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Outline of the talk:

¢ Decision making methods taxonomy. ¢ Towards non-parametric estimates.
¢ Max. likelihood vs. MAP methods. ¢ Parzen window method.

¢ Histogramming as a core idea. ¢ k,,-nearest-neighbor method.
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Unimodal and multimodal probability densities

¢ Parametric methods are good for estimating parameters of unimodal

probability densities.

® Many practical tasks correspond to multimodal probability densities, which
can be only rarely modeled as a mixture of unimodal probability densities.
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¢ Nonparametric method can be used for multimodal densities without the
requirement to assume a particular type (shape) of the probability
distribution.

There is the price to pay: more training data is needed.
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Nonparametric density estimation

¢ Consider the observation x € X and the hidden parameter y € Y
(a class label in a special case).

¢ In Naive Bayes classification and in the parametric density estimation
methods, it was assumed that either
e The likelihoods p(x|y;) were known, or
e their parametric form was known (cf. parametric density estimation
methods explained already).
¢ Instead, nonparametric density estimation methods obtain the needed

probability distribution from data without assuming a particular form of the
underlying distribution.
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® There are two groups of methods enabling to estimate the probability
density function:

1. The likelihood, i.e. the probability density p(x|y;) depends on a
particular hidden parameter y;. The (maximal) likelihood is estimated

using sample patterns, e.g. a by the histogram method, Parzen window
method.

2. Maximally aposteriori probability (MAP) p(y;|x) methods, e.g. nearest
neighbor methods.

MAP methods bypass the probability density estimation. Instead, they
estimate the decision rule directly.
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Idea = counting the occurrence frequency

=> histogram
¢ Divide the sample (events) space to quantization bins of the width A.
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¢ Approximate the probability distribution function at the center of each bin
by the fraction of points in the dataset that fall into a corresponding bin,

p(z)

1 count of samples in the particular bin

total number of samples

¢ The histogram method requires defining two parameters, the bin width h
and the starting position of the first bin.

p(ac)
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Disadvantages of histogram-based estimates

¢ Discontinuities in the probability distribution estimates depend on the
quantization bins density instead of the probability itself.

¢ Curse of dimensionality:
e A fine representation requires many quantization bins.
e The number of bins grows exponentially with the number of dimensions.

e When not enough data is available, most of quantization bins remain
empty.

¢ These disadvantages make the histogram-based probability density estimate
useless with the exception of the fast data visualization in dimension 1 or 2.
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¢ Consider a dataset X € X, X = {x1,29,...,Tm}.

¢ Consider outcomes of experiments, i.e. samples x of a random variable.

¢ The probability that the sample = appears in a bin R (or more generally in a
region R in multidimensional case) is P = Prjz € R] = fp

¢ Probability P is a smoothed version of the probability x.

¢ |Inversely, the value p(x) can be estimated from the probability P.
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Suppose that n samples (vectors) x1, xs, ..., are drawn from the
probability distribution. We are interested, which & of these vectors fall in
the particular discretization bin. Such a situation is described by the
binomial distribution.

A binomial experiment is a statistical experiment with the following
properties:

e The experiment consists of n repeated trials.

e Each trial can result in just two possible outcomes (e.g. success, failure;
yes, no; In our case, if a sample x;, 1 = 1, ...n, falls in a particular
discretization bin).

e The trials are independent, i.e. the outcome of a trial does not effect
other trials.

e The probability of success P is the same on every experiment.
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Nonparametric estimates, ideas (3)

® The probability that k of n samples fall in the particular discretization bin is
given by the binomial distribution

n

P = () s a-pr*. o<k,

where the binomial coefficient, i.e. the number of combinations is

(Z) = T (,;'Z!_k)! for k < n and zero otherwise.

Note that a k-combination is a selection of k items from a collection of
n items, such that the order (unlike permutations) of selection does not

matter.

¢ Binomial distribution is rather sharp at its expected value. It can be
expectated that % will be a good estimate of the probability P and
consequently of the probability density p.

¢ The expected value £(k) = nP; Consequently, P = %k)
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® 1z is a point within the quantization bin R. We repeat from slide 8:
P =Pr[x € R] = fp

¢ Let assume the quantization bin R is small; V' is the volume enclosed by R.

p(+) hardly varies within R. P ~ p(x) V.

<_j|:|m

¢ pP= ( ) and P ~ p(x) V. Consequently, p(x) =

¢ X follows the binomial probability distribution, see slide 10. X peaks sharply
about £(X) for large enough n.

® Let k£ be the actual value of X after observing the i.i.d. examples
T1,T3,...T,. | he consequence is that k ~ £ X].

<.:|3|?v

@ It implies from the previous two items: p(x) =
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Parzen windows vs. k,-nearest neighbor

® We like to show the explicit relation to number of dataset elements n
(training samples in a special case in pattern recognition). We will denote

the related quantities by the subscript n.

¢ Recall:
R is the quantization bin. k is the number of samples falling into R.

p(x) is the probability that the sample x falls into the bin R.
R — R, (containing x)

kn

k
p(x) =% —  palr) =

Two basic probability density methods can be introduced:
¢ Parzen windows method: Fix the volume V,, and determine k,,.

¢ k,,-nearest-neighbor method: fix k,, and determine V/,.
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‘ Parzen Windows

Assume R, is a d-dimensional

hypercube (37 /7 14) %

V. =
The length of each edge is h, %

i Determine k, with window function (% [ Igliﬁ),i
1a.k.a. kernel function (% 51%%), potential | Emanuel Parzen
i ' function (34 E%0), etc. : (1929-)

Pattern Recognition Soochow, Fall Semester



Parzen Windows (Cont.)

