
Robot trajectory generation
Václav Hlaváč

Czech Technical University in Prague
Czech Institute of Informatics, Robotics and Cybernetics

160 00 Prague 6, Jugoslávských partyzánů 1580/3, Czech Republic
http://people.ciirc.cvut.cz/hlavac, vaclav.hlavac@cvut.cz

also Center for Machine Perception, http://cmp.felk.cvut.cz

Courtesy: Alessandro De Luca, Claudio Melchiorri; other presentations from the web.

Outline of the talk:

� Trajectory × path.
� Trajectory generation, problem formulation.
� Trajectory in operational and joint spaces.

� Curve approximation.

� Trajectory classification; Dubins curves.

� Trajectory approximation by polynomials.
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Practical requirements related to trajectories

Note: We consider a robotic manipulator (open kinematic chain) for simplicity. Generalization of
methods for mobile robots is not difficult.

� Endow the robot with the capability to move the manipulator arm and its end effector or the
mobile robot from the initial posture to the final posture.

� Motion laws have to be considered in order not to:

• violate saturation limits of joint drives;

• excite the resonant modes of the actuator mechanical structure, being driven by
electric/hydraulic/pneumatic or other more exotic drives.

� Explore path planning and trajectory generation methods providing smooth trajectories
solving the practical robotics task.

Question: Why are smooth trajectories preferred over jerky ones?

http://cmp.felk.cvut.cz
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Terminology: path vs. trajectory

� Note: Terms path, trajectory are often exchanged because they are
perceived as synonyms informally.

� Path consists of ordered locii of points in the space (either the joint space or the operational
space), which the robot should follow.
• The path provides a pure geometric description of motion.
• The path is usually planned globally taking into account obstacle avoidance, traversing a

complicated maze, etc.
� Trajectory is a path plus velocities and accelerations in its each point.
• The design of a trajectory does not need global information, which simplifies the task

significantly.
• The trajectory is specified and designed locally (divide and conquer methodology). Parts

of the path are covered by individual trajectories.
• It is often required that pieces of trajectories join smoothly, which induces that a single

trajectory design takes into account only neighboring trajectories from the path.

http://cmp.felk.cvut.cz
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Robot motion planning, an overview

Path planning (global)

� The (geometric) path is a sequence of waypoints defining
the trajectory coarsely.

� Issues solved at this level: obstacle avoidance, shortest
path.

Trajectory generating (local)

� The path provided by path planning constitutes the input
to the trajectory generator.

� Trajectory generator “approximates” the desired path
waypoints by a class of polynomial functions and

� generates a time-based control sequence moving the
manipulator/mobile platform from its initial configuration
to the destination.

Path plan

Trajectory plan

Robot controller

Sensing Acting

External task
(mission planning)

Path

Trajectory

A real environment

is the source of uncertainties

feedback control
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Path planning, the problem formulation

� The path planning task:
Find a collision free path for the robot from one
configuration to another configuration.

� Path planning is an algorithmically difficult
search problem.

• The involved task has an exponential
complexity with respect to the degrees of
freedom (controllable joints).

• With industrial robots, the path planning is
often replaced by a path/trajectory taught
in by a human operator. Note: A separate (next) lecture will be de-

voted to the path planning.

http://cmp.felk.cvut.cz
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Trajectory generation, the problem formulation

� Trajectory generation aims at creating inputs to the motion control system, which ensures
that the planned trajectory is smoothly executed.

� The planned path is typically represented by way-points, which is the sequence of points (or
end-effector poses) along the path.

� Trajectory generating = creating a trajectory connecting two or more way-points.

• In the industrial settings, a trajectory is taught-in by a human expert and later played
back (by teach-and-playback).
A more recent approach utilizes several tens of trajectories performed by human experts
as the input. They vary statistically. Machine learning techniques are used to create the
final trajectory.
• In general, e.g., with mobile robots and more and more with industrial robots, the path

points generated by the path planner are smoothly approximated using function
approximation methods from mathematics.

http://cmp.felk.cvut.cz
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Trajectory generating, illustration

Joint space

Operational
(Cartesian) space

Trajectory
generator

Path
specification

Trajectory constraints
as continuity, smoothnes,
velocity or accelleration

limits

{q(t), q(t), q(t)}

{p(t), v(t), a(t)}

� Trajectory generating = finding the desired joint space trajectory q(t) given the desired
operational (Cartesian) path inverse kinematics.

