fes

CVUT
v Praze
in Prague

State space search

A* Algorithm and way to it via
Breath-first search and Dijkstra algorithms

Vaclav Hlavac
Czech Technical University in Prague (CVUT)

Czech Institute of Informatics, Robotics,
and Cybernetics (CIIRC)

Prague 6, Zikova 4, Czech Republic

hlavac@ciirc.cvut.cz
http://people.ciirc.cvut.cz/hlavac/

Courtesy: Antonin Vobecky and authors of several presentation on the web

http://www.ciirc.cvut.cz/
mailto:hlavac@ciirc.cvut.cz
http://people.ciirc.cvut.cz/hlavac/

Motivation %

CVUT
= Many analytical tasks can be solved by b
searching through a space of possible

states.

= Starting from an initial state, we try
reaching a goal state.

= Sequence of actions leading from
initial to goal state is the solution to
the problem.

=" The issues: large number of states al
many choices to make in each state.

= Search has to be performed in a
systematic manner.

Typical search tasks
CVUT

V. Hlavag, State space search

State space search, the basic idea

= State space search
amounts to a search
through a directed
graph.
* graph nodes = states

* arcs (directed edges) =
transitions between

states.

= Graph may be defined
explicitly or implicitly.

= Graph may contain
cycles.

= |f we also need the
transition costs, we
work with a weighted
directed graph.

/‘\

(\/G

fes

CVUT
v Praze
in Prague

Size of the search space /@

CVUT
* The state space can be HUGE! (Combinatorial b
explosion)
= Right representation helps.
* Eight puzzle: 181,440
* Draughts / Checkers / in Czech dama: 1040
* Chess: 10?9 (in an average length game)

®* Theorem Proving: Infinite!
= Control strategy helps choose which operators to

apply:
* Small # of operators: general, but bushy tree.
° Large #: perhaps overly specific, but less bushy

trees.

Search tree %

CVUT
v Praze
in Prague

= By searching througha = Open nodes or “the

directed graph, we frontier”: nodes that

gradually construct a have been generated,

search tree. but have not yet been
= We do this by expanded.

expanding one node " Closed nodes: already

after the other: we use expanded nodes.

the successor function
to generate the
descendants of each
node.

= Search strategy is
defined by the order in
which the nodes are
expanded. Different
orders yield different
strategies.

State space vs. search tree ft

CVUT
v Praze

= Search tree is created while searching i Prague
through the state space.

= Search tree can be infinite even if the state
space is finite. E.g. if the state space contains

cycles - search tree is infinite.

Open nodes, pictorial illustration %é

CvuUT
I v Praze
{ends of™ in Prague
paths a::-nr.ﬁ

fronti Y S

ron IEr'. —») f

start ™

node)'C e

™ ; (™y
™y
U —
~
explored nodes %30
T
-
unexplored nodes
Fa [f-
0o
5/
x A O
Y
e _/

V. Hlavag, State space search

The basic search algorithm %

CVUT
Initialize: put the start node into OPEN e
while OPEN is not empty
take a node N from OPEN
if N is a goal node, report success
put the children of N onto OPEN

Report failure

= If OPEN is a stack, this is a depth-first search.
= If OPEN is a queue, this is a breadth-first search.

= If OPEN is a priority queue, sorted according to most
promising first, we have a best-first search (Dijkstra
algorithm).

Breadth-first search /@

CVUT

v Praze

(a b b reV. B FS) in Prague

Implementation:

= Pick and remove a location from the OPEN
(frontier).

= Mark the location as visited so that we know
not to process it again.

" Expand it by looking at its neighbors. Any
neighbors we haven’t seen yet we add to the
frontier.

10

Breadth-first search (2)

V. Hlavag, State space search

fes

CVUT
v Praze
in Prague

11

Breadth-first search (3) /%%

CVuUT
=visits all reachable places i Pragee
= efficiency:

* time: O(bY)

* space: O(h9)
* b=branching factor, d=depth of goal
" No priority

" possible improvements:
* early exit = search stops when the goal is reached

* movement cost - Dijkstra algorithm

12

Dijkstra algorithm %é

CvuT
v Praze

= Adding movement cost to Breath-first n Prague
search algorithm, expands in all directions

= Using priority queue
* Choosing move with the lowest cost
= Time efficiency: O(|E|+|V| log|V]),
V=number of nodes, E=number of edges

