
Robot trajectory generation
Václav Hlaváč

Czech Technical University in Prague
Czech Institute of Informatics, Robotics and Cybernetics

160 00 Prague 6, Jugoslávských partyzánů 1580/3, Czech Republic
http://people.ciirc.cvut.cz/hlavac, vaclav.hlavac@cvut.cz

also Center for Machine Perception, http://cmp.felk.cvut.cz

Courtesy: Alessandro De Luca, Claudio Melchiorri; other presentations from the web.

Outline of the talk:

� Trajectory × path.
� Trajectory generation, problem formulation.
� Trajectory in operational and joint spaces.

� Curve approximation.

� Trajectory classification; Dubins curves.

� Trajectory approximation by polynomials.

2/51
Practical requirements related to trajectories

Note: We consider a robotic manipulator (open kinematic chain) for simplicity. Generalization of
methods for mobile robots is not difficult.

� Endow the robot with the capability to move the manipulator arm and its end effector or the
mobile robot from the initial posture to the final posture.

� Motion laws have to be considered in order not to:

• violate saturation limits of joint drives;

• excite the resonant modes of the actuator mechanical structure, being driven by
electric/hydraulic/pneumatic or other more exotic drives.

� Explore path planning and trajectory generation methods providing smooth trajectories
solving the practical robotics task.

Question: Why are smooth trajectories preferred over jerky ones?

http://cmp.felk.cvut.cz

3/51
Terminology: path vs. trajectory

� Note: Terms path, trajectory are often exchanged because they are
perceived as synonyms informally.

� Path consists of ordered locii of points in the space (either the joint space or the operational
space), which the robot should follow.
• The path provides a pure geometric description of motion.
• The path is usually planned globally taking into account obstacle avoidance, traversing a

complicated maze, etc.
� Trajectory is a path plus velocities and accelerations in its each point.
• The design of a trajectory does not need global information, which simplifies the task

significantly.
• The trajectory is specified and designed locally (divide and conquer methodology). Parts

of the path are covered by individual trajectories.
• It is often required that pieces of trajectories join smoothly, which induces that a single

trajectory design takes into account only neighboring trajectories from the path.

http://cmp.felk.cvut.cz

4/51
Robot motion planning, an overview

Path planning (global)

� The (geometric) path is a sequence of waypoints defining
the trajectory coarsely.

� Issues solved at this level: obstacle avoidance, shortest
path.

Trajectory generating (local)

� The path provided by path planning constitutes the input
to the trajectory generator.

� Trajectory generator “approximates” the desired path
waypoints by a class of polynomial functions and

� generates a time-based control sequence moving the
manipulator/mobile platform from its initial configuration
to the destination.

Path plan

Trajectory plan

Robot controller

Sensing Acting

External task
(mission planning)

Path

Trajectory

A real environment

is the source of uncertainties

feedback control

http://cmp.felk.cvut.cz

5/51
Path planning, the problem formulation

� The path planning task:
Find a collision free path for the robot from one
configuration to another configuration.

� Path planning is an algorithmically difficult
search problem.

• The involved task has an exponential
complexity with respect to the degrees of
freedom (controllable joints).

• With industrial robots, the path planning is
often replaced by a path/trajectory taught
in by a human operator. Note: A separate (next) lecture will be de-

voted to the path planning.

http://cmp.felk.cvut.cz

6/51
Trajectory generation, the problem formulation

� Trajectory generation aims at creating inputs to the motion control system, which ensures
that the planned trajectory is smoothly executed.

� The planned path is typically represented by way-points, which is the sequence of points (or
end-effector poses) along the path.

� Trajectory generating = creating a trajectory connecting two or more way-points.