� q is a vector of joint parameters. Its dimension matches to the number of DOFs.
� p(t) = (x(t), y(t), z(t)) is the position, v(t) = (x′(t), y′(t), z′(t) is the velocity,
a(t) = (x′′(t), y′′(t), z′′(t) is the acceleration.

http://cmp.felk.cvut.cz
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Joint space vs. operational space

� Joint-space description:

• The description of the motion to be made by the robot by its joint values.

• The motion between the two points is unpredictable.

� Operational space description:

• Operational space = (Cartesian space or working space) in many cases.

• The motion between the two points is known and controllable at all times.

• It is easy to visualize the trajectory, but it is difficult to ensure that singularity does not
occur.

The path planning/trajectory generation can be done in both the joint space or operational spaces.

http://cmp.felk.cvut.cz
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Example: Troubles with the operational (Cartesian) space

Task: Create a trajectory of the
manipulator end effector to follow a
straight line.

z

x y

A

B

z

x y (a) (b)

(a) The trajectory specified in Cartesian coordinates
may force the robot to run into itself, see Figure (a)
above;

(b) The trajectory may requires a sudden change in the
joint angles due to singularities, see Figure (b)
above.

http://cmp.felk.cvut.cz
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Trajectory in the operational space

� Calculate the path from the initial point
to the final point.

� Assign a total time Tpath to traverse the
path.

� Discretize points in time and space.

� Blend a continuous time function
between these points.

� Solve inverse kinematics at each step.

Advantages

� Collision free path can be obtained.

Disadvantages

� Computationally expensive due to
involved inverse kinematics.

� It is unknown how to set the total time
Tpath.

http://cmp.felk.cvut.cz
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Trajectory in the joint space

� Calculate the inverse kinematics solution
from the initial point to the final point.

� Assign the total time Tpath using maximal
velocities in joints.

� Discretize the individual joint trajectories
in time.

� Blend a continuous function between
these point.

Advantages

� The inverse kinematics is computed only
once.

� The approach can take into account joint
angles limits and velocity constraints
easily.

Disadvantages

� It is more difficult to deal with obstacles
represented in the operational space.
Nevertheless, it is doable.

http://cmp.felk.cvut.cz
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Trajectory from the operational space to the joint space

Inverse
kinematics
algorithm

Trajectory
generation
algorithm

Trajectory
parameters in the
operational space

E.g., initial and final
end-effector location,

travelling time.

Trajectory
parameters in the

joint space

Joint or end-effector
trajectories in terms
of position, velocity

and acceleration

http://cmp.felk.cvut.cz
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Types of the trajectory control

� Displacement control = control the end effector/mobile robot displacement, i.e., angles or
positions in space, maybe including dynamics of motion.
Examples:

• Moving payloads.

• Painting objects.

� Force control = control of both displacement (as above) and applied force.
Examples:

• Machining.

• Grinding.

• Sanding.

http://cmp.felk.cvut.cz
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Curve approximation, the motivation

� A draftsman uses “ducks” and strips of
wood (splines) to draw curves.

� “Wooden splines” provide the second-order
continuity

� and pass through control points.

Examples of functions used for trajectory interpo-
lation:

� Polynomials of different orders.

� Linear functions with parabolic blends.

� Splines.

http://cmp.felk.cvut.cz
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Illustration of trajectory generation issues

Different approaches will be demonstrated on a simple example.

� Let us consider a simple two degrees of freedom robot.

� We desire to move the robot from Point A to Point B.

� Let us assume that both joints of the robot can move at the maximum rate of 10 degree/sec.

Note:

� Jerk (informally) = thrashing of the mechanism.

� Jerk (mechanics, formally) = the rate of velocity (time derivative of a trajectory) change.

http://cmp.felk.cvut.cz
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Non-normalized trajectory

� Move the robot from A to B, to run both
joints at their maximum angular velocities.

