
Markovian models for pattern recognition
Václav Hlaváč

Czech Technical University in Prague
Czech Institute of Informatics, Robotics and Cybernetics

160 00 Prague 6, Jugoslávských partyzánů 1580/3, Czech Republic
http://people.ciirc.cvut.cz/hlavac, vaclav.hlavac@cvut.cz

Courtesy: M.I. Schlesinger

Outline of the talk:
� Motivation, use of.
� Stochastic finite automata.
� Markovian statistical model.
� Three most common tasks with hidden Markovian models (recognition, seeking the most probable sequence of
hidden states, learning markovian statistical models empirically).
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Context-based classification

Hidden Markov sequence (also chain) statistical model, abbreviated HMM

� There is a sequence of decisions instead of a single decision. Next decision depends on
previous decisions.

� Usual applications: analysis of observations changing in time. E.g., the speech signal, time
sequence of strokes in handwriting.

� Hidden Markov Model for sequences constitutes the “golden standard” in time series analysis.

� What is the reason?
The Hidden Markov sequence model is the most complex statistical model, for which there is
a polynomial complexity algorithm (dynamic programming algorithm).

Hidden Markov field constitutes the next simplest statistical model for grid-like structures (e.g.,
pixels in images). No polynomial complexity algorithms are available any more.

http://cmp.felk.cvut.cz
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Notation of sequences simplifying expressions

� While describing HMMs, we will deal with sequences of observations x̄ and with sequences of
hidden states ȳ.

Observations x̄ = ( x1, x2, . . . , xn) ∈ Xn

Hidden states ȳ = (y0, y1, y2, . . . , yn) ∈ Y n+1

� Let introduce a more concise sequences notation: x̄ = (xa, xa+1, . . . , xb) = xba, which will
simplify expressions.

� For instance, the sequence of observations x̄ and the sequence of hidden states ȳ introduced
above simplifies to

Observations (conciselly) x̄ = xn1

Hidden states (conciselly) ȳ = yn0

http://cmp.felk.cvut.cz
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Examples of application areas

� Speech signal recognition (x̄ is the signal from a microphone, ȳ phonemes).
� Seeking word(s) in the utterance (x̄ sequence of words, ȳ target word(s)).
� Recognition of handwritten characters/symbols, (x̄ on-line strokes of the pen, ȳ, e.g.,
individual target characters, signatures).

� Biomedical engineering, e.g., ECG, EEG signal analysis, (x̄ signal, ȳ features of a signal).
� Bioinformatics, e.g. DNA sequences analysis (x̄ responses of fluorescence-marked molecules,
y ∈ {A,C,G, T}) or (x ∈ {A,C,G, T}, ȳ subsequences interesting from the interpretation
point of view).

� Mobile robotics (x̄ points on a robot trajectory, ȳ trajectory interpretation).
� Recognition in images. However, a special case can be treated only, which enables
one-dimensional ordering. E.g., recognition of car number plates. (x̄ columns of the car
numberplate image, ȳ characters and symbols used on a car numberplate).

http://cmp.felk.cvut.cz
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Recommended reading

� Schlesinger M.I., Hlaváč V.: Ten Lectures on
Statistical and Structural Pattern Recognition, Kluwer
Academic Publishers, Dordrecht 2002

� Rabiner L.R.: A tutorial on Hidden Markov Models
and selected applications in speech recognition,
Journal Proceedings of the IEEE, Vol. 77, No. 2,
1989, pp. 257-286.

http://cmp.felk.cvut.cz
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Andrey Andrejevich Markov

� Born in Ryazan, Russia 1856, died 1922 in St. Petersburg.

� Russian mathematician, researched also stochastic processes;
Professor of the St. Petersburg University, member of the
Russian Academy of Science.

� Markov property on chains: Sequences of random variables, the
value of the next variable is determined by the value of the
previous variable but independent on previous states.

� Andrey Markov used Markov chains (paper from 1912) to study
the distribution of vowels in Eugene Onegin poem by Alexander
Pushkin. He proved the central limit theorem for such chains.

http://cmp.felk.cvut.cz
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Markov models and automata

� Markov models (including hidden ones, HMMs) are a special instance of stochastic finite
automata.

� Markov models enable expressing statistical dependencies given by the order of observations
(states) as, e.g., in time series.

http://cmp.felk.cvut.cz
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Finite automaton (Y, V,X, δ, k0, F )

� Y - a finite set of automaton states (hidden states);
� V - a finite alphabet of input symbols;
� X - a finite alphabet of output symbols;
� y0 - an initial (hidden) state, y0 ∈ Y ;
� F - target states; F ⊂ Y ;
� δ - a state transition function; δ:Y × V → Y ×X .