• In the industrial settings, a trajectory is taught-in by a human expert and later played
back (by teach-and-playback).
A more recent approach utilizes several tens of trajectories performed by human experts
as the input. They vary statistically. Machine learning techniques are used to create the
final trajectory.
• In general, e.g., with mobile robots and more and more with industrial robots, the path

points generated by the path planner are smoothly approximated using function
approximation methods from mathematics.

http://cmp.felk.cvut.cz

7/51
Trajectory generating, illustration

Joint space

Operational
(Cartesian) space

Trajectory
generator

Path
specification

Trajectory constraints
as continuity, smoothnes,
velocity or accelleration

limits

{q(t), q(t), q(t)}

{p(t), v(t), a(t)}

� Trajectory generating = finding the desired joint space trajectory q(t) given the desired
operational (Cartesian) path inverse kinematics.

� q is a vector of joint parameters. Its dimension matches to the number of DOFs.
� p(t) = (x(t), y(t), z(t)) is the position, v(t) = (x′(t), y′(t), z′(t) is the velocity,
a(t) = (x′′(t), y′′(t), z′′(t) is the acceleration.

http://cmp.felk.cvut.cz

8/51
Joint space vs. operational space

� Joint-space description:

• The description of the motion to be made by the robot by its joint values.

• The motion between the two points is unpredictable.

� Operational space description:

• Operational space = (Cartesian space or working space) in many cases.

• The motion between the two points is known and controllable at all times.

• It is easy to visualize the trajectory, but it is difficult to ensure that singularity does not
occur.

The path planning/trajectory generation can be done in both the joint space or operational spaces.

http://cmp.felk.cvut.cz

9/51
Example: Troubles with the operational (Cartesian) space

Task: Create a trajectory of the
manipulator end effector to follow a
straight line.

z

x y

A

B

z

x y (a) (b)

(a) The trajectory specified in Cartesian coordinates
may force the robot to run into itself, see Figure (a)
above;

(b) The trajectory may requires a sudden change in the
joint angles due to singularities, see Figure (b)
above.

http://cmp.felk.cvut.cz

10/51
Trajectory in the operational space

� Calculate the path from the initial point
to the final point.

� Assign a total time Tpath to traverse the
path.

� Discretize points in time and space.

� Blend a continuous time function
between these points.

� Solve inverse kinematics at each step.

Advantages

� Collision free path can be obtained.

Disadvantages

� Computationally expensive due to
involved inverse kinematics.

� It is unknown how to set the total time
Tpath.

http://cmp.felk.cvut.cz

11/51
Trajectory in the joint space

� Calculate the inverse kinematics solution
from the initial point to the final point.

� Assign the total time Tpath using maximal
velocities in joints.

� Discretize the individual joint trajectories
in time.

� Blend a continuous function between
these point.

Advantages

� The inverse kinematics is computed only
once.

� The approach can take into account joint
angles limits and velocity constraints
easily.

Disadvantages

� It is more difficult to deal with obstacles
represented in the operational space.
Nevertheless, it is doable.

http://cmp.felk.cvut.cz

12/51
Trajectory from the operational space to the joint space

Inverse
kinematics
algorithm

Trajectory
generation
algorithm

Trajectory
parameters in the
operational space

E.g., initial and final
end-effector location,

travelling time.

Trajectory
parameters in the

joint space

Joint or end-effector
trajectories in terms
of position, velocity

and acceleration

http://cmp.felk.cvut.cz

13/51
Types of the trajectory control

� Displacement control = control the end effector/mobile robot displacement, i.e., angles or
positions in space, maybe including dynamics of motion.
Examples:

• Moving payloads.

• Painting objects.

� Force control = control of both displacement (as above) and applied force.
Examples:

• Machining.

• Grinding.

• Sanding.

http://cmp.felk.cvut.cz

14/51
Curve approximation, the motivation

� A draftsman uses “ducks” and strips of
wood (splines) to draw curves.

� “Wooden splines” provide the second-order
continuity

� and pass through control points.

Examples of functions used for trajectory interpo-
lation:

� Polynomials of different orders.

� Linear functions with parabolic blends.

