
Planning in robotics of the path, motion, activity. . .
Václav Hlaváč

Czech Technical University in Prague
Czech Institute of Informatics, Robotics and Cybernetics

160 00 Prague 6, Jugoslávských partyzánů 3, Czech Republic
http://people.ciirc.cvut.cz/hlavac, vaclav.hlavac@cvut.cz

also Center for Machine Perception, http://cmp.felk.cvut.cz

Outline of the talk:
� Holonomicity.

� Motion planning, formulation.

� Terminology, path vs. trajectory.

� Robotic planning as a spatial reasoning.

� Motion planning algorithms.

�

2/22
Motion planning in industrial and mobile robotics

Determining where to move without hitting obstacles.

http://cmp.felk.cvut.cz

3/22
Three key questions in robotic planning

1. Where am I?
Localization.

2. Where have I been?
Mapping.

3. Where am I going?
Planning.

4. How do I get there?
Navigation.

Are two given points connected by a path?

http://cmp.felk.cvut.cz

4/22
Motivation task for motion planning

The motivation task

� The task:
Transform the high-level task specification (provided
by a human) into the low-level commands controlling
the actuators.

� The solution:
Motion planning algorithms provide the (geometric)
path enabling to move a robot (or a manipulator
gripper) from the start to the goal taking into account
all operational constraints.

Asimo robot by Honda.

BMW spot welding.

http://cmp.felk.cvut.cz

5/22
Motion planning, the problem formulation

� Motion planning (a robotics
term) is the process of breaking
down a desired movement task into
(discrete) motions satisfying given
constraints (as not hitting obstacles,
keeping speed limits) and possibly
address optimality aspects.

� Known also as the navigation
problem or piano mover’s problem.

� The geometric aspect of the task
(spatial reasoning) induces use of
methods from computational
geometry.

A computational geometry example:
The Moving ladder problem

� What is the longest ladder that can be moved around a right-angled
corridor of unit width?

� For a straight, rigid ladder, the answer is 2
√
2, which allows the

ladder to just pivot around the corner at a 45o angle.

Ladder
The critical
configuration

width = 1

http://cmp.felk.cvut.cz

6/22
C-space, a reminder

We studied the configuration space in the “robot world representation” lecture.

Consider a robot arm with two DOFs. The task is to move from the point (1) to the point (2) not
touching the obstacles.

Euclidean (Cartesian) space C-space

http://cmp.felk.cvut.cz

7/22
Piano mover’s problem

� Given an open subset U (free space) in n-dimensional C−space and two compact subsets C0

(start) and C1 (goal) of U , where C1 is derived from C0 by a continuous motion, is it
possible to move C0 to C1 while remaining entirely inside U?

� A side effect of the algorithm: the 3D trajectory and the “piano” 3D configuration in any
trajectory point.

� References
• Buchberger, B., Collins, G. E., and Kutzler, B.: Algebraic Methods in Geometry. Annual Rev. Comput. Sci.

3, 85-119, 1988.
• Finch, S. R.: Moving Sofa Constant, Section 8.12 in Mathematical Constants. Cambridge, England:

Cambridge University Press, pp. 519-523, 2003.
• Feinberg, E. B., Papadimitriou, C.: H. Finding Feasible Points for a Two-point Body, J. Algorithms 10,

109-119, 1989.
• Leven, D., Sharir, M.: An Efficient and Simple Motion Planning Algorithm for a Ladder Moving in

Two-Dimensional Space Amidst Polygonal Barriers, J. Algorithms 8, 192-215, 1987.

http://cmp.felk.cvut.cz

8/22
Piano mover’s problem, a video example

Courtesy: Jan Faigl et al., The Czech Technical University in Prague

http://cmp.felk.cvut.cz

9/22
Piano mover’s problem, a formal guarantee

� Given:

• p – dimension of the configuration space, abbreviated C−space.

• m – number of polynomials describing Cfree.

• d – Maximal degree of polynomials (in the preceding item).

� Theorem (which is not very useful practically):
A path (if it exists) can be found in time exponential in p and polynomial in m and d.

� J. Canny: The complexity of robot motion planning, MIT Ph.D. dissertation, 1987.

http://cmp.felk.cvut.cz

10/22
Terminology: path vs. trajectory

� Note: Terms path, trajectory are often confused. They are used
as synonyms informally.