� If the automaton is in the state y ∈ Y and the symbol v ∈ V is brought to its input, the
automaton changes to state y′ ∈ Y , and generates the output symbol x ∈ X .

� The transition function δ determines the tuple (y′, x) = δ(y, v).
� The automaton operates iteratively until a state y′ ∈ F is attained, which is the stopping
condition.

http://cmp.felk.cvut.cz
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Stochastic finite automaton

� We will generalize the finite automaton in such a way that transitions from a state to another
state will be random.

� The initial state is also random. It is given by the apriori probability of the initial
state p(y0):Y → R.

� The state transition function state δ:Y × V → Y ×X generalizes to a stochastic transition
function δs:Y × V → Y ×X . The subscript at δs denotes “stochastic”.

� This means that the corresponding state transition is random. The new state and the output
is (y′, x) = δs(y, v), where δs output is given by the conditional probability distribution
function p(y′, x | y, v).

http://cmp.felk.cvut.cz
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Autonomous stochastic finite automaton

� In this lecture, we deal with the special case of a stochastic finite automaton named the
autonomous stochastic finite automaton.

� Its input alphabet V contains only one symbol. It expresses a special case, for which the
automaton operation does not depend on input symbols.

� We will see later that the autonomous stochastic automaton is equivalent to (hidden) Markov
chains.

� The state transition is analogical to the stochastic finite automaton with the exception that it
does not depend on input symbols.

� Consider a set of states Y and a set of output symbols X . State transitions are governed by
probabilities p(y0), p(xi, yi | yi−1), y0 ∈ Y , yi ∈ Y , xi ∈ X , i = 1, 2, . . . , n.

http://cmp.felk.cvut.cz
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Autonomous stochastic automaton in operation

The transitions between the hidden state yi and the consecutive hidden state yi+1 is ruled by the
probability distribution

p(x̄, ȳ) = p(x1, . . . , xn, y0, . . . , yn) = p(y0)

n∏
i=1

p(xi, yi|yi−1)

It means that the automaton:

� initially, generates a random state y0 with the probability p(y0) and transfers to it;

� in the i−th step, it generates the tuple (xi, yi) with the probability p(xi, yi|yi−1). It provides
the symbol xi at the output and transfers to the state yi.

http://cmp.felk.cvut.cz
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Example: Generative Markov weather model (1)

A stochastic finite automaton predicting the weather. No
additional observations are considered.

� State q = y1: precipitation (rain or snow). State q = y2:
clouds. State q = y3: sunny.

� Transition matrix A between the qt and the previous state
qt−1 is independent of time.
aij = p(qt = yi|qt−1 = yj), i, j ∈ {1, 2, 3}

p(qt = yi) = Ap(qt−1 = yi−1) =

 0.4 0.3 0.3
0.2 0.6 0.2
0.1 0.1 0.8

 p(qt−1 = yi−1)

0.4 0.6

0.3

0.2

0.8

0.3 0.1

0.1 0.2

y1 y2

y3

Courtesy: Ricardo Gutierrez-Osuna

http://cmp.felk.cvut.cz
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Example: Generative Markov weather model (2)

� Question 1 : Given that the weather on day t = 1 is sunny, what is the probability that the
weather for the next seven days will be “sun, sun, rain, rain, sun, clouds, sun”?
Answer 1 :

p(y3, y3, y3, y1, y1, y3, y2, y3|statistical model) =

= p(y3) p(y3|y3) p(y3|y3) p(y1|y3) p(y1|y1) p(y3|y1) p(y2|y3) p(y3|y2) =

= p(y3) a33 a33 a13 a11 a31 a23 a32 =

= 1 · 0.8 · 0.8 · 0.1 · 0.4 · 0.3 · 0.1 · 0.2 = 0.0001536

� Question 2 : What is the probability that the weather stays in the same known state yi for
exactly m consecutive days?
Answer 2 : p(qt = yi, qt+1 = yi . . . qt+m = yj 6=i) = am−1

ii (1− aii)

http://cmp.felk.cvut.cz
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Markov sequences with hidden states

� Statistical model p(x̄, ȳ) = Y n × Y n+1 → R.

