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Outline of the talk:
� Conditional independence of features.
� Gaussian probability distribution.
� Straightening of the feature space =⇒ linear classification.
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Two often used statistical models

� Consider class-conditional probabilities (also named likelihoods) pX|Y :X × Y → R dealing
with observations x ∈ X , under the condition that the object is in a state y ∈ Y .

� This probability pX|Y is the often used statistical model of the recognized objects.

� There are two important simple special cases of the likelihood pX|Y :

• Conditional independence of features .
(Relates to Naïve Bayes classifier, which more specific as it assumes statistical
independence of features).

• Gaussian probability distribution.

http://cmp.felk.cvut.cz
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The difference between the probability and likelihood (1)

� In statistics, the likelihood function (simply likelihood) is the probability that
some fixed outcome was generated by a random distribution with a specific
unknown parameter.

� Probability predicts future outcome (events) given a fixed parameter(s)
value(s).

� Consider a probability model with parameters Θ. p(x|Θ) has two
interpretations and names.

• Probability of X given parameters Θ.
Probability is the area under fixed probability distribution.
• Likelihood of parameters Θ given that x was observed.

Likelihood L is the y axis value for fixed data points x with distribution
that can be moved to the new position on the x-axis if the particular
value x was observed.
In the example in the bottom right figure:
L = p(Gaussian, µ = 25, σ = 6.1|temperature = 30◦C) = 0.048.
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The difference between the probability and likelihood (2)
� Let us recall from the previous slide: We assume the Gaussian distribution of errors while
measuring temperature using a particular thermometer with µ = 25◦C and σ = 6.1◦C.

� We measured the temperature 30◦C. The corresponding likelihood was estimated as, cf.
figure left, L = p(Gaussian, µ = 25, σ = 6.1 | temperature = 30◦C) = 0.048.

� If we shifted the distribution over that µ′ = 30, cf. figure right, the new likelihood would be
0.065. The value on the right side of the class-conditional probability p(x|y) is fixed.
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Class-conditional independence of features

� An observation x=(x1, x2, . . . , xn). Each feature xi ∈ Xi, i ∈ I .
� The set of observations X is a Cartesian product X = X1 ×X2 × . . .×Xn.
� It is assumed that the class-conditional probabilities pX|Y (x | y) have the form

pX|Y (x | y) =

n∏
i=1

pXi|Y (xi | y) . (1)

� Features become mutually independent at the fixed state y.
� The object features xi, i ∈ I , are dependent on each other but all the dependence is realized
via the dependence on the state of the object y in the formula (1). If the state is fixed then
the mutual dependence among the features disappears.

� This is the simplest model of the class-conditional independence.

http://cmp.felk.cvut.cz


6/23
Conditional independence of features (2)

� However, the class-conditional independence assumption (1) from slide 5, repeated here,

pX|Y (x | y) =

n∏
i=1

pXi|Y (xi | y) .

does not mean that the features are also a priori mutually independent.

� In general,

pX(x) 6=
n∏
i=1

pXi(xi) .

http://cmp.felk.cvut.cz
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Naïve Bayes classifier

� The assumption is that the predictors/features are independent. That is presence of one
particular feature does not affect the other. Hence it is called naïve.

� Types of Naïve Bayes classifiers:

• Multinomial Naïve Bayes classifiers - corresponds to already introduced class-conditional
independence.

• Bernoulli Naïve Bayes classifiers - This is similar to the multinomial naïve Bayes classifier
but the predictors are boolean variables. The parameters that we use to predict the class
variable take up only values yes or no, for example if a word occurs in the text or not.

• Gaussian Naïve Bayes classifiers - We assume that values are sampled from a Gaussian
distribution.

Courtesy: Rohith Gandhi
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The simplest case: {0, 1} features only, two states only

Simplifying assumptions: Features xi, i = 1, . . . , n, assume only two values {0,1} and the
number of hidden states is 2, y1 = 1 or y2 = 2.

The strategy: solving any Bayesian and non-Bayesian task under our simplest assumptions can be
implemented as a decomposition of the set of vertices on an n-dimensional hypercube by a
hyperplane.