� Path is an ordered locus of points in the space (either joint or operational), which the robot
should follow.
• Path provides a pure geometric description of motion.
• Path is usually planned globally taking into account obstacle avoidance, traversing a

complicated maze, etc.
� Trajectory is a path plus velocities and accelerations in its each point.
• A design of a trajectory does not need global information, which simplifies the task

significantly.
• The trajectory is specified and designed locally. Parts of a path are covered by individual

trajectories.
• It is often required that pieces of trajectories join smoothly, which induces that a single

trajectory design takes into account only neighboring trajectories from the path.

http://cmp.felk.cvut.cz

11/22
Robot motion planning, an overview

Path planning (global)

� Geometric path.
� Issues: obstacle avoidance, shortest path.

Trajectory generating (local)

� The path planning provides the input – the chunk of a
path usually given as a set of points defining the
trajectory.

� “Approximate” the desired path chunk by a class of
polynomial functions and

� generate a sequence of time-based “control set
points” for the control of manipulator from the initial
configuration to its destination.

Path plan

Trajectory plan

Robot controller

Sensing Acting

External task
(mission planning)

Path

Trajectory

A real environment

is the source of uncertainties

feedback control

http://cmp.felk.cvut.cz

12/22
Path planning framework

1. Continuous robot world/workspace representation.
� Represented often in configuration space or operational space.
� Represent related constraints as obstacles, minimal curvature of the path. It is more
complicated with dynamic constraints.

2. Discretization.
� Deterministic discretization as the occupancy grid.
� Random sampling.
� Critical geometric events and their representation.

3. Path finding by graph searching.
� Breath-first.
� A∗

� Approximation methods, etc.

http://cmp.felk.cvut.cz

13/22
Problem solving vs. planning

Basic problem solving

� Problem solving (search in a
state- space, a basic tool in AI)
and planning have a similar
core. However, they are
considered different.

� Basic problem solving searches
a state-space of possible
actions, starting from an initial
state and following any path to
the goal state.

Planning differs from the basic problem solving in:

1. Planning “opens up” the representation of states,
goals and actions so that the planner can deduce
direct connections between states and actions.

2. The planner does not have to solve the problem in
order. It can suggest actions to solve any sub-goals at
any time.

3. Planners assume that most parts of the world are
independent. Decomposition to subproblems into
practically sized chunks simplifies the solution
considerably.

http://cmp.felk.cvut.cz

14/22
Path planning (dealt in this lecture)

� Goals:
• Achieve high-level goals, e.g.:

Assemble/disassemble the engine. Build a map of the hallway. Find a collision free path
for the robot from one configuration to another configuration.
• Compute motion strategies, e.g.:

Geometric paths; Sequence of sensor-based motion commands. Time-parameterized
trajectories.

� Path planning is a difficult search problem.
• The involved task has an exponential complexity with respect to the degrees of freedom

(controllable joints).
• With industrial robots, path planning has been often solved by human operators showing

(teaching in) the desired paths. Recently, automatic planning has been used more often.

http://cmp.felk.cvut.cz

15/22
Trajectory generating (covered in a separate lecture)

� Planned path is typically represented by via-points.

• Via-points = sequence of points (or end-effector poses) along the path.

� Trajectory generating = creating a trajectory connecting two or more via points.

• Trajectory generating approximates / interpolates the path.

• In industrial settings, a trajectory is performed by a human expert and later played back
(by teach-and-playback).

• Recent research utilizes as the input several tens of trajectories performed by human
experts. They vary statistically.

• Machine learning techniques are used to create the final trajectory.

http://cmp.felk.cvut.cz

16/22
Robotic planning as spatial reasoning

� Application of earlier search approaches from artificial intelligence.
(A*, stochastic search, etc.)

� Search in geometric structures ⇒ Spatial reasoning.
� A more complex variant considering time: Spatial-temporal reasoning.
� Challenges:
• Continuous state space.
• Large dimensional space.

� The main strategy in motion planning:
• Reduction to point robot.
• Configuration space.
• Solution: convert to a search problem, usually the graph search.

http://cmp.felk.cvut.cz

17/22
Collision and proximity queries

require geometric reasoning of spatial relationships among objects, often in a dynamic environment.

collision detection contact points
and normals

closest points and
separation distance

penetration depth

http://cmp.felk.cvut.cz

18/22
Collision and proximity computations

� A key component of motion planning algorithms (estimated 90% of a total run time).