� After 2 [sec], the lower link will have
finished its motion, while the upper link
continues for another 3 [sec]

� The path is irregular and the distances
traveled by the robot end point are not
uniform.

http://cmp.felk.cvut.cz
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Normalized trajectory

� Let us assume that the motions of both
joints are normalized by a common factor
such that the joint with smaller motion will
move proportionally slower and the both
joints will start and stop their motion
simultaneously.

� Both joints move at different speeds, but
move continuously together.

� The resulting trajectory will be different.

http://cmp.felk.cvut.cz
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Straight line trajectory, version A

� Let us assume that the robot gripper follows
a straight line between points A and B.

� The simplest way is to draw a line
(interpolate) between A, B.

� Divide the line into five segments and solve
for necessary angles α and β at each point.

� The joint angles do not change uniformly.

http://cmp.felk.cvut.cz
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Straight line trajectory, version B

� Again interpolation between A, B by a
straight line.

� The aim is to accelerate at the beginning
and decelerate at the end.

� Divide the segments differently.

• The arm moves at smaller segments as
we speed up at the beginning;
• Go at a constant cruising rate;
• Decelerate with smaller segments as

approaching Point B.

http://cmp.felk.cvut.cz
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Continuous transition, version A

� Stop-and-go motion through the way-point list creates jerky motions with unnecessary stops.

� Stop-and-go motion through the way-point list creates jerky motions with unnecessary stops.

� How? Blend the two portions of the motion at Point B.

http://cmp.felk.cvut.cz
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Continuous transition, version B

� Alternative scheme ensuring that the trajectory passes through control points.

� Two way-points D and E are picked such that Point B will fall on the straight-line section of
the segment ensuring that the robot will pass through Point B.

http://cmp.felk.cvut.cz
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Motivating example of trajectories
in operational and joint spaces

Courtesy for the image: Alessandro De Luca, Universita di Roma, La Sapienza.

http://cmp.felk.cvut.cz
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Trajectory = path + timing law (1)

Having the path (approximated way-points), the trajectory
is completed by a choice of a timing law.
Consider the geometric path in a parametric form:

� Operational (Cartesian) space:
p(s) = (x(s), y(s), z(s)), where the motion law is
s = s(t), t ∈ [0, T ].

� Joint space: q(λ) = (q1(λ), q2(λ), . . . , qn(λ)), where
n = DOFs ⇒ motion law λ = λ(t).

If s(t) = t, the trajectory parametrization is the natural
one given by the time.

x

y

z

a, s=0

b, s = smax

time

length

smax

T
t

s

p(s(t))=(x(s), y(s), z(s))

robot arm

http://cmp.felk.cvut.cz
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Trajectory = path + timing law (2)

The timing law:

� is chosen based on task specifications (stop in a point, move at a constant velocity, etc.);

� It may consider optimality criteria (min transfer time, min energy, etc.);

� Constraints are imposed by actuator capabilities (e.g. max torque, max velocity) and/or by
the task (e.g., the maximal allowed acceleration on a payload).

http://cmp.felk.cvut.cz
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Space-time decomposition on parametrized path

E.g., in the operational (Cartesian) space:

p(s) = (x(s), y(s), z(s)) with the motion law s = s(t)

velocity ṗ(t) =
dp

ds
ṡ(t), acceleration p̈(t) =

dp

ds
s̈(t) +

d2p

ds2
ṡ(t)

Polynomial functions of a degree n are employed usually for way-points approximation.

s(t) = a0 + a1t+ a2t
2 + . . .+ ant

n

http://cmp.felk.cvut.cz
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Trajectories classification

� Space of the definition: the operational (Cartesian) space or the joint space.

� Task type: point-to-point (PTP), multiple points (knots), continuous, concatenated.

� Path geometry: rectilinear, Dubins, polynomial, exponential, cycloid, . . .

� Timing law: bang-bang in the acceleration, trapezoidal in the velocity, polynomial, . . .

