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Outline of the talk:

. _ -
¢ Classifier design. Upper bound = guaranteed risk.

¢ VCddi ' lculation.
¢ Mathematical formulation of the risk describing Imension calculiation

process of learning. ¢ Structural risk minimization.
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The object of interest is characterized by observable properties x € X and its class membership
(unobservable, hidden state) y € Y, where X is the space of observations and Y the set of
hidden states.

The objective of a classifier design is to find the optimal decision function ¢*: X — Y.

Bayesian decision theory solves the problem by the minimization of the Bayesian risk
R(q) = ZPXY(J%?J) Wy, q(z))
T,y

given the following quantities:

¢ pxy(z,y), Vo € X, y € Y - the statistical model of the dependence of the observable
properties (measurements) on class membership.

¢ Wiy, q(x)) the loss of decision g(x) if the true class is .
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Classifier design (2)

Constraints or penalties for different errors depend on the application problem formulation.

However, in applications typically:

¢ None of the class conditional probabilities (likelihoods) are known, e.g., p(z|y), p(y),
Vre X,yeY.

¢ The designer is only given a training multi-set 7' = {(x1,y1) ... (xL,yr)}, where L is the
length (size) of the training multi-set.

@ The desired properties of the classifier g(x) are assumed.

Note: Non-Bayesian decision theory offers the solution to the problem if p(x|y), Vr € X,y €Y
are known, but p(y) are unknown (or do not exist).
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¢ Assume p(x,y) have a particular form, e.g., a mixture of Gaussians, piece-wise constant, etc.,
with a finite (i.e., small) number of parameters ©,,.

¢ Estimate the parameters ©,, from the training multi-set 7.

¢ Solve the classifier design problem (i.e., minimize the risk) by substituting the estimated
p(x,y) for the true (and unknown) probabilities p(x, y).

— There is no direct relationship between known properties of estimated p(z,y) and the properties
(typically the risk) of the obtained classifier ¢’(x).

— If the true p(x,y) is not of the assumed form then ¢’(x) may be arbitrarily bad, even if the size
of training multi-set L approaches infinity!

+ Implementation is often straightforward, especially if parameters ©,, for each class are assumed
independent.

+ Performance on real data can be predicted empirically from performance on training multi-set
(divided to training multi-set and validation multi-set, e.g., crossvalidation).
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¢ Choose a class @) of decision functions (classifiers) ¢: X — Y.

® Find ¢* € Q by minimizing some criterion function on the training multi-set that
approximates the risk R(q) (which cannot be computed).

® Learning paradigm is defined by the approximating criterion function:

1. Maximizing likelihood.
Example: Estimating the probability density.

2. Using a non-random training multi-set.
Example: Image analysis.

3. Empirical risk minimization in which the true risk is approximated by the error rate on
the training multi-set.
Examples: Perceptron, Neural nets (Back-propagation), etc.

4. Structural risk minimization.
Example: SVM (Support Vector Machines).
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Overfitting and underfitting

¢ How rich class Q) of classifiers q(x, ©) should be used?

® The problem of generalization is a key problem of pattern recognition: a small empirical risk
Remp need not imply a small true expected risk R!

underfit fit overfit
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¢ For infinite training data, the law of large number assures

lim Remp(©) = R(O).

L— o0

¢ In general, unfortunately, there is no guarantee for a solution based on the expected risk
minimization because

argmin Rep,p(0) # argmin R(0O) .
© ©

Performance on training data is often better than on test data (or real performance).
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The idea of the guaranteed risk

|dea: add a prior (called also regularizer).

This regularizer favors a simpler strategy,
cf., Occam razor.

Vapnik-Chervonenkis learning theory

introduces a guaranteed risk J(©),
R(©) < J(©), with the probabilistic

confidence 7.

The upper bound J(©) may be so large

(meaning pessimistic) that it can be useless.
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The upper bound of a true risk @

The upper bound was derived by Chervonenkis and Vapnik in the 1970s.
With the confidence n, 0 < n <1,

p (log (35) +1) ~log (3)

R(6) < J(6) = Reony(©) + \/ .

where L is the length of the training multi-set, A is the VC-dimension of the class of
strategies q(z, ).

Note that the above upper bound is independent of the true p(x, y)!!
It is the worst case upper bound valid for all possible p(x, ).

Structural risk minimization means minimizing the upper bound J(O).

(We will return to structural risk minimization after we explain how to compute
VC-dimension.)
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It is a number characterizing the decision strategy.
Abbreviated VC-dimension.

Named after Vladimir Vapnik and Alexey Chervonenkis

(Appeared in their book in Russian. V. Vapnik, A. Chervonenkis: Pattern Recognition
Theory, Statistical Learning Problems, Nauka, Moskva, 1974).

It is one of the core concepts in Vapnik-Chervonenkis theory of learning.
In the original 1974 publication, it was called capacity of a class of strategies.