� Splines.

http://cmp.felk.cvut.cz

15/51
Illustration of trajectory generation issues

Different approaches will be demonstrated on a simple example.

� Let us consider a simple two degrees of freedom robot.

� We desire to move the robot from Point A to Point B.

� Let us assume that both joints of the robot can move at the maximum rate of 10 degree/sec.

Note:

� Jerk (informally) = thrashing of the mechanism.

� Jerk (mechanics, formally) = the rate of velocity (time derivative of a trajectory) change.

http://cmp.felk.cvut.cz

16/51
Non-normalized trajectory

� Move the robot from A to B, to run both
joints at their maximum angular velocities.

� After 2 [sec], the lower link will have
finished its motion, while the upper link
continues for another 3 [sec]

� The path is irregular and the distances
traveled by the robot end point are not
uniform.

http://cmp.felk.cvut.cz

17/51
Normalized trajectory

� Let us assume that the motions of both
joints are normalized by a common factor
such that the joint with smaller motion will
move proportionally slower and the both
joints will start and stop their motion
simultaneously.

� Both joints move at different speeds, but
move continuously together.

� The resulting trajectory will be different.

http://cmp.felk.cvut.cz

18/51
Straight line trajectory, version A

� Let us assume that the robot gripper follows
a straight line between points A and B.

� The simplest way is to draw a line
(interpolate) between A, B.

� Divide the line into five segments and solve
for necessary angles α and β at each point.

� The joint angles do not change uniformly.

http://cmp.felk.cvut.cz

19/51
Straight line trajectory, version B

� Again interpolation between A, B by a
straight line.

� The aim is to accelerate at the beginning
and decelerate at the end.

� Divide the segments differently.

• The arm moves at smaller segments as
we speed up at the beginning;
• Go at a constant cruising rate;
• Decelerate with smaller segments as

approaching Point B.

http://cmp.felk.cvut.cz

20/51
Continuous transition, version A

� Stop-and-go motion through the way-point list creates jerky motions with unnecessary stops.

� Stop-and-go motion through the way-point list creates jerky motions with unnecessary stops.

� How? Blend the two portions of the motion at Point B.

http://cmp.felk.cvut.cz

21/51
Continuous transition, version B

� Alternative scheme ensuring that the trajectory passes through control points.

� Two way-points D and E are picked such that Point B will fall on the straight-line section of
the segment ensuring that the robot will pass through Point B.

http://cmp.felk.cvut.cz

22/51

Motivating example of trajectories
in operational and joint spaces

Courtesy for the image: Alessandro De Luca, Universita di Roma, La Sapienza.

http://cmp.felk.cvut.cz

23/51
Trajectory = path + timing law (1)

Having the path (approximated way-points), the trajectory
is completed by a choice of a timing law.
Consider the geometric path in a parametric form:

� Operational (Cartesian) space:
p(s) = (x(s), y(s), z(s)), where the motion law is
s = s(t), t ∈ [0, T].

� Joint space: q(λ) = (q1(λ), q2(λ), . . . , qn(λ)), where
n = DOFs ⇒ motion law λ = λ(t).

If s(t) = t, the trajectory parametrization is the natural
one given by the time.

x

y

z

a, s=0

b, s = smax

time

length

smax

T
t

s

p(s(t))=(x(s), y(s), z(s))

robot arm

http://cmp.felk.cvut.cz

24/51
Trajectory = path + timing law (2)

The timing law:

� is chosen based on task specifications (stop in a point, move at a constant velocity, etc.);

� It may consider optimality criteria (min transfer time, min energy, etc.);

� Constraints are imposed by actuator capabilities (e.g. max torque, max velocity) and/or by
the task (e.g., the maximal allowed acceleration on a payload).

http://cmp.felk.cvut.cz

25/51
Space-time decomposition on parametrized path

E.g., in the operational (Cartesian) space:

p(s) = (x(s), y(s), z(s)) with the motion law s = s(t)

velocity ṗ(t) =
dp

ds
ṡ(t), acceleration p̈(t) =

dp

ds
s̈(t) +

d2p

ds2
ṡ(t)

Polynomial functions of a degree n are employed usually for way-points approximation.

s(t) = a0 + a1t+ a2t
2 + . . .+ ant

n

http://cmp.felk.cvut.cz

26/51
Trajectories classification

� Space of the definition: the operational (Cartesian) space or the joint space.

