
ČVUT
v Praze

in Prague

Václav Hlaváč

Czech Technical University in Prague (ČVUT)

Czech Institute of Informatics, Robotics,
and Cybernetics (CIIRC)

Prague 6, Zikova 4, Czech Republic

hlavac@ciirc.cvut.cz
http://people.ciirc.cvut.cz/hlavac/

State space search
A* Algorithm and way to it via
Breath-first search and Dijkstra algorithms

Courtesy: Antonín Vobecký and authors of several presentation on the web

http://www.ciirc.cvut.cz/
mailto:hlavac@ciirc.cvut.cz
http://people.ciirc.cvut.cz/hlavac/

ČVUT
v Praze

in Prague

Motivation

 Many analytical tasks can be solved by
searching through a space of possible
states.

 Starting from an initial state, we try to
reaching a goal state.

 Sequence of actions leading from
initial to goal state is the solution to
the problem.

 The issues: large number of states and
many choices to make in each state.

 Search has to be performed in a
systematic manner.

V. Hlaváč, State space search 2

ČVUT
v Praze

in Prague

Typical search tasks

V. Hlaváč, State space search 3

ČVUT
v Praze

in Prague

State space search, the basic idea

 State space search
amounts to a search
through a directed
graph.
• graph nodes = states

• arcs (directed edges) =
transitions between
states.

 Graph may be defined
explicitly or implicitly.

 Graph may contain
cycles.

 If we also need the
transition costs, we
work with a weighted
directed graph.

V. Hlaváč, State space search 4

ČVUT
v Praze

in Prague

Size of the search space

 The state space can be HUGE! (Combinatorial
explosion)

 Right representation helps.
• Eight puzzle: 181,440

• Draughts / Checkers / in Czech dáma: 1040

• Chess: 10120 (in an average length game)

• Theorem Proving: Infinite!

 Control strategy helps choose which operators to
apply:

• Small # of operators: general, but bushy tree.

• Large #: perhaps overly specific, but less bushy
trees.

V. Hlaváč, State space search 5

ČVUT
v Praze

in Prague

Search tree

 By searching through a
directed graph, we
gradually construct a
search tree.

 We do this by
expanding one node
after the other: we use
the successor function
to generate the
descendants of each
node.

 Open nodes or “the
frontier”: nodes that
have been generated,
but have not yet been
expanded.

 Closed nodes: already
expanded nodes.

 Search strategy is
defined by the order in
which the nodes are
expanded. Different
orders yield different
strategies.

V. Hlaváč, State space search 6

ČVUT
v Praze

in Prague

State space vs. search tree

Search tree is created while searching
through the state space.

Search tree can be infinite even if the state
space is finite. E.g. if the state space contains
cycles → search tree is infinite.

V. Hlaváč, State space search 7

ČVUT
v Praze

in Prague

Open nodes, pictorial illustration

V. Hlaváč, State space search 8

ČVUT
v Praze

in Prague

The basic search algorithm

Initialize: put the start node into OPEN

while OPEN is not empty
take a node N from OPEN
if N is a goal node, report success
put the children of N onto OPEN

Report failure

 If OPEN is a stack, this is a depth-first search.

 If OPEN is a queue, this is a breadth-first search.

 If OPEN is a priority queue, sorted according to most
promising first, we have a best-first search (Dijkstra
algorithm).

V. Hlaváč, State space search 9

ČVUT
v Praze

in Prague

Breadth-first search

(abbrev. BFS)

Implementation:

Pick and remove a location from the OPEN
(frontier).

Mark the location as visited so that we know
not to process it again.

Expand it by looking at its neighbors. Any
neighbors we haven’t seen yet we add to the
frontier.