Illustration for n=2:
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The simplest case: {0, 1} features only, two states only (2)
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Illustration for n=3. We show only one of eight possible cases.

http://cmp.felk.cvut.cz


10/23
The simplest case, the strategy

� The strategy decomposes the set of vertices on an n-dimensional hypercube by a hyperplane.

� An interval of values of the likelihood ratio corresponds to each decision d, i.e., the decision d
is taken for which

θmin <
pX|Y (x | y = 1)

pX|Y (x | y = 2)
≤ θmax ,

where θmin and θmax are threshold values.

� Inequality does not change if a monotonic function as log is applied,

θ′min < log
pX|Y (x | y = 1)

pX|Y (x | y = 2)
≤ θ′max , θ

′
min = log θmin , θ

′
max = log θmax

http://cmp.felk.cvut.cz
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More than two features

Let us assume n features, i = 1 . . . n. Then

log
pX|Y (x | y = 1)

pX|Y (x | y = 2)
=

=

n∑
i=1

log
pXi|Y (xi | y = 1)

pXi|Y (xi | y = 2)
=

=

n∑
i=1

xi log
pXi|Y (1 | y = 1) pXi|Y (0 | y = 2)

pXi|Y (1 | y = 2) pXi|Y (0 | y = 1)

+
n∑
i=1

log
pXi|Y (0 | y = 1)

pXi|Y (0 | y = 2)
.

The logarithm of the likelihood ratio is a linear function of features xi.

http://cmp.felk.cvut.cz
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Linearity

θ′min < log
pX|Y (x | y = 1)

pX|Y (x | y = 2)
≤ θ′max

We can rewrite the above expression to

θ′min <

n∑
i=1

αi xi ≤ θ′max.

� If the tasks are expressed by a firmly chosen function pX|Y then various strategies differ only
by a threshold value θ.

� In addition, if the function pX|Y varies then also the coefficients αi start varying.
� At all these changes, it remains valid that all decision regions are regions, where values of a
linear function belong to a contiguous interval.

http://cmp.felk.cvut.cz
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Case of two possible decisions only

� The observation set X is to be divided into two subsets X1 and X2.

� The decision function assumes the form

x ∈


X1, if

n∑
i=1

αi xi ≤ θ ,

X2, if
n∑
i=1

αi xi > θ .

� This means that for objects characterized by binary and conditionally independent features,
the search for the needed strategy is equal to searching for coefficients αi and the threshold
value θ.

� Linear classifiers deal with how to tune these coefficients and thresholds properly.

http://cmp.felk.cvut.cz
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Gaussian probability distribution

� Let a set of observations X be an n-dimensional linear space.

� So far, it has been assumed that X is a finite set. Nevertheless, the results derived earlier can
be used in most situations even in this continuous (infinite) case.

� It is sufficient to mention that the number pX|Y (x | y) does not mean a probability but a
probability density.

http://cmp.felk.cvut.cz
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Multi-dimensional Gaussian random variable

We will assume pX|Y :X × Y → R of the form

pX|Y (x | y) = C(Ay) exp

(
− 1

2

n∑
i=1

n∑
j=1

ayij

(
xi − µyi

)(
xj − µyj

))
, where

� y is a superscript index and not a power.
� xi is a value of the i-th feature of the object.
� µyi is the conditional mathematical expectation of the i-th feature under the condition that
the object is in the state y.

� Ay is the inverse covariance matrix, Ay = (By)−1. The element byij in the matrix By
corresponds to the covariance between the i-th and the j-th features, i.e., the conditional
mathematical expectation of the product (xi − µyi )(xj − µ

y
j ) under the condition that the

object is in the state y.
� C(Ay) is a normalization coefficient (the integral over the whole domain of the function = 1).

http://cmp.felk.cvut.cz
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Special case (1): two hidden states, two decisions

The optimal decision strategy is a quadratic decision function

x ∈


X1, if

∑
i

∑
j

αij xi xj +
∑
i

βi xi ≤ γ ,

X2, if
∑
i

∑
j

αij xi xj +
∑
i

βi xi > γ .