� Task type: point-to-point (PTP), multiple points (knots), continuous, concatenated.

� Path geometry: rectilinear, Dubins, polynomial, exponential, cycloid, . . .

� Timing law: bang-bang in the acceleration, trapezoidal in the velocity, polynomial, . . .

� Coordinated or independent:

• Motion of all joints (or of all Cartesian components) start and ends at the same instants
(say, t = 0 and t = T) ⇒ the single timing law.

• Motions are timed independently, e.g. according to requested displacement and robot
capabilities. Such trajectory is performed in the joint space mostly.

http://cmp.felk.cvut.cz

27/51
Relevant characteristics of the trajectory

� Computational efficiency and memory space, e.g. store only coefficients of a polynomial
function.

� Predictability vs. “wandering” out of the knots.

� Accuracy vs. the “overshot” on the final position.

� Flexibility allowing concatenation, over-fly, . . .

� Continutity in space and in time.
Continuity C1 at least. Sometimes also up to C2, i.e. up to jerk = da

dt , where a is the
acceleration.

Note: Continuity of the class Ck means that the time derivative up to the order k is smooth.

http://cmp.felk.cvut.cz

28/51
Trajectory planning

Usually, the user has to specify only a minimum amount of information about the trajectory, such
as initial and final points, duration of the motion, maximum velocity, and so on.

� Work-space trajectories
allow to consider directly possible constraints on the path (obstacles, path geometry, . . .) that
are more difficult to take into consideration in the joint space (because of the non linear
kinematics)

� Joint space trajectories
are computationally simpler and allow to consider problems due to singular configurations,
actuation redundancy, velocity/acceleration constraints.

http://cmp.felk.cvut.cz

29/51
Trajectory planning in the joint space

� The curve parametrization in time q = q(t) or in joint space q = q(λ), λ = λ(t)

� It is sufficient to work component-wise, (qi in vector q).
� An implicit definition of the trajectory is obtained by solving a problem with specified
boundary conditions in a given class of functions.

� Typical classes of functions: polynomials (cubic, quintic, . . .), (co)sinusoids, clothoids, etc.
� Imposed conditions

• Passage through points ⇒ interpolation.
• Initial, final, intermediate velocity or geometric tangent to the path.
• Initial, final, intermediate velocity or geometric curvature.
• Continuity up to Ck.

Many of the following methods and remarks can be applied directly also to Cartesian
trajectory planning (and vice versa).

http://cmp.felk.cvut.cz

30/51
Dubins curves

Lester Eli Dubins (1920–2010); result from 1957
The task is explained in 2D for simplicity; works in 3D as well.

� Given: two points (start, target, both with prescribe tangent of
the trajectory); Assumption: forward motion only.

� The optimization task is to find the shortest path between the
start and the target when the maximum trajectory curvature is
prescribed.

� L.E. Dubins proved that such path consists in a general case of at
most (a) two maximum curvature two circular arcs and a straight
line segment, or (b) three circular arcs.

� Let R - right turn; L - left turn; S - straight. The optimal
trajectory will be one of six combinations RSR, RSL, LSR, LSL,
RLR, LRL, see the figure.

� The methods are simple using algebraic equations.

RSR

RSL

LRL

http://cmp.felk.cvut.cz

31/51
A cubic polynomial

� Four boundary constraints:
q(0) = qini; q(T) = qfin; q̇(0) = vini; q̇(T) = vfin.