V. Hlaváč, State space search 10

ČVUT
v Praze

in Prague

Breadth-first search (2)

V. Hlaváč, State space search 11

ČVUT
v Praze

in Prague

Breadth-first search (3)

visits all reachable places

efficiency:
• time: O(bd)

• space: O(bd)

• b=branching factor, d=depth of goal

no priority

possible improvements:
• early exit = search stops when the goal is reached

•movement cost → Dijkstra algorithm

V. Hlaváč, State space search 12

ČVUT
v Praze

in Prague

Dijkstra algorithm

 Adding movement cost to Breath-first
search algorithm, expands in all directions

 Using priority queue
• Choosing move with the lowest cost

 Time efficiency: O(|E|+|V| log|V|),
V=number of nodes, E=number of edges

V. Hlaváč, State space search 13

ČVUT
v Praze

in Prague

Dijkstra algorithm vs. BFS

V. Hlaváč, State space search 14

ČVUT
v Praze

in Prague

Greedy best first search

better for finding path to one exact location

use of heuristics:
• distance to the goal

• e.g.:

def heuristics(a,b):

return abs(a.x - b.x) + abs(a.y + b.y)

 time/space efficiency: O(bm)
• good heuristics can give huge improvements

priority queue
• priority = distance to goal

V. Hlaváč, State space search 15

ČVUT
v Praze

in Prague

Greedy best-first search - examples

V. Hlaváč, State space search 16

ČVUT
v Praze

in Prague

Greedy best-first search - examples

Problem with obstacles.

May not find the shortest path.

V. Hlaváč, State space search 17

ČVUT
v Praze

in Prague

A* algorithm (read “A star”)

Using the best of both Djikstra and Greedy
algorithms, worst time/space: O(bd)

Expanding based on:
• distance from start

• distance to goal (=heuristics)

V. Hlaváč, State space search 18

ČVUT
v Praze

in Prague

A* algorithm

V. Hlaváč, State space search 19

http://youtube.com/v/19h1g22hby8
http://youtube.com/v/19h1g22hby8

ČVUT
v Praze

in Prague

Map of Manhattan

How would you find a path from S to G?

52nd St

51st St

50th St

1
0

th
A

v
e

9
th

A
v

e

8
th

A
v

e

7
th

A
v

e

6
th

A
v

e

5
th

A
v

e

4
th

A
v

e

3
rd

A
v

e

2
n

d
A

v
e

S

G

ČVUT
v Praze

in Prague

Best-First Search

The Manhattan distance (x+ y) is an
estimate of the distance to the goal
• It is a heuristic function

Best-First Search
• Order nodes in priority queue to minimize

estimated distance to the goal h(n)

Compare: Dijkstra
• Order nodes in priority queue to minimize distance

from the start

ČVUT
v Praze

in Prague

Best First in action

How would you find a path from S to G?

52nd St

51st St

50th St

1
0

th
A

v
e

9
th

A
v

e

8
th

A
v

e

7
th

A
v

e

6
th

A
v

e

5
th

A
v

e

4
th

A
v

e

3
rd

A
v

e

2
n

d
A

v
e

S

G

ČVUT
v Praze

in Prague

Problem 1: Led astray

Eventually will expand vertex to get back on
the right track

52nd St

51st St

50th St

1
0

th
A

v
e

9
th

A
v

e

8
th

A
v

e

7
th

A
v

e

6
th

A
v

e

5
th

A
v

e

4
th

A
v

e

3
rd

A
v

e

2
n

d
A

v
e

S
G

ČVUT
v Praze

in Prague

Problem 2: Optimality

With Best-first search, are you guaranteed
a shortest path is found when
• goal is first seen?

• when goal is removed from priority queue (as with
Dijkstra?)

ČVUT
v Praze

in Prague

Sub-optimal solution

No! Goal is by definition at distance 0: will
be removed from priority queue
immediately, even if a shorter path exists!

52nd St

51st St

9
th

A
v

e

8
th

A
v

e

7
th

A
v

e

6
th

A
v

e

5
th

A
v

e

4
th

A
v

e
S

G

(5 blocks)

h=2

h=1
h=4

h=5

ČVUT
v Praze

in Prague

Synergy?

Dijkstra / Breadth First guaranteed to find
optimal solution

Best First often visits far fewer vertices, but
may not provide optimal solution

• Can we get the best of both?

ČVUT
v Praze

in Prague

A*, heuristics

Order vertices in priority queue to minimize

(distance from start) + (estimated distance to goal)

f(n) = g(n) + h(n)

f(n) = priority of a node

g(n) = true distance from start

h(n) = heuristic distance to goal

ČVUT
v Praze

in Prague

Optimality

Suppose the estimated distance (h) is
always less than or equal to the true
distance to the goal
• heuristic is a lower bound on true distance

• heuristic is admissible

Then: when the goal is removed from the
priority queue, we are guaranteed to have
found a shortest path!