The VC dimension is a measure of the capacity of a statistical classification algorithm.
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¢ The VC-dimension (capacity) of a classification
strategy tells how complicated it can be.

fi(x) = (x—1) R ! .
(z) = (x— 1)(z+2) An examPIe. A hlgh—degree ponnom|aI_ |
¢ _ 5 1 5 thresholding. If a high-degree polynomial is
(@) = (@=2)@ =Dl +2) used, it can be very wiggly, and can fit a

fo(z) = (z—2)(x—1)z(z+1)

training multi-set exactly (overfit). Such a
(z +2)(z + 3) polynomial has a high capacity and problems

_ _ _ _ with generalization.
Light green circles symbolize data points. _ _ _ _
¢ A linear function, e.g., has a low VC-dimension.
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Shattering
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¢ Consider a classification strategy ¢ with some parameter vector ©.
® The strategy ¢ can shatter a set of data points x1, o, ..., x, if, for all possible assignments

of labels y € Y to data points, there exists a parameter © such that the model ¢ makes no
errors when evaluating that set of data points.

Shattering example: ¢ is a line in a 2D feature space.
e\e eoe\o \o o \o o
O ® ® O
e o e, oo o| o ® \°®
v O O O O o\°®

3 points, shattered 4 points, undivisible
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VC-dimension h, definition

Consider a set of dichotomic strategies q(x,0) € Q.
The set consisting of h data points (observations) can be labelled in 2" possible ways.

A strategy q € () exists which assigns labels correctly to all possible configurations.

(Process of finding all possible configurations with correctly assigned labels is called
shattering.)

VC-dimension (definition) is the maximal number h of data points (observations) that can be
shattered.
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¢ A set of parameters © = {0, 01, 05}.
A linear strategy q(x,0) = O1 11 + O3 x5 + O,.
¢ Shattering example (revisited):

X ’K\ N\

® A ® o \0
+ > <
O O O O e\°
3 points, shattered 4 points, undivisible

¢ 3 points in 2D space (n = 2) can be shattered.
There was counter example given that 4 points cannot be shattered.
= VC-dimension h = 3.
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A special case, n=2.

VC-dimension = 3.

Generalization to n-dimensions for linear classifiers

@ A hyperplane in the space R™ shatters any set of h = n + 1 linearly independent points.

¢ Consequently, VC-dimension of linear decision strategies is h = n + 1.
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VC-dimension in a 2D space for a circular strategy
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Maximally 4 data points in R? can
be shattered by a circular decision
strategy in 8 possible ways

=
VC-dimension h = 4.
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Counterexample by E. Levin, J.S. Denker (Vapnik 1995):
¢ A sinusoidal 1D classifier, q(z,0) = sign(sin(©x)), x,0 € R.
¢ For any given number L € N, the points z; = 107%, i =1, ..., L and be found and arbitrary
labels y;, y; € {—1, 1} can assigned to x;.

L i
® Then g(x, ©) is the correct labelling if © = 7 (1 + > (1_y2’i) 10 >

1=1

Example: L =3, y1 = —1, yo =1, y3 = —1.

Plot of the decision function sin(Theta) ), Theta =317.301 Plot of the decision function sin(Theta), Theta = 317.301
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¢ Thus the VC dimension of this decision strategy is infinite.
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® Nearest-neighbor classifier — any number of observations, labeled arbitrarily, will be classified.
Thus VC-dimension = oco. Also R.,,, = 0. The VC-dimension provides no information in this
particular case.

¢ Convex polygons classifying observation lying on a circle, VC-dimension = oo.

® SVM classifiers with Gaussian (or RBF ...) kernel, VC-dimension = oc.
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¢ Minimize guaranteed risk J(©), that is the upper bound

R(O) < J(©) = Rump(©) + \/ rlog (4) +1) o8 ()

For each model 7 in the list of hypotheses
e Compute its VC-dimension h;.
e OF = argmin Repp(0;).
e Compute J;(OF, h;).
Choose the model with the lowest J;(©F, h;).

@ Preferably, optimize directly over both (©*, h*) = argmin J(O, h).
©,h

¢ Gap tolerant linear classifiers minimize Rep,p(©) while maximizing margin. Support Vector
Machine does just that.
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Bad news: Computing the guaranteed risk is useless in many practical situations.

¢ VC dimension cannot be accurately estimated for non-linear models such as neural
networks.

¢ Structural Risk Minimization may lead to a non-linear optimization problem.

¢ VC dimension may be infinite (e.g., for a nearest neighbor classifier), requiring infinite
amount of training data.

Good news: Structural Risk Minimization can be applied for linear classifiers.

¢ Especially useful for Support Vector Machines.
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Is then empirical risk minimization = minimization of training multi-set error, e.g., neural networks
with backpropagation, dead ? No!

— Guaranteed risk J may be so large that this upper bound becomes useless.

Find a tighter bound and you will be famous! It is not impossible!

+ Vapnik, Chervonenkis suggest learning with progressively more complex classes of the decision
strategies ().

+ Vapnik & Chervonenkis' theory justifies using empirical risk minimization on classes of
functions with a reasonable VC dimension.

+ Empirical risk minimization is computationally hard (impossible for large L). Most classes of
decision functions () for which the empirical risk minimization (at least locally) can be
efficiently organized are often useful.

Where does the nearest neighbor classifier fit in the picture?
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