1 || <1727 j=1,....d
Window function: ¢(u) :{
0 otherwise

¢(u) defines a unit hypercube <—
centered at the origin

L IX—X) x; falls within the hypercube |
(7)==

|
of volume V_ centered at x !
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Parzen Windows (Cont.)

kn/n n
Pn (X) — — l i S
V., | > Pn(x) n; Vn(p h,,
n I % An average of functions
kn:Z@( ” Z) of x and x,
i=1 "

¥
4> ©(+) could be any
pdf function: / p(u)du =1
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Parzen Windows (Cont.)

———————————————————————————————————————————————

1 X — X; Integration by
e
Let u = (x — x;)/hn,

- . S S SN SN N SN EEE EEE BEE GEE GEE DN EEE GEE GEE GEE GEE GEE GEE EEE GEn GEn SEn GEE GEE GEm GEn BEn GEn BEn GEn GEE G GESE e BEe SEn GEn Dam GEm B e Eam mew

' window function window training : Parzen
E(being pdf) «(:) T width o ¥ data x;
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Parzen Windows (Cont.)

———————————————————————————————————————————————

| n & |
E ¢(-) being a pdf function | > pn(-) being a pdf function ,
L o o o o o o e e e
(S(X)—i = p(X):lZn:cS(x X;)
n — Vn@ I | > n n < n i
A . O p (x): superposition (Z )
_'. WhClT IS The effZCT Of of n interpolations (Tﬂjffﬁ)

hn ("window width") on O x;: contributes to p,(x) based

+he Parzen D df> on its “distance” from x
. (i.e. “x-x,”)
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Parzen Windows (Cont.)

The effect of h, ("window width") ,
What do “amplitude”

S rxy 1 X and “width” mean
) =5 (h> =¥ (h)

for a function?

Affects the amplitude Affects the width
«— S
(vertical scale, g &) (horizontal scale, % /&)
For ¢(u) : For ¢,,(x) :
lo(u)| < a (amplitude) | > 10, (x)] < (1/hi) - a

u;| < b; (width)
(j=1,...,d)
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Parzen Windows (Cont.)

:5 1 x\ 1 x \ | J,(+) being a
onx) = pre ) = ) pdf function
e e e e e e L s 1
1 X Integration by substitution
5nde:/— (—)dx
/ (%) he v fun Let u = x/h,

|
: Case II Function amplitude T :
I & (vertical scale) !
o
| o
|
|
|
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I
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Function width ‘1’ I
I
I
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|
: Function amplitude l
: 1‘& (vertical scale)
o

|

|

|

Function width T

(horizontal scale) (horizontal scale)
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‘ Parzen Windows (Cont.)

| 1 ( X ) E Suppose ¢(-) being a 2-d
L 'm N/ : Gaussian pdf

The shape of 3§,(x) with decreasing values of h,

k=1

15

16
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Parzen Windows (Cont.)

I 1 1 :
palx) = — D dulx = x,), where 5,(x) = ¢ (hi) :
: 1=1 n n |

O h, very large = §_(x) being broad with small amplitude

p,(x) will be the superposition of n broad, slowly changing (124%)
functions, i.e. being smooth (*F-1&) with low resolution ({7 ## %)

O h_ very small = § (x) being sharp with large amplitude

p,(x) will be the superposition of n sharp pulses (4K, i.e.
being variable/unstable (%;7%) with high resolution (/577 #£%)

.
Qi A compromised value (37 1H) of h, should be
sought for limited number of training examples

Pattern Recognition Soochow, Fall Semester
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More illustrations:
Subsection 4.3.3 [pp.168]

‘ Parzen Windows (Cont.)

I 1 1 :
:pn(x) — E Zén(x — Xz); where (Sn(X) = ﬁ 0, hi :
: 1=1 n n :

Suppose ¢(-) being a 2-d Gaussian pdf and n=5

The shape of p,(x) with decreasing values of h,

k=1 h=0.2
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£ -Neareast-Neighbor

| P (X) = Fix k,, and then determine V

n

specify k, =» center a cell about x =» grow the cell until

capturing k., nearest examples = return cell volume as V,

ko > choice for k : kn = v/

: n—00 A rule-of-thumb :

Pattern Recognition Soochow, Fall Semester



‘ £ -Neareast-Neighbor (Cont.)

pix)
Eight points in one dimension |

(n=8, d=1)

red curve: k=3

black curve: k =5

Thirty-one points in two

dimensions (n=31, d=2)

black surface: k=5
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Summary

Basic settings for nonparametric techniques
0 Let the data speak for themselves
Parametric form not assumed for class-conditional pdf

o Estimate class-conditional pdf from training examples
=» Make predictions based on Bayes Formula

Fundamental result in density estimation




‘ Summary (Cont.)

» Parzen Windows: Fix V_ =» Determine k,

o Effect of h, (window width): A compromised value for

a fixed number of training examples should be chosen




Summary (Cont.)

k -nearest-neighbor: Fix k =» Determine V_

specify k. =» center a cell about x =» grow the cell until

capturing k, nearest examples =» return cell volume as V_

| _
. ky > choice for k: kn = v/n
lim — =0
n—oo M,

: n—00 A rule-of-thumb .
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