� Coordinated or independent:

• Motion of all joints (or of all Cartesian components) start and ends at the same instants
(say, t = 0 and t = T ) ⇒ the single timing law.

• Motions are timed independently, e.g. according to requested displacement and robot
capabilities. Such trajectory is performed in the joint space mostly.

http://cmp.felk.cvut.cz
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Relevant characteristics of the trajectory

� Computational efficiency and memory space, e.g. store only coefficients of a polynomial
function.

� Predictability vs. “wandering” out of the knots.

� Accuracy vs. the “overshot” on the final position.

� Flexibility allowing concatenation, over-fly, . . .

� Continutity in space and in time.
Continuity C1 at least. Sometimes also up to C2, i.e. up to jerk = da

dt , where a is the
acceleration.

Note: Continuity of the class Ck means that the time derivative up to the order k is smooth.

http://cmp.felk.cvut.cz
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Trajectory planning

Usually, the user has to specify only a minimum amount of information about the trajectory, such
as initial and final points, duration of the motion, maximum velocity, and so on.

� Work-space trajectories
allow to consider directly possible constraints on the path (obstacles, path geometry, . . . ) that
are more difficult to take into consideration in the joint space (because of the non linear
kinematics)

� Joint space trajectories
are computationally simpler and allow to consider problems due to singular configurations,
actuation redundancy, velocity/acceleration constraints.

http://cmp.felk.cvut.cz
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Trajectory planning in the joint space

� The curve parametrization in time q = q(t) or in joint space q = q(λ), λ = λ(t)

� It is sufficient to work component-wise, (qi in vector q).
� An implicit definition of the trajectory is obtained by solving a problem with specified
boundary conditions in a given class of functions.

� Typical classes of functions: polynomials (cubic, quintic, . . . ), (co)sinusoids, clothoids, etc.
� Imposed conditions

• Passage through points ⇒ interpolation.
• Initial, final, intermediate velocity or geometric tangent to the path.
• Initial, final, intermediate velocity or geometric curvature.
• Continuity up to Ck.

Many of the following methods and remarks can be applied directly also to Cartesian
trajectory planning (and vice versa).

http://cmp.felk.cvut.cz
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Dubins curves

Lester Eli Dubins (1920–2010); result from 1957
The task is explained in 2D for simplicity; works in 3D as well.

� Given: two points (start, target, both with prescribe tangent of
the trajectory); Assumption: forward motion only.

� The optimization task is to find the shortest path between the
start and the target when the maximum trajectory curvature is
prescribed.

� L.E. Dubins proved that such path consists in a general case of at
most (a) two maximum curvature two circular arcs and a straight
line segment, or (b) three circular arcs.

� Let R - right turn; L - left turn; S - straight. The optimal
trajectory will be one of six combinations RSR, RSL, LSR, LSL,
RLR, LRL, see the figure.

� The methods are simple using algebraic equations.

RSR

RSL

LRL

http://cmp.felk.cvut.cz


31/51
A cubic polynomial

� Four boundary constraints:
q(0) = qini; q(T ) = qfin; q̇(0) = vini; q̇(T ) = vfin.

� ∆q = qfin − qini; the curve parametrization τ = t/T , τ ∈ [0, 1].

� A cubic polynomial q(τ) = qini + ∆q (aτ3 + bτ2 + cτ + d).

� A “doubly normalized” polynomial qN(τ) such that

• qN(0) = 0⇔ d = 0.

• qN = 1⇔ a+ b+ c = 1.

• q̇N(0) = dqN
dτ

∣∣∣
τ=0

= c = viniT
∆q .

• q̇N(1) = dqN
dτ

∣∣∣
τ=1

= 3a+ 2b+ c = vfinT
∆q .

http://cmp.felk.cvut.cz
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Cubic polynomial, a special case, rest-to-rest

� The boundary constraints and the parametrization remains as above.

� A cubic polynomial as well: q(τ) = qini + ∆q (aτ3 + bτ2 + cτ + d).

� A polynomial qN(τ) such that

• qN(0) = 0⇔ d = 0.

• q̇N(0) = 0⇔ c = 0.