� ∆q = qfin − qini; the curve parametrization τ = t/T , τ ∈ [0, 1].

� A cubic polynomial q(τ) = qini + ∆q (aτ3 + bτ2 + cτ + d).

� A “doubly normalized” polynomial qN(τ) such that

• qN(0) = 0⇔ d = 0.

• qN = 1⇔ a+ b+ c = 1.

• q̇N(0) = dqN
dτ

∣∣∣
τ=0

= c = viniT
∆q .

• q̇N(1) = dqN
dτ

∣∣∣
τ=1

= 3a+ 2b+ c = vfinT
∆q .

http://cmp.felk.cvut.cz

32/51
Cubic polynomial, a special case, rest-to-rest

� The boundary constraints and the parametrization remains as above.

� A cubic polynomial as well: q(τ) = qini + ∆q (aτ3 + bτ2 + cτ + d).

� A polynomial qN(τ) such that

• qN(0) = 0⇔ d = 0.

• q̇N(0) = 0⇔ c = 0.

• qN = 1⇔ a+ b = 1.

• q̇N(1) = 0⇔ 3a+ 2b = 0.

From previous two equations, a = −2, b = 3.

http://cmp.felk.cvut.cz

33/51
Quintic polynomial

� q(τ) = aτ5 + bτ4 + cτ3 + dτ2 + eτ + f , i.e., 6 coefficients,
� satisfying constraints, e.g., in the normalized time τ :
q(0) = q0; q(1) = q1; q̇(0) = v0T ; q̇(1); q̈(0) = a0T

2; q̈(1) = a1T
2;

q(τ) = (1− τ)3

(
q0 + (3q0 + v0T) τ + (a0T

2 + 6v0T + 12q0)
τ2

2

)

= +τ3

(
q1 + (3q1 − v1T)(1− τ) +

(a1T
2 − 6v1T + 12q1)(1− τ)2

2

)
A special case, rest-to-rest:

� v0 = v1 = a0 = a1 = 0.
� q(τ) = q0 + ∆q(6τ5 − 15τ4 + 10τ3); ∆q = q1 − q0.

http://cmp.felk.cvut.cz

34/51
4-3-4 polynomials

Three phases in pick-and-place operations: Lift off, Travel, Set down.

Boundary constraints:

q(t0) = q0, q(t−1) = q(t+1) = q1 , q(t−2) = q(t+2) = q2 , q(tf) = qf

q̇(t0) = q̇(tf) = 0 , q̈(t0) = q̈f(tf) = 0

q̇(t−0) = q̇(t+0) , q̈(t−i) = q̈(t+i) , i = 1, 2

The first equation corresponds to six pasages; the second equation to four initial/final
velocities/accelaretions; the third equation to four continuity constraints.

http://cmp.felk.cvut.cz

35/51
Higher-order polynomials

� Higher-order polynomials provide a suitable solution class for satisfying symmetric boundary
conditions in a point-to-point motion that imposes zero values on higher-order derivatives.

• The interpolating polynomial is always of the odd degree.

• The coefficients of such (doubly normalized) polynomial are always integers, alternate in
sign, sum up to unity, and are zero for all term up to the power = (degree−1)

2 .

� In all other cases (e.g., for interpolating a large number N of points), the use of higher-order
polynomials is not recommended.

• N -th order polynomials have N − 1 maximum and minimum points.

• Oscilations arise out of the interpolation points (wandering).

http://cmp.felk.cvut.cz

36/51
Higher-order polynomials, oscillations

http://cmp.felk.cvut.cz

37/51
Numerical examples

http://cmp.felk.cvut.cz

38/51

Several polynomials
instead of one high-degree polynomial

� Given N points, in order to avoid the problem of high ‘oscillations’ and troubles with the
numerical precision avoid a single high-degree N − 1 polynomial.