� Widely used in CAD/CAM, simulation and virtual prototyping.

� Supported in robot simulation and CAD systems

� Studied in academia for 30+ years.

� Widely used recent implementations:

• FCL (The Flexible Collision Library, University of Northern Carolina, Chapel Hill).

• MoveIt! (part of ROS).

http://cmp.felk.cvut.cz

19/22
Motion planning algorithms, two main groups

Optimization-based algorithms Random sampling-based algorithms

The green circle denotes the start. The orange circle denotes the goal.

http://cmp.felk.cvut.cz

20/22
Deterministic motion planning methods

Global approaches

� Road-map [Nilsson, 1969], [Jorgensen et al., 1986]

� Cell decomposition [Chazelle, 1987]

� Potential field [Khatib, 1986]

Local or reactive approaches

� Bug algorithm [Lumelsky, 1990]

� Vector field histogram [Borenstein and Koren, 1991]

� Histogramic in motion mapping [Borenstein and Koren, 1991]

� Dynamic window [Fox et al., 1997]

http://cmp.felk.cvut.cz

21/22
Planning: input, output, applications

Input

� Geometrical representation of a robot
and its environment (e.g. obstacles).

� Initial and goal configurations.

Output
A path from start to finish (or the recognition
that none exists).

Applications

� Selfdriving car, robot plans.

� Automated assembly plans.

� Robot-assisted surgery.

� Molecule docking and its analysis.

� Moving pianos around . . .

http://cmp.felk.cvut.cz

22/22
Connection to next slides

Note to students:

� The following slides are taken from my older PowerPoint presentation, which I compiled from
several presentations of other authors/teachers.

� I amended these slide to my LATEX presentation at the pdf level. That is the reason why the
numbering starts wrongly from 1 again.

� I intend to include/rewrite these slides into my LATEX presentation.

http://cmp.felk.cvut.cz

Motion planning methods

• Global approaches
• Road-map [Nilsson, 1969], [Jorgensen et al., 1986]
• Cell decomposition [Chazelle, 1987]
• Potential field [Khatib, 1986]

• Local or reactive approaches
• Bug algorithm [Lumelsky, 1990]
• Vector field histogram [Borenstein and Koren, 1991]
• Histogrammic in motion mapping [Borenstein and Koren, 1991]
• Dynamic window [Fox et al., 1997]

1

Task input, output

Input:
• Geometric descriptions of a robot and

its environment (obstacles).
• Initial and goal configurations.

Output:
• A path from start to finish (or the

recognition that none exists).

Applications:
• Robot-assisted surgery.
• Automated assembly plans.
• Mobile robot plans.
• Drug-docking and analysis.
• Moving pianos around …

2

Taxonomy of methods

1. Roadmap approaches.

2. Cell decomposition.

3. Potential fields.

4. Bug algorithm.

Goal: Reduce the N-dimensional configuration
space to a set of
1-dimensional paths to search.

Goal: Account for all of the free space.

Goal: Create local control strategies that
will be more flexible than those above.

Limited knowledge path planning.

3

Roadmap: Visibility graphs

Visibility graphs: In a polygonal (or polyhedral) configuration space,
construct all of the line segments that connect vertices to one another (and
that do not intersect the obstacles themselves).
 Formed by connecting all “visible” vertices, the start point and the end point,

to each other.
 For two points to be “visible”, no obstacle can exist between them.
 Paths exist on the perimeter of obstacles.

 From Cfree, a graph is defined.
 Converts the problem into graph search.

Dijkstra’s algorithm O(N2)

N = the number of vertices
in the C-space

4

Visibility graph in action 1

• First, draw lines of sight from the start and goal to all “visible”
vertices and corners of the world.

start

goal

5

Visibility graph in action 2

• Second, draw lines of sight from every vertex of every obstacle like
before. Remember lines along edges are also lines of sight.

start

goal

6

Visibility graph in action 3

start

goal

• Second, draw lines of sight from every vertex of every obstacle like
before. Remember lines along edges are also lines of sight.

7

Visibility graph in action 4

start

goal

• Second, draw lines of sight from every vertex of every obstacle like
before. Remember lines along edges are also lines of sight.