ČVUT
v Praze

in Prague

A* in action

52nd St

51st St

9
th

A
v

e

8
th

A
v

e

7
th

A
v

e

6
th

A
v

e

5
th

A
v

e

4
th

A
v

e

S

G

(5 blocks)

50th St

vertex g(n) h(n) f(n)

52nd & 9th 0 5 5

ČVUT
v Praze

in Prague

A* in action

52nd St

51st St

9
th

A
v

e

8
th

A
v

e

7
th

A
v

e

6
th

A
v

e

5
th

A
v

e

4
th

A
v

e

S

G

(5 blocks)

50th St

vertex g(n) h(n) f(n)

52nd & 4th 5 2 7

51st & 9th 1 4 5

ČVUT
v Praze

in Prague

A* in action

52nd St

51st St

9
th

A
v

e

8
th

A
v

e

7
th

A
v

e

6
th

A
v

e

5
th

A
v

e

4
th

A
v

e

S

G

(5 blocks)

50th St

vertex g(n) h(n) f(n)

52nd & 4th 5 2 7

51st & 8th 2 3 5

50th & 9th 2 5 7

ČVUT
v Praze

in Prague

A* in action

52nd St

51st St

9
th

A
v

e

8
th

A
v

e

7
th

A
v

e

6
th

A
v

e

5
th

A
v

e

4
th

A
v

e

S

G

(5 blocks)

50th St

vertex g(n) h(n) f(n)

52nd & 4th 5 2 7

51st & 7th 3 2 5

50th & 9th 2 5 7

50th & 8th 3 4 7

ČVUT
v Praze

in Prague

A* in action

52nd St

51st St

9
th

A
v

e

8
th

A
v

e

7
th

A
v

e

6
th

A
v

e

5
th

A
v

e

4
th

A
v

e

S

G

(5 blocks)

50th St

vertex g(n) h(n) f(n)

52nd & 4th 5 2 7

51st & 6th 4 1 5

50th & 9th 2 5 7

50th & 8th 3 4 7

50th & 7th 4 3 7

ČVUT
v Praze

in Prague

A* in action

52nd St

51st St

9
th

A
v

e

8
th

A
v

e

7
th

A
v

e

6
th

A
v

e

5
th

A
v

e

4
th

A
v

e

S

G

(5 blocks)

50th St

vertex g(n) h(n) f(n)

52nd & 4th 5 2 7

51st & 5th 5 0 5

50th & 9th 2 5 7

50th & 8th 3 4 7

50th & 7th 4 3 7

ČVUT
v Praze

in Prague

A* in action

52nd St

51st St

9
th

A
v

e

8
th

A
v

e

7
th

A
v

e

6
th

A
v

e

5
th

A
v

e

4
th

A
v

e

S

G

(5 blocks)

50th St

vertex g(n) h(n) f(n)

52nd & 4th 5 2 7

50th & 9th 2 5 7

50th & 8th 3 4 7

50th & 7th 4 3 7

DONE!

ČVUT
v Praze

in Prague

What would Dijkstra have done?

52nd St

51st St

9
th

A
v

e

8
th

A
v

e

7
th

A
v

e

6
th

A
v

e

5
th

A
v

e

4
th

A
v

e

S

G

(5 blocks)

50th St

49th St

48th St

47th St

ČVUT
v Praze

in Prague

Importance of Heuristics

D IDS A*(h1) A*(h2)

2 10 6 6

4 112 13 12

6 680 20 18

8 6384 39 25

10 47127 93 39

12 364404 227 73

14 3473941 539 113

18 3056 363

24 39135 1641

h1 = number of tiles in the wrong place

h2 = sum of distances of tiles from correct
location

ČVUT
v Praze

in Prague

Summary

Finding path to ALL
locations:

 Same cost
→ Breadth-first search

 Costs vary →
Dijkstra algorithm

Finding path to ONE
location:

 Preferably use A*
algorithm

V. Hlaváč, State space search 38