� Instead, use N − 1 polynomials with lower degree p, p < N − 1. Each polynomial
interpolates a segment of the trajectory.

� Often p = 3 is chosen so that continuity of the velocity and acceleration is achieved.

q(t) = a0 + a1t+ a2t
2 + a3t

3

� There are 4 coefficients for each polynomial, and thus it is necessary to compute 3(N − 1)
coefficients.

http://cmp.felk.cvut.cz

39/51
Spline

� The word “spline” refers to thin strip of wood or metal. At one time, curves were designed for
ships or planes by mounting actual strips so that they went through a desired points but were
free to move otherwise.

� Definition:
A cubic spline curve is a piecewise cubic curve with continuous second derivation.

� Definition (a special case):
A cubic spline curve is relaxed if its second derivative is zero at each endpoint.

� An easy way of making a controlled-design curve with many control points is to use B-spline
curves.

http://cmp.felk.cvut.cz

40/51
B-spline, construction by hand (1)

We start the description with relaxed uniform B-spline curves for simplicity.

Assume starting by specifying of a control polygon of points B0, B1, . . . , Bn.

http://cmp.felk.cvut.cz

41/51
B-spline, construction by hand (2)

The B-spline construction method if done by hand: Divide each leg of a control polyton in thirds
by marking two “division” points. At each Bi except the first and last, draw a line segments
between the two nearest “division” points. Call the midpoint Si. Then you make an A-frame with
Bi at the apex. Let S0 = B0 and Sn = Bn for completeness.

http://cmp.felk.cvut.cz

42/51
B-spline, construction by hand (3)

Sketch a cubic (Bézier) curve from each point Si to the next using as Bézier control points the
four points Si, two “division” points, and Si+1.

http://cmp.felk.cvut.cz

43/51
Interpolation using splines

� Task formulation: Interpolate N knots along the desired curve, keep C2 continuity, i.e.
continuity up to the second derivative.

� Solution: Approximate by splines.
Splines are N − 1 cubic polynomials concatenated to pass through knots (also control points)
and being continuous in velocity and acceleration in the N − 2 internal knots.

� 4 (N − 1) coefficients.
� 4 (N − 1)− 2 conditions, more specifically
• 2 (N − 1) passages, pro each cubic in the two knots at its ends.
• N − 2 continuities for velocities at internal knots.
• N − 2 continuities for accelerations at internal knots.

� Two free parameters are still left over. These parameters can be used to, e.g., assign the
initial and final velocities v1, vN .

� We present curves in terms of time t. It is similar for space λ.

http://cmp.felk.cvut.cz

44/51
Building a cubic spline

� The polynomial ΘK(τ) = ak0 + ak1τ + ak2τ
2 + ak3τ

3; τ ∈ [0, hk],
τ = t− tk, k = 1, . . . , N − 1.

� Continuity conditions for velocity and acceleration:
Θ̇k(hk) =Θ̇k+1(0); Θ̈k(hk) =Θ̈k+1(0); k = 1, . . . , N − 2.

http://cmp.felk.cvut.cz

45/51
An efficient algorithm

1. If all velocities vk at internal knots were known then each cubic in the spline would be uniquely determined by
Θk(0) = qk = ak0

Θ̇(0) = vk = ak1

[
hk2 hk3

2hk 3hk2

] [
ak2

ak3

]
=

 qk+1 − qk − vk hk

vk+1 − vk


2. Impose N − 2 acceleration continuity constraints

Θ̈k(hk) = 2ak2 + 6ak3hk = Θ̈k+1(0) = 2 ak+1,2

3. Expressing the coefficients ak2, ak3, ak+1,2 in terms of still unknown knot velocities, see step 1, yields a linear
system of equations, which are always solvable

http://cmp.felk.cvut.cz

46/51
Structure of A(h)

http://cmp.felk.cvut.cz

47/51
Structure of b(h, q, v1, vN)

http://cmp.felk.cvut.cz

48/51
Properties of splines

� The spline is the solution with the minimum curvature among all interpolating functions
having continuous derivatives up to the second one.

