf{x}}{h_n}\right)$$

 $\delta_n(\cdot)$ being a pdf function

$$\int \delta_n(\mathbf{x}) \, d\mathbf{x} = \int \frac{1}{h_n^d} \varphi\left(\frac{\mathbf{x}}{h_n}\right) \, d\mathbf{x}$$

Integration by substitution

Let
$$\mathbf{u} = \mathbf{x}/h_n$$

$$= \int \frac{1}{h_n^d} \cdot \varphi(\mathbf{u}) \cdot h_n^d \ d\mathbf{u} = \int \varphi(\mathbf{u}) \ d\mathbf{u} = 1$$

$$\delta_n(\mathbf{x}) = \frac{1}{h_n^d} \, \varphi\left(\frac{\mathbf{x}}{h_n}\right)$$

Suppose $\varphi(\cdot)$ being a 2-d

Gaussian pdf

The shape of $\delta_n(x)$ with decreasing values of h_n

h=0.5

h=0.2

$$p_n(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^n \delta_n(\mathbf{x} - \mathbf{x}_i), \text{ where } \delta_n(\mathbf{x}) = \frac{1}{h_n^d} \varphi\left(\frac{\mathbf{x}}{h_n}\right)$$

- h_n very large $\rightarrow \delta_n(\mathbf{x})$ being *broad* with *small amplitude* $p_n(\mathbf{x})$ will be the superposition of n broad, slowly changing (慢变) functions, i.e. being *smooth* (平滑) with *low resolution* (低分辨率)
- h_n very small $\rightarrow \delta_n(\mathbf{x})$ being *sharp* with *large amplitude* $p_n(\mathbf{x})$ will be the superposition of n sharp pulses (尖脉冲), i.e. being *variable/unstable* (易变) with *high resolution* (高分辨率)

A compromised value (折衷值) of h_n should be sought for limited number of training examples

More illustrations:

Subsection 4.3.3 [pp.168]

$$p_n(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^n \delta_n(\mathbf{x} - \mathbf{x}_i), \text{ where } \delta_n(\mathbf{x}) = \frac{1}{h_n^d} \varphi\left(\frac{\mathbf{x}}{h_n}\right)$$

Suppose $\varphi(\cdot)$ being a 2-d *Gaussian pdf* and n=5

The shape of $p_n(x)$ with decreasing values of h_n

k_n -Neareast-Neighbor

$$p_n(\mathbf{x}) = \frac{k_n/n}{V_n}$$
 Fix k_n , and then determine V_n

specify $k_n \rightarrow$ center a cell about $x \rightarrow$ grow the cell until capturing k_n nearest examples \rightarrow return cell volume as V_n

The principled rule to specify k_n [pp.175]

$$\lim_{n \to \infty} k_n = \infty$$

$$\lim_{n \to \infty} \frac{k_n}{n} = 0$$

A rule-of-thumb choice for k_n :

$$k_n = \sqrt{n}$$

*k*_n-Neareast-Neighbor (Cont.)

Eight points in one dimension (n=8, d=1)

red curve: $k_n=3$

black curve: $k_n=5$

Thirty-one points in two dimensions (n=31, d=2)

black surface: $k_n=5$

Summary

- Basic settings for nonparametric techniques
 - Let the data speak for themselves
 - Parametric form not assumed for class-conditional pdf
 - Estimate class-conditional pdf from training examples
 - → Make predictions based on Bayes Formula
- Fundamental result in density estimation

$$p_n(\mathbf{x}) = \frac{k_n/n}{V_n}$$

 V_n : volume of region \mathcal{R}_n containing **x**

 k_n : # training examples falling within \mathcal{R}_n

Summary (Cont.)

- Parzen Windows: Fix V_n → Determine k_n
 - Effect of h_n (window width): A compromised value for a fixed number of training examples should be chosen

$$p_n(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^n \frac{1}{V_n} \varphi\left(\frac{\mathbf{x} - \mathbf{x}_i}{h_n}\right) \qquad (V_n = h_n^d)$$

 $\varphi(\cdot)$ being a pdf function $p_n(\cdot)$ being a pdf function

window function (being pdf) $\varphi(\cdot)$ + window width h_n + training data \mathbf{x}_i Parzen pdf $p_n(\cdot)$

Summary (Cont.)

• k_n -nearest-neighbor: Fix $k_n \rightarrow$ Determine V_n

specify $k_n \rightarrow$ center a cell about $x \rightarrow$ grow the cell until capturing k_n nearest examples \rightarrow return cell volume as V_n

The principled rule to specify
$$k_n$$
 [pp.175]
$$\lim_{n\to\infty} k_n = \infty$$
 A rule-of-thumb choice for k_n :
$$k_n = \sqrt{n}$$