8

Visibility graph, finishing

• Repeat until you’re done.

start

goal

Since the map was in C-space, each line potentially
represents part of a path from the start to the goal.

9

Visibility graph drawbacks

Visibility graphs do not preserve their optimality in
higher dimensions:

 In addition, the paths they find are “semi-free,” i.e. in contact
with obstacles.
No clearance.

shortest path

shortest path within the visibility
graph

10

Voronoi diagram

Line segments make up
the Voronoi diagram
(isolates a set of points).

Property: maximizing
the clearance between
the points and
obstacles.

Roadmap: Voronoi diagrams

Generalized Voronoi Graph (GVG):
locus of points is equidistant from the closest
two or more obstacle boundaries, including
the workspace boundary.

11

Roadmap: Voronoi diagrams

• GVG is formed by
paths equidistant
from the two
closest objects.

• Maximizing the
clearance
between the
obstacles.

• This generates a
very safe roadmap
which avoids
obstacles as much
as possible.

12

Voronoi Diagram: Metrics

• Many ways to measure distance; two are:
– L1 metric

• (x,y) : |x| + |y| = const
– L2 metric

• (x,y) : x2 +y2 = const

13

Voronoi diagram in L1

Note the
lack of
curved
edges.

14

Voronoi diagram in L2

Note the
curved
edges.

15

Exact cell decomposition 1

Decomposition of the free space
into trapezoidal & triangular
cells

Connectivity graph representing
the adjacency relation between
the cells

(Sweepline algorithm)

Trapezoidal Decomposition:

16

Exact cell decomposition 2

Search the graph for a path
(sequence of consecutive cells)

Trapezoidal Decomposition:

17

Exact cell decomposition 3

Transform the sequence of cells into a
free path (e.g., connecting the mid-points
of the intersection of two consecutive
cells)

Trapezoidal Decomposition:

18

Obtaining the minimum number of
convex cells is NP-complete.

Optimality

There may be more details in the world than the task needs to worry about...

Trapezoidal decomposition is exact and
complete, but not optimal.

Trapezoidal Decomposition:

15 cells 9 cells

19

Quadtree Decomposition

20

Octree Decomposition

21

Again, use a graph-search algorithm to
find a path from the start to goal.

Quadtre
e

 is this a complete path-planning algorithm?
 i.e., does it find a path when one exists ?

Quadtree Decomposition:
 The rectangle cell is recursively

decomposed into smaller rectangles.
 At a certain level of resolution, only the

cells whose interiors lie entirely in the
free space are used.

 A search in this graph yields a collision
free path.

Further decomposing …

22

Quadtree Decomposition:

Approximate cell decomposition

subdivides recursively each mixed
obstacle/free (sub)region into four quarters
…

Quadtree:

23

Further decomposing …

Quadtree Decomposition:

subdivides recursively each mixed
obstacle/free (sub)region into four quarters
…

Quadtree:

24

Again, use a graph-search algorithm to
find a path from the start to goal.

Quadtree is this a complete path-planning algorithm?
 i.e., does it find a path when one exists ?

Quadtree Decomposition:
 The rectangle cell is recursively

decomposed into smaller rectangles.
 At a certain level of resolution, only the

cells whose interiors lie entirely in the
free space are used.

 A search in this graph yields a collision
free path.

Further decomposing …

25

Potential field method

Working Principle:
 The goal location generates an attractive potential – pulling the robot

towards the goal.
 The obstacles generate a repulsive potential – pushing the robot far

away from the obstacles.
 The negative gradient of the total potential is treated as an artificial

force applied to the robot.
 Let the sum of the forces control the robot.

C-obstacles

26

Compute an attractive force toward the goal

C-
obstacles

Attractive
potential

Potential field method

27

Repulsive Potential
 Create a potential barrier around the C-obstacle

region that cannot be traversed by the robot’s
configuration.
 It is usually desirable that the repulsive potential

does not affect the motion of the robot when it is
sufficiently far away from C-obstacles.

Compute a repulsive force away from obstacles

Potential field method

28

Compute a repulsive force away from obstacles.

• Repulsive Potential

Potential field method

29

C-obstacle

Attractive
potential

Repulsive
potential

Sum of
potentials

Sum of potentials

+

30

 After the total potential is obtained,
generate force field (negative
gradient)
 Let the sum of the forces control the

robot.