� Coefficients αij, βi, i, j = 1, 2, . . . ,m, and the threshold value γ depend on a statistical
model of the object, i.e., on matrices A1, A2, vectors µ1, µ2,

� and also on the fact, which Bayesian or non-Bayesian decision task is to be solved.

http://cmp.felk.cvut.cz
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Special case (2): two hidden states, two decisions

Coefficients αij, βi, i, j = 1, 2, . . . ,m, the threshold γ depend

� on a statistical model of the object, i.e., on the matrices A1, A2 and on vectors µ1, µ2

� on the Bayesian or non-Bayesian decision problem to be solved.

http://cmp.felk.cvut.cz
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Special case (3): two hidden states, two decisions

Even in the two-dimensional case, the variability of geometrical
forms, which the sets X1 and X2 assume, is quite rich.
The border between the sets X1 and X2 can be

1. A single straight line in between.
2. A pair of parallel lines located in the way that X1 is

positioned between the lines and X2 is the rest.
3. A pair of intersecting straight lines =⇒ four sectors. Two

sectors represent the set X1 and the other two X2.
4. An ellipse, X1 lies inside and X2 outside.
5. The border can be created by hyperbolae, X1 is between

the hyperbolae, X2 is expressed as two convex sets. Both
sets are marked off by one of the continuous hyperbolae.
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Straightening of the feature space (1)

Goal - to express a given nonlinear decision problem as a linear problem.
This allows to use very well developed linear classifiers,
q(x,w, b) = w>x+ b =

∑n
i=1wixi + b, where i is the index of vectors w, x ∈ X .

Notice that f(x) = 0 expresses the hyperplane in Rn.

Solution - a nonlinear mapping: vectors of X are represented in a new space F using mapping
function Φ:X → F , such as q′(x,w, b) = w>Φ(x) + b =

∑n
i=1wiΦi(xi) + b

Input space X Feature space F

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

x
1

x 2

PSfrag replacements Φ

−0.05
0

0.05
0.1

0.15
0.2

0.25
0.3

0

0.1

0.2

0.3
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

φ
1

φ
2

φ 3

http://cmp.felk.cvut.cz


20/23
Straightening of the feature space (2)

All variety of geometric forms can be summarized into a single form,
in which the border between classes is constituted only by a hyperplane.

x ∈


X1, if

∑
i

αi xi ≤ γ ,

X2, if
∑
i

αi xi > γ .

The original n dimensional space is transformed into the(
n+ 1

2n(n+ 1)
)
-dimensional feature space.

Old dimension 1 2 3 4 5 6 10 20
New dimension 2 5 9 14 20 27 65 230

http://cmp.felk.cvut.cz
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Straightening the feature space. How?

Original features x = (x1, x2, . . . , xi, . . . , xn) are transformed to

x′ = ( x1 , x2 , . . . , xi , . . . , xn−1 , xn ,
x1x1 , x1x2 , . . . , x1xi , . . . , x1xn−1 , x1xn ,

x2x2 , . . . , x2xi , . . . , x2xn−1 , x2xn ,...
xixi , . . . , xixn−1 , xi xn ,...

xn−1xn−1 , xn−1xn ,

xnxn ) .

New linear decision rule x′ ∈


X ′1, if

∑
i

αi x
′
i ≤ γ ,

X ′2, if
∑
i

αi x
′
i > γ .

http://cmp.felk.cvut.cz
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Straightening, a 1D example

Assume x is a 1D random variable with the Gaussian distribution. Original strategy for two classes
X1, X2

x ∈

 X1, if (x− x0)2 < δ ,

X2, if (x− x0)2 ≥ δ ,

Straightening x′1 = x2, x′2 = x.

x ∈

 X1, if α1 x
′
1 + α2 x

′
2 > θ ,

X2, if α1 x
′
1 + α2 x

′
2 ≤ θ ,

where x′1 = x2, x′2 = x, α1 = −1, α2 = 2 x0, θ = x2
0 − δ.

http://cmp.felk.cvut.cz
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Straightening, a 2D example

� Assume 2D feature space and a quadratic decision strategy, i.e., q(x) is a polynomial of
degree two.

� Mapping functions are: Φ1 = x1, Φ2 = x2, Φ3 = x1x2, Φ4 = x1x1, Φ5 = x2x2.

� q(x) = w1x1 + w2x2 + w3x1x2 + w4x
2
1 + w5x

2
2 = w>Φi(x).
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