� A spline is uniquely determined from the data q1, . . . , qn, h1, . . . , hN−1, v1, . . . , vn.
� The total transfer time is T =

∑K
k=1 hk = tN − t1.

� The time intervals hk can be chosen to minimize T (linear objective function) under
(nonlinear) bounds on velocity and acceleration in [0, T].

� For cyclic taks (q1 = qN), it is preferable to impose simply the continuity of velocity and
acceleration at t1 = tN as the “squaring” conditions
• in fact, even choosing v1 = vN does not guarantee the acceleration continuities;
• in this way, the first = last knot will be handled as all other internal knots

� When initial and final accelerations are also assigned, the spline construction can be suitably
modified.

http://cmp.felk.cvut.cz

49/51

A modification
handling assigned initial and final accelerations

� Two more parameters are needed in order to impose also the initial acceleration α1 and final
acceleration αN .

� Two “fictious knots” are inserted in the first and last original intervals, increasing the number
of cubic polynomials from N − 1 to N + 1.

� In these two knots only continuity conditions on position, velocity and acceleration are
imposed ⇒ two free parameters are left over (one in the first cubic and one in the last cubic),
which are used to satisfy the boundary constraints on acceleration.

� Depending on the (time) placement of the two additional knots, the resulting spline changes.

http://cmp.felk.cvut.cz

50/51
A numerical example

http://cmp.felk.cvut.cz

51/51
References

� B. Siciliano et al. Robotics (Modeling, planning and control), Springer, Berlin, 2009, chapter
4: Trajectory planning, pages 161-189.

http://cmp.felk.cvut.cz

	First page
	ccmp Practical requirements related to trajectories
	ccmp Terminology: path vs. trajectory
	ccmp Robot motion planning, an overview
	ccmp Path planning, the problem formulation
	ccmp Trajectory generation, the problem formulation
	ccmp Trajectory generating, illustration
	ccmp Joint space vs. operational space
	ccmp Example: Troubles with the operational (Cartesian) space
	ccmp Trajectory in the operational space
	ccmp Trajectory in the joint space
	ccmp Trajectory from the operational space to the joint space
	ccmp Types of the trajectory control
	ccmp Curve approximation, the motivation
	ccmp Illustration of trajectory generation issues
	ccmp Non-normalized trajectory
	ccmp Normalized trajectory
	ccmp Straight line trajectory, version A
	ccmp Straight line trajectory, version B
	ccmp Continuous transition, version A
	ccmp Continuous transition, version B
	ccmp Motivating example of trajectories\in operational and joint spaces
	ccmp Trajectory = path + timing law (1)
	ccmp Trajectory = path + timing law (2)
	ccmp Space-time decomposition on parametrized path
	ccmp Trajectories classification
	ccmp Relevant characteristics of the trajectory
	ccmp Trajectory planning
	ccmp Trajectory planning in the joint space
	ccmp Dubins curves
	ccmp A cubic polynomial
	ccmp Cubic polynomial, a special case, rest-to-rest
	ccmp Quintic polynomial
	ccmp 4-3-4 polynomials
	ccmp Higher-order polynomials
	ccmp Higher-order polynomials, oscillations
	ccmp Numerical examples
	ccmp Several polynomials\instead of one high-degree polynomial
	ccmp Spline
	ccmp B-spline, construction by hand (1)
	ccmp B-spline, construction by hand (2)
	ccmp B-spline, construction by hand (3)
	ccmp Interpolation using splines
	ccmp Building a cubic spline
	ccmp An efficient algorithm
	ccmp Structure of $A(h)$
	ccmp Structure of $b(h,q,v_1,v_N)$
	ccmp Properties of splines
	ccmp A modification\handling assigned initial and final accelerations
	ccmp A numerical example
	ccmp References
	Last page