� Markov chain / Markov condition:
We assume that for all sequences x̄ = (xi1, x

n
i+1) a ȳ = (yi−1

0 , yi, y
n
i+1) holds

p(x̄, ȳ) = p(yi) p(x
i
1, y

i−1
0 |yi) p(xni+1, y

n
i+1|yi) . (1)

x , …, x1 i

y , …, y  0 i-1

yi

x , ..., xi+1 n

y , ..., yi+1 n

http://cmp.felk.cvut.cz
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Markov condition for (hidden) states only

� We start from the Markov condition

p(x̄, ȳ) = p(yi) p(x
i
1, y

i−1
0 |yi) p(xni+1, y

n
i+1|yi) .

� For hidden states, after summing up (marginalization) over all possible observations x̄, the
Markov property holds for the sequence of hidden states ȳ

p(ȳ) = p(yi) p(y
i−1
0 |yi) p(yni+1|yi) .

y , …, y  0 i-1 yi
y , ..., yi+1 n

http://cmp.felk.cvut.cz
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Hidden Markovian sequences (2)

We sum in the equation p(x̄, ȳ) = p(yi) p(x
i
1, y

i−1
0 |yi) p(xni+1, y

n
i+1|yi) along the sequence of

hidden states yni+2 and after it along the sequence of observations xni+2. We obtain

p(xi+1
1 , yi+1

0 ) =
∑
xni+2

∑
yni+2

p(x, y) = p(xi1, y
i
0)
∑
xni+2

∑
yni+2

p(xni+1, y
n
i+1|yi)

= p(xi1, y
i
0) p(xi+1, yi+1|yi)

We use the previous expressions recursively and get

p(x̄, ȳ) = p(x1, . . . , xn, y0, . . . , yn) = p(y0)

n∏
i=1

p(xi, yi|yi−1)

We simplified the enumeration of a complex function of 2n+ 1 variables to the enumeration of
n functions p(xi, yi|yi−1) of three variables and one function p(y0) of one variable.

http://cmp.felk.cvut.cz
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Interpretation of Markovian property

� Let consider every possible tuples of sequences (xn1 , yn0 ) fulfilling the Markov condition (1)
from the slide 14.

� Let pick an arbitrary value i, 0 < i < n. Let pick an arbitrary value of the hidden parameter
yi = σ.

� Let us pick an ensemble of sequences from possible tuples of Markov sequences (xn1 , yn0 ), for
which yi = σ holds.

� Being a Markov sequence means consequently that parameters
(x1, x2, . . . , xi), (y0, y1, . . . , yi−1) in the selected ensemble of parameters are statistically
independent on parameters (xi+1, xi+2, . . . , xn), (yi+1, yi+2, . . . , yn).

http://cmp.felk.cvut.cz
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Beware of the incorrect interpretation

� The imprecisely simplified interpretation appears often: “Markov sequence is a such sequence,
in which the future does not depend on its past but on the present only.”

� This interpretation is treacherous since while being incorrect it is very similar to the correct
one.

� The mechanical model (analogy) of the Markov sequence provided on a next slide illustrates
the intuition.

http://cmp.felk.cvut.cz
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Mechanical model of the Markov sequence

� Let consider sequences x4
1 a y4

0 represented by vertices of a planar graph. Some vertices of the
graph are connected by springs denoting statistical dependence in Markov statistical model.

x1 x2 x4x3

y0 y1 y3 y4y2

� Let imagine, for instance that, e.g. the vertex x3 of a graph starts oscillating for a random
reason. Due to direct and indirect mechanical bonds to other vertices of the graph, all (!) the
graph vertices and not only y2 and y3 start oscillating too.

� When we fix vertices (values) x1, . . . , x4, the values of vertices y0, . . . , yn are determined too.
� When we fix a vertex, e. g. the vertex y3, the model decomposes into two independent parts:
(a) vertices y0, y1, y2, x1, x2, x3; and (b) vertices x4, y4.

http://cmp.felk.cvut.cz
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A special case: Decomposable statistical model

� It is a special case, which is considered often in the literature.

� It is assumed p(xi, yi|yi−1) = p(xi|yi) p(yi|yi−1). In such a case, the following holds

p(x̄, ȳ) = p(y0)

n∏
i=1

p(xi, yi|yi−1) = p(y0)

n∏
i=1

p(xi|yi)
n∏
i=1

p(yi|yi−1)

� The corresponding mechanical model looks like the following
x1 x2 x4

x3

y0 y1
y3 y4y2

http://cmp.felk.cvut.cz
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Decomposable model example
Pulling out balls from urns

Urn 1 Urn 2

ball x = {black, white}
urn y = {1, 2}

p(y = 1) = 0.5 p(x = white|y = 1) = 0.8 p(x = white|y = 2) = 0.2
p(y = 2) = 0.5 p(x = black|y = 1) = 0.2 p(x = black|y = 2) = 0.8

Pulling out from p(y = 1|y = 2) = 1 p(y = 2|y = 2) = 0
urns alternatively p(y = 1|y = 1) = 0 p(y = 2|y = 1) = 1

http://cmp.felk.cvut.cz
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Three basic tasks with HMMs

1. Recognition also evaluation of a statistical model:
(Called also the forward-backward task in literature. It is based on the dynamic
programming). Given: parameters of HMM (of a statistical model). The aim is to calculate
probabilities that we observed the sequence x̄. The assigned class corresponds the most
probable model. The approach is used for recognition (classification).