Number of steps Distance

[) 8 9 10 11 12 [i 8 9 10 11 | 12

il 9 10 111 3 11 12 13

B
| el

3

.HEE. -

5 5
4 4
3 3
2 2
1 1 R
I —
2 _x 5 2 .-.-.x w7
3 s e 3 oo
4 4
5 5
[[

I 8 9 8 9 1M 11 12 13 I 8 9 10 11 12 13 14 15

V. Hlavac, State space search 13

v Praze
in Prague

CVUT

= He—

Dukstra’s Algorithm

4+++++++++++ +

(e

Dijkstra algorithm vs. BFS

14

V. Hlavac, State space search

Greedy best first search /@

CVUT
v Praze

" better for finding path to one exact location i e

" use of heuristics:
* distance to the goal
*e.g..
def heuristics(a,b):
return abs(a.x - b.x) + abs(a.y + b.y)

= time/space efficiency: O(b™)
* good heuristics can give huge improvements

= priority queue
* priority = distance to goal

15

Greedy best-first search - examples %é

CVuT
v Praze
in Prague

Breadth First Search Greedy Best-First Search

HEEEE
X %
- H _HEEE
] H N
] H _H
] H N
] H _H
] H N
]]

V. Hlavac, State space search 16

Greedy best-first search - examples %\é

CvuT
v Praze

=" Problem with obstacles. in Prague
= May not find the shortest path.

Breadth First Search Greedy Best-First Search

HEEEEEEEEEEEE
| _ |

HEEEEEEEEEEEEEE
. = |

Fﬂll“ll“ll“ll“lll

V. Hlavag, State space search 17

A* algorithm (read “A star”)

CVUT
v Praze

" Using the best of both Djikstra and Greedy i e
algorithms, worst time/space: O(bd)

" Expanding based on:

* distance from start
* distance to goal (=heuristics)

Dijkstra’s Algorithm Greedy Best-First Search A* Search

12 13 14 15 16 17 18 19 20 21 2 11 Mm99 a|7 6|5 4|3 =2 T T o nn o
1 12 13 14 15 168 17 18 19 20 21 110 9 & 7 6 5 4 3 1 FO
2 N 2 & 5
1312 1 w0 g8 7 Z| 25 25 25| 25 25| 25
13 12|11 10 9 7 6 | 25 25 5|25 25 25| 25
1 12 0 9 &8 7 | 25 5|25 25| 25 25| 25
15 1 2 " W0 a9 38 Pl 25| 25 25| 25 25
17 15 14 13|12 1|10 3 25 25|25 25 25 25 5|2
19 13 17 1§ 1312 110 25 B Z X R N R &
21 2 13 18 2 N 25 25
2|z) a 12 25 25
22 23| 2= 25
*® = =
= z

V. Hlavac, State space search 18

A* algorithm %\%

CVUT
v Praze
in Prague

V. Hlavag, State space search

http://youtube.com/v/19h1g22hby8
http://youtube.com/v/19h1g22hby8

Map of Manhattan

* How would you find a path from S to G?

52nd St

51t St

50t St

CZ\ AT 0]

ONY 116

IV 8

Cl\vATVA

ONY 419

Y S

CU\v AT

NV p€

ONY pul

fes

CVUT
v Praze
in Prague

Best-First Search /@

CVUT

v Praze

" The Manhattan distance (A X+ AYy)isan e
estimate of the distance to the goal

* |t is a heuristic function

= Best-First Search

® Order nodes in priority queue to minimize
estimated distance to the goal h(n)

" Compare: Dijkstra
® Order nodes in priority queue to minimize distance
from the start

Best First in action

* How would you find a path from S to G?

52nd St

51t St

50t St

CZ\ AT 0]

ONY 116

IV 8

Cl\vATVA

ONY 419

Y S

CU\v AT

NV p€

ONY pul

fes

CVUT
v Praze
in Prague

Problem 1: Led astray %\%

CVUT
v Praze
in Prague

= Eventually will expand vertex to get back on

the right track

52nd St S

515t St

50t St - :
NN

Problem 2: Optimality @

CVUT
v Praze

" With Best-first search, are you guaranteed . rws.c
a shortest path is found when

® goal is first seen?
* when goal is removed from priority queue (as with

Dijkstra?)

Sub-optimal solution %

CVUT
v Praze
in Prague

"No! Goal is by definition at distance 0O: will
be removed from priority queue
immediately, even if a shorter path exists!