To a large extent, this is computable from sensor readings.

Equipotential contours

Negative
gradient

Total
potential

Potential field method

31

Random walks are not perfect …

 Spatial paths are not preplanned and can be generated in real time.
 Planning and control are merged into one function.
 Smooth paths are generated.
 Planning can be coupled directly to a control algorithm

Pros:

 Trapped in local minima in the potential field.
 Because of this limitation, commonly used for local path planning.
 Use random walk, backtracking, etc to escape the local minima.

Cons:

Potential field method

32

 Path planning with limited
knowledge.
 Insect-inspired “bug” algorithms.

Bug algorithms

Goal

Start

 Known direction to goal.
 Only local sensing

(walls/obstacles
encoders).
 “Reasonable” world.
 Finite obstacles in any

finite range.
 A line will intersect the

obstacle finite times.

33

Beginner Strategy

Switching between two
simple behaviors:
1.Moving directly towards

the goal.
2.Circumnavigating an

obstacle.

Bug algorithm:
1. Head toward goal.
2. Follow obstacles until

you can head toward
the goal again.

3. Continue.

Insect-inspired “bug”
algorithms

assume a
leftist robot

34

Bug algorithms 2

• In many cases, a global map of the environment is not
available when the robot begin moving towards its goal.

• Local potential field-based planners cannot be
guaranteed to find a path to the goal.
• Bug1 algorithm / Bug2 algorithm
• Tangent Bug algorithm

• These algorithms are used for path planning from a
starting location to a goal with known coordinates, on the
assumption of:
• a holonomic point robot with perfect odometry,
• an ideal contact sensor (zero range sensor),
• and infinite memory.

35

• Bug1 algorithm exhibits two behaviors:
• Motion-to-Goal.
• Boundary-following (hit point / leave point).

• Bug2 algorithm shows similar behaviors:
• The line from a start point to the goal is fixed.

• Tangent Bug algorithm
• An improvement to the Bug2 algorithm in that it

determines a shorter path to the goal using a range
sensor with a 360 degree infinite orientation resolution.

Bug1 / Bug 2 / Tangent algorithms

36

The path generated by Bug1 The path generated by Bug2

Bug algorithms, example

37

The path generated by
Tangent Bug with finite
sensor range

The path generated by
Tangent Bug with zero
sensor range

Bug algorithms, example 2

38

The path generated by Tangent
Bug with infinite sensor range

Bug algorithms, example 3

39

	First page
	ccmp Motion planning in industrial and mobile robotics
	ccmp Three key questions in robotic planning
	ccmp Motivation task for motion planning
	ccmp Motion planning, the problem formulation
	ccmp $cal {C}$-space, a reminder
	ccmp Piano mover's problem
	ccmp Piano mover's problem, a video example
	ccmp Piano mover's problem, a formal guarantee
	ccmp Terminology: path vs. trajectory
	ccmp Robot motion planning, an overview
	ccmp Path planning framework
	ccmp Problem solving vs. planning
	ccmp Path planning {
ormalsize (dealt in this lecture)}
	ccmp Trajectory generating {small (covered in a separate lecture)}
	ccmp Robotic planning as spatial reasoning
	ccmp Collision and proximity queries
	ccmp Collision and proximity computations
	ccmp Motion planning algorithms, two main groups
	ccmp Deterministic motion planning methods
	ccmp Planning: input, output, applications
	ccmp Connection to next slides
	Last page
	MotionPlanningMethodsAddition.pdf
	Motion planning methods
	Task input, output
	Taxonomy of methods
	Slide Number 4
	Visibility graph in action 1
	Visibility graph in action 2
	Visibility graph in action 3
	Visibility graph in action 4
	Visibility graph, finishing
	Slide Number 10
	Slide Number 11
	Roadmap: Voronoi diagrams
	Voronoi Diagram: Metrics
	Voronoi diagram in L1
	Voronoi diagram in L2
	Exact cell decomposition 1
	Exact cell decomposition 2
	Exact cell decomposition 3
	Slide Number 19
	�Quadtree Decomposition
	Octree Decomposition
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Bug algorithms 2
	Bug1 / Bug 2 / Tangent algorithms
	Bug algorithms, example
	Bug algorithms, example 2
	Bug algorithms, example 3