2. Seek for the most probable hidden states sequence:
(Viterbi algorithm, dynamic programming). Given: A statistical model and a sequence of
observations x̄. The aim is finding the most probable sequence of hidden states ȳ.

3. Learning a statistical model from examples, aka parameter estimation of a Markov model:
(Baum-Welsh re-estimation algorithm; explores EM algorithm). Given: a structure of a model,
i.e., the number of hidden states and a training multi-sequence. The aim is find the
parameters of a statistical model, i.e., probabilities p(xi, yi|yi−1).

http://cmp.felk.cvut.cz
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Recognition task;
also enumeration of a particular statistical model

� Let a, b be two autonomous stochastic automata with the same number of states |Y |. The
number of output symbols |X| matches for both automata too.

� Let the statistical properties of the two automata a, b differ.
The automaton a is described by pa(y0) a pa(xi, yi | yi−1), y0 ∈ Y , yi ∈ Y , xi ∈ X ,
i = 1, 2, . . . , n.
Similarly the automaton b is described by pb(y0) a pb(xi, yi | yi−1).
Note: The probabilities do not depend on the index i for simplicity. In general, the
probabilities may depend on the index i. Our thoughts hold in this more general case too.

� The task evaluating the statistical model (also the recognition task) has to decide which of
the automata generated the sequence of observations x1, x2, . . . , xn.

http://cmp.felk.cvut.cz
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Recognition task (2)

� The recognition task can be expressed as the minimization of Bayesian risk, e.g., the number
of erroneous decisions for simplicity. The formulation can extend to non-Bayesian tasks as,
e.g., Neyman-Pearson tasks, minimax task.

� The appropriate marginal probabilities pa(xn1 ) and pb(xn1 ) have to be calculated for
automata a, b.

� The decision is made, e.g., according to the maximal likelihood ratio pa(xn1 ) / pb(xn1 ).
Recall the lecture on non-Bayesian pattern recognition, Neyman-Pearson task for dichotomic
classification.

� The most difficult part of the task is calculating probabilities pa(xn1 ) and pb(xn1 ). The
calculation is the same for automata a and b. Thus we do not show the index referring to a
particular automaton.

http://cmp.felk.cvut.cz
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Recognition algorithm

Recall Markov statistical model

p(x̄, ȳ) = p(x1, . . . , xn, y0, . . . , yn) = p(y0)

n∏
i=1

p(xi, yi|yi−1)

We are interested in the marginal probability p(x̄) =
∑
y∈Y

p(x̄, ȳ). It is expressed as a multiple sum

p(x) =
∑
y

p(ȳ, x̄) =
∑
y0

∑
y1

· · ·
∑
yn−1

∑
yn

p(y0)

n∏
i=1

p(xi, yi | yi−1) .

The direct calculation is unsuitable, because there are |Y |n+1 summands. We will rearrange the
formula by equivalent transformations into the usable form.

http://cmp.felk.cvut.cz
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Recognition algorithm (2)

While summing up according to the state yi, we factor out variables independent on yi. Our
starting point is the expression we are familar with already

p(x̄) =
∑
k

p(ȳ, x̄) =
∑
y0

∑
y1

· · ·
∑
yn−1

∑
yn

p(y0)

n∏
i=1

p(xi, yi | yi−1) .