• qN = 1⇔ a+ b = 1.

• q̇N(1) = 0⇔ 3a+ 2b = 0.

From previous two equations, a = −2, b = 3.

http://cmp.felk.cvut.cz
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Quintic polynomial

� q(τ) = aτ5 + bτ4 + cτ3 + dτ2 + eτ + f , i.e., 6 coefficients,
� satisfying constraints, e.g., in the normalized time τ :
q(0) = q0; q(1) = q1; q̇(0) = v0T ; q̇(1); q̈(0) = a0T

2; q̈(1) = a1T
2;

q(τ) = (1− τ)3

(
q0 + (3q0 + v0T ) τ + (a0T

2 + 6v0T + 12q0)
τ2

2

)

= +τ3

(
q1 + (3q1 − v1T )(1− τ) +

(a1T
2 − 6v1T + 12q1)(1− τ)2

2

)
A special case, rest-to-rest:

� v0 = v1 = a0 = a1 = 0.
� q(τ) = q0 + ∆q(6τ5 − 15τ4 + 10τ3); ∆q = q1 − q0.

http://cmp.felk.cvut.cz
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4-3-4 polynomials

Three phases in pick-and-place operations: Lift off, Travel, Set down.

Boundary constraints:

q(t0) = q0, q(t−1 ) = q(t+1 ) = q1 , q(t−2 ) = q(t+2 ) = q2 , q(tf) = qf

q̇(t0) = q̇(tf) = 0 , q̈(t0) = q̈f(tf) = 0

q̇(t−0 ) = q̇(t+0 ) , q̈(t−i ) = q̈(t+i ) , i = 1, 2

The first equation corresponds to six pasages; the second equation to four initial/final
velocities/accelaretions; the third equation to four continuity constraints.

http://cmp.felk.cvut.cz
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Higher-order polynomials

� Higher-order polynomials provide a suitable solution class for satisfying symmetric boundary
conditions in a point-to-point motion that imposes zero values on higher-order derivatives.

• The interpolating polynomial is always of the odd degree.

• The coefficients of such (doubly normalized) polynomial are always integers, alternate in
sign, sum up to unity, and are zero for all term up to the power = (degree−1)

2 .

� In all other cases (e.g., for interpolating a large number N of points), the use of higher-order
polynomials is not recommended.

• N -th order polynomials have N − 1 maximum and minimum points.

• Oscilations arise out of the interpolation points (wandering).

http://cmp.felk.cvut.cz
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Higher-order polynomials, oscillations

http://cmp.felk.cvut.cz
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Numerical examples

http://cmp.felk.cvut.cz
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Several polynomials
instead of one high-degree polynomial

� Given N points, in order to avoid the problem of high ‘oscillations’ and troubles with the
numerical precision avoid a single high-degree N − 1 polynomial.

� Instead, use N − 1 polynomials with lower degree p, p < N − 1. Each polynomial
interpolates a segment of the trajectory.

� Often p = 3 is chosen so that continuity of the velocity and acceleration is achieved.

q(t) = a0 + a1t+ a2t
2 + a3t

3

� There are 4 coefficients for each polynomial, and thus it is necessary to compute 3(N − 1)
coefficients.

http://cmp.felk.cvut.cz
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Spline

� The word “spline” refers to thin strip of wood or metal. At one time, curves were designed for
ships or planes by mounting actual strips so that they went through a desired points but were
free to move otherwise.

� Definition:
A cubic spline curve is a piecewise cubic curve with continuous second derivation.

� Definition (a special case):
A cubic spline curve is relaxed if its second derivative is zero at each endpoint.

� An easy way of making a controlled-design curve with many control points is to use B-spline
curves.

http://cmp.felk.cvut.cz
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B-spline, construction by hand (1)

We start the description with relaxed uniform B-spline curves for simplicity.