(5 blocks)
S s
52nd Gt e l h=2
51st St h=4 ‘ ‘ ‘(3 h=1
E Q @ Sl =
> = =0 =0 =0

Synergy? @

CVUT
= Dijkstra / Breadth First guaranteed to find i
optimal solution
" Best First often visits far fewer vertices, but

may not provide optimal solution

* Can we get the best of both?

A*, heuristics %\%

CVUT
v Praze
in Prague

Order vertices in priority queue to minimize

(distance from start) + (estimated distance to goal)

t(n) = g(n) + h(n)

f(n) = priority of a node
g(n) = true distance from start

h(n) = heuristic distance to goal

Optimality %

CVUT
v Praze
in Prague

" Suppose the estimated distance (h) is
always less than or equal to the true

distance to the goal
® heuristic is a lower bound on true distance

* heuristic is admissible

"Then: when the goal is removed from the
priority queue, we are guaranteed to have

found a shortest path!

A* in action %é

CVUT
v Praze
in Prague
5 blocks vertex g(n) | h(n) | f(n)
5214 St g2 (5 blocks)
52nd & 9th | 0 5 5
51st St G
50t St

NV 16
ONY ;8
CI\vATYA
Y 19
O G
Y w7

A* in action

52nd St

51t St

50t St

fes

CVUT
v Praze
in Prague
.g (5 blocks) vertex g(n) [h(n) | f(n)
? 52nd & 4th | 5 2 7
t th
® G 51¢& 9" |1 |4 |5
& ® @ & N
> o0 0 0 0

A* in action %

CVUT
v Praze
in Prague
5 blocks vertex g(n) | h(n) | f(n)
52nd St .S () ®

52nd & 4t | 5 2 7

51St — &b @ G 51t&gh |2 |3 |5

50th & 9th | 2 5 7

50th St o

IAY 1,16
ONY ;8
CU\vATYA
Y 19
CU\vATIS]
C\ v AT

A* in action

52nd St

51t St

50t St

fes

CVUT
v Praze
in Prague
.S (5 blocks) vertex g(n) | h(n) | f(n)
? 52nd & 4t | 5 2 7
S o ® G 51t & 7th | 3 2 5
50th & 9th | 2 5 7
O O
50t & 8 |3 4 7
E ? R a =
> o0 0 0 0

A* in action %

CVUT
v Praze
in Prague
5 blocks vertex g(n) | h(n) | f(n)
52d St .S () o
52nd & 4t | 5 2 7

50t & 9th | 2 5 /
50t St PN PN PN

50" & 8" |3 4 7

50" & 71 | 4 3 7

IAY 1,16
ONY ;8
CU\vATYA
IAY ;9
CU\vATIS]
C\ v AT

A* in action

52nd St

51t St

50t St

fes

CVUT
v Praze
in Prague
.S (5 blocks) vertex g(n) | h(n) | f(n)
¢ 52nd & 4th | 5 2 7
t th
....@ 51t&5th |5 |0 |5
50th & 9th | 2 5 7
O O O O
50th & 8 | 3 4 7
Q 0 - o o o~ |50 &7 |4 3 7
> = 5 = = =

A* in action

52nd St

51t St

50t St

.S (5 blocks)

@
O O O O ‘5
@ @ @ @
& BN, 2 g &
> = =0 =0 =0

fes

CVUT
v Praze
in Prague
vertex g(n) | h(n) | f(n)
52nd & 4th | 5 2 7
50th & 9t | 2 5 7
50th & 8t | 3 4 7
50t & 7t | 4 3 7

What would Dijkstra have done? %\%

CVUT
v Praze
in Prague

5 blocks
52nd St .S ())

51t St O Q Q O ‘5

50th St O O O N

49t St O O N

48t St O ®

N
~

o0

w

—

CTi\v4 u164

Y ;18
CU\vATYA
ONY ;9
CU\ VAT
CU\v AT

Importance of Heuristics /%%

CVUT
v Praze

"h1 = number of tiles in the wrong place in Prague

= h2 = sum of distances of tiles from correct
ocation

D IDS A*(h1) A*(h2)
2 10 6 6
4 112 13 12
6 680 20 18
8 6384 39 25
10 47127 93 39
12 364404 227 73
14 3473941 539 113
18 3056 363

24 39135 1641

Summary %é

CVUT
v Praze
Finding path to ALL Finding path to ONE e
locations: location:
= Same cost " Preferably use A*

— Breadth-first search algorithm

= Costs vary -
Dijkstra algorithm

V. Hlavac, State space search 38