The formula is transformed to the following form after factoring out

p(x̄) =
∑
y0

p(y0)
∑
y1

p(x1, y1 | y0) · · ·
∑
yi

p(xi, yi | yi−1)

· · ·
∑
yn−1

p(xn−1, yn−1 | yn−2)
∑
kn

p(xn, yn | yn−1) .

http://cmp.felk.cvut.cz
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Recognition algorithm (3)

We aim at a recursive algorithm. After factoring out we get

p(x̄) =
∑
y0

p(y0)
∑
y1

p(x1, y1 | y0) · · ·
∑
yi

p(xi, yi | yi−1)

· · ·
∑
yn−1

p(xn−1, yn−1 | yn−2)
∑
yn

p(xn, yn | yn−1) .

we mark partial sums for i = 1, 2, . . . , n using

fi(yi−1) =
∑
yi

p(xi, yi | yi−1)
∑
yi+1

p(xi+1, yi+1 | yi) · · ·

· · ·
∑
yn−1

p(xn−1, yn−1 | yn−2)
∑
kn

p(xn, yn | yn−1)

and become the algorithm.

http://cmp.felk.cvut.cz
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Recognition algorithm (4)

The algorithm runs from the back to the beginning of the sequence

fn(yn−1) =
∑
yn

p(xn, yn | yn−1);

fi(yi−1) =
∑
yi

p(xi, yi | yi−1) fi+1(yi) , i = 1, 2, . . . , n− 1 ;

p(x̄) =
∑
y0

p(y0) f1(y0) .


The number of operations is proportional to |Y |2 n.

http://cmp.felk.cvut.cz
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The most probable sequence of hidden states

Task formulation

� The statistical model p(x̄, ȳ) = p(y0)
n∏
i=1

p(xi, yi|yi−1) is given.

� We seek the decision strategy q(x̄):Xn → Y n+1 .
� Bayesian risk is R(q(x̄)) =

∑
x̄∈X

∑̄
y∈Y

p(x̄, ȳ)W (x̄, q(x̄)).

� Let select a simple penalty function, for instance the number of wrong decisions

W (ȳ, q(x̄)) =

{
0 pro ȳ = q(x̄) ,

1 pro ȳ 6= q(x̄) .

The aim is to find the strategy q(x̄) minimizing the risk R(q(x̄)).

http://cmp.felk.cvut.cz


30/33
Derivation of the Bayesian strategy

q(x̄) = argmax
y∈Y n+1

p(x̄, ȳ)∑
y′∈Y n+1

p(x̄, ȳ′)
= argmax

y∈Y n+1

p(x̄, ȳ)

= arg max
y0

. . .max
yn

p(y0)

n∏
i=1

p(xi, yi|yi−1)

= arg max
y0

. . .max
yn

log

(
p(y0)

n∏
i=1

p(xi, yi|yi−1)

)

= arg max
y0

. . .max
yn

log p(y0)︸ ︷︷ ︸
ϕ(y0)

+

n∑
i=1

log p(xi, yi|yi−1)︸ ︷︷ ︸
qi(yi−1,yi)



http://cmp.felk.cvut.cz


31/33
Formulation as the seek for the shortest path in a graph
� A special oriented graph (trellis) with vertices and edges ordered left to right. The initial
vertex is α and the goal vertex is β. The remaining |Y |(n+ 1) intermediate vertices are
indexed by a tuple (σ, i), σ ∈ Y , i = 0, 1, . . . , n.

� Example of a graph (trellis) for n = 3 and hidden states Y = {A,B,C}.
A

B

C

i=0 i=1 i=2 i=3α β

ϕ(A)

ϕ(B)

ϕ(C)

q (A,A)1

q (A,B)1

q (A,A)2 q (A,A)3

q (A,B)3

http://cmp.felk.cvut.cz
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The shortest path algorithm

Dynamic programming. The graph has a special form that ensures ordering. The algorithm analogy
– messengers.

fi(σ) is the length of the shortest path (∼ time) from vertex α to vertex (σ, i).

Algoritmus A. Viterbi 1967 (independently T. Vincjuk 1968):
� f0(σ) = ϕ(σ)

� Repeatedly for i = 1, . . . , n, σ ∈ Y
fi(σ) = min

σ′∈Y
(fi(σ

′) + qi(σ
′, σ)). The path of the messenger, who came to the vertex first.

indi(σ) = argmin
σ′∈y

(fi(σ
′) + qi(σ

′, σ)). The vertex, from which the first messenger came.

� Finally:
yn = argmin

σ∈Y
fn(σ), yi−1 = indi(yi). Reconstruction of the shortest path.

http://cmp.felk.cvut.cz


33/33
Viterbi algorithm example

A

B

C

i=0 i=1 i=2 i=3α β

0 9

5 5

52

3 6

7

8

9 12

10

3

2

5

0

0

0

0

2

1

7

4

3

2

8

4

2

3

7

3 35

6

7

8

9 1

6

4

2

5

0

8

7

9

Arrows denote indi(σ). Arrows are used while seeking the shortest path. There can be than one
shortes path. In our example, these are besides AAAC also AABC or AACC.

http://cmp.felk.cvut.cz
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