Assume starting by specifying of a control polygon of points B0, B1, . . . , Bn.

http://cmp.felk.cvut.cz
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B-spline, construction by hand (2)

The B-spline construction method if done by hand: Divide each leg of a control polyton in thirds
by marking two “division” points. At each Bi except the first and last, draw a line segments
between the two nearest “division” points. Call the midpoint Si. Then you make an A-frame with
Bi at the apex. Let S0 = B0 and Sn = Bn for completeness.

http://cmp.felk.cvut.cz
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B-spline, construction by hand (3)

Sketch a cubic (Bézier) curve from each point Si to the next using as Bézier control points the
four points Si, two “division” points, and Si+1.

http://cmp.felk.cvut.cz
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Interpolation using splines

� Task formulation: Interpolate N knots along the desired curve, keep C2 continuity, i.e.
continuity up to the second derivative.

� Solution: Approximate by splines.
Splines are N − 1 cubic polynomials concatenated to pass through knots (also control points)
and being continuous in velocity and acceleration in the N − 2 internal knots.

� 4 (N − 1) coefficients.
� 4 (N − 1)− 2 conditions, more specifically
• 2 (N − 1) passages, pro each cubic in the two knots at its ends.
• N − 2 continuities for velocities at internal knots.
• N − 2 continuities for accelerations at internal knots.

� Two free parameters are still left over. These parameters can be used to, e.g., assign the
initial and final velocities v1, vN .

� We present curves in terms of time t. It is similar for space λ.

http://cmp.felk.cvut.cz
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Building a cubic spline

� The polynomial ΘK(τ) = ak0 + ak1τ + ak2τ
2 + ak3τ

3; τ ∈ [0, hk],
τ = t− tk, k = 1, . . . , N − 1.

� Continuity conditions for velocity and acceleration:
Θ̇k(hk) =Θ̇k+1(0); Θ̈k(hk) =Θ̈k+1(0); k = 1, . . . , N − 2.

http://cmp.felk.cvut.cz
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An efficient algorithm

1. If all velocities vk at internal knots were known then each cubic in the spline would be uniquely determined by
Θk(0) = qk = ak0

Θ̇(0) = vk = ak1

[
hk2 hk3

2hk 3hk2

] [
ak2

ak3

]
=

 qk+1 − qk − vk hk

vk+1 − vk


2. Impose N − 2 acceleration continuity constraints

Θ̈k(hk) = 2ak2 + 6ak3hk = Θ̈k+1(0) = 2 ak+1,2

3. Expressing the coefficients ak2, ak3, ak+1,2 in terms of still unknown knot velocities, see step 1, yields a linear
system of equations, which are always solvable

http://cmp.felk.cvut.cz
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Structure of A(h)

http://cmp.felk.cvut.cz
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Structure of b(h, q, v1, vN)

http://cmp.felk.cvut.cz
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Properties of splines

� The spline is the solution with the minimum curvature among all interpolating functions
having continuous derivatives up to the second one.

� A spline is uniquely determined from the data q1, . . . , qn, h1, . . . , hN−1, v1, . . . , vn.
� The total transfer time is T =

∑K
k=1 hk = tN − t1.

� The time intervals hk can be chosen to minimize T (linear objective function) under
(nonlinear) bounds on velocity and acceleration in [0, T ].

� For cyclic taks (q1 = qN), it is preferable to impose simply the continuity of velocity and
acceleration at t1 = tN as the “squaring” conditions
• in fact, even choosing v1 = vN does not guarantee the acceleration continuities;
• in this way, the first = last knot will be handled as all other internal knots

� When initial and final accelerations are also assigned, the spline construction can be suitably
modified.

http://cmp.felk.cvut.cz
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A modification
handling assigned initial and final accelerations

� Two more parameters are needed in order to impose also the initial acceleration α1 and final
acceleration αN .

� Two “fictious knots” are inserted in the first and last original intervals, increasing the number
of cubic polynomials from N − 1 to N + 1.

� In these two knots only continuity conditions on position, velocity and acceleration are
imposed ⇒ two free parameters are left over (one in the first cubic and one in the last cubic),
which are used to satisfy the boundary constraints on acceleration.

� Depending on the (time) placement of the two additional knots, the resulting spline changes.

http://cmp.felk.cvut.cz
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A numerical example

http://cmp.felk.cvut.cz
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