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Motivation %

CVUT
= Many analytical tasks can be solved by b
searching through a space of possible

states.

= Starting from an initial state, we try
reaching a goal state.

= Sequence of actions leading from
initial to goal state is the solution to
the problem.

=" The issues: large number of states al
many choices to make in each state.

= Search has to be performed in a
systematic manner.
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State space search, the basic idea

= State space search
amounts to a search
through a directed
graph.
* graph nodes = states

* arcs (directed edges) =
transitions between

states.

= Graph may be defined
explicitly or implicitly.

= Graph may contain
cycles.

= |f we also need the
transition costs, we
work with a weighted
directed graph.
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Size of the search space /@

CVUT
* The state space can be HUGE! (Combinatorial b
explosion)
= Right representation helps.
* Eight puzzle: 181,440
* Draughts / Checkers / in Czech dama: 1040
* Chess: 10?9 (in an average length game)

®* Theorem Proving: Infinite!
= Control strategy helps choose which operators to

apply:
* Small # of operators: general, but bushy tree.
° Large #: perhaps overly specific, but less bushy

trees.



Search tree %
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= By searching througha = Open nodes or “the

directed graph, we frontier”: nodes that

gradually construct a have been generated,

search tree. but have not yet been
= We do this by expanded.

expanding one node " Closed nodes: already

after the other: we use expanded nodes.

the successor function
to generate the
descendants of each
node.

= Search strategy is
defined by the order in
which the nodes are
expanded. Different
orders yield different
strategies.



State space vs. search tree ft
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= Search tree is created while searching i Prague
through the state space.

= Search tree can be infinite even if the state
space is finite. E.g. if the state space contains

cycles - search tree is infinite.




Open nodes, pictorial illustration %é
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The basic search algorithm %
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Initialize: put the start node into OPEN e
while OPEN is not empty
take a node N from OPEN
if N is a goal node, report success
put the children of N onto OPEN

Report failure

= If OPEN is a stack, this is a depth-first search.
= If OPEN is a queue, this is a breadth-first search.

= If OPEN is a priority queue, sorted according to most
promising first, we have a best-first search (Dijkstra
algorithm).



Breadth-first search /@

CVUT

v Praze

(a b b reV. B FS) in Prague

Implementation:

= Pick and remove a location from the OPEN
(frontier).

= Mark the location as visited so that we know
not to process it again.

" Expand it by looking at its neighbors. Any
neighbors we haven’t seen yet we add to the
frontier.
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Breadth-first search (2)
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Breadth-first search (3) /%%

CVuUT
=visits all reachable places i Pragee
= efficiency:

* time: O(bY)

* space: O(h9)
* b=branching factor, d=depth of goal
" No priority

" possible improvements:
* early exit = search stops when the goal is reached

* movement cost - Dijkstra algorithm
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Dijkstra algorithm %é
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= Adding movement cost to Breath-first n Prague
search algorithm, expands in all directions

= Using priority queue
* Choosing move with the lowest cost
= Time efficiency: O(|E|+|V| log|V]),
V=number of nodes, E=number of edges
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= He—

Dukstra’s Algorithm
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Dijkstra algorithm vs. BFS
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Greedy best first search /@
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" better for finding path to one exact location i e

" use of heuristics:
* distance to the goal
*e.g..
def heuristics(a,b):
return abs(a.x - b.x) + abs(a.y + b.y)

= time/space efficiency: O(b™)
* good heuristics can give huge improvements

= priority queue
* priority = distance to goal
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Greedy best-first search - examples %é
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Breadth First Search Greedy Best-First Search
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Greedy best-first search - examples %\é
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=" Problem with obstacles. in Prague
= May not find the shortest path.

Breadth First Search Greedy Best-First Search
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A* algorithm (read “A star”)
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" Using the best of both Djikstra and Greedy i e
algorithms, worst time/space: O(bd)

" Expanding based on:

* distance from start
* distance to goal (=heuristics)

Dijkstra’s Algorithm Greedy Best-First Search A* Search
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A* algorithm %\%
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http://youtube.com/v/19h1g22hby8
http://youtube.com/v/19h1g22hby8

Map of Manhattan

* How would you find a path from S to G?
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Best-First Search /@

CVUT

v Praze

" The Manhattan distance (A X+ AYy)isan e
estimate of the distance to the goal

* |t is a heuristic function

= Best-First Search

® Order nodes in priority queue to minimize
estimated distance to the goal h(n)

" Compare: Dijkstra
® Order nodes in priority queue to minimize distance
from the start



Best First in action

* How would you find a path from S to G?
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Problem 1: Led astray %\%
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= Eventually will expand vertex to get back on

the right track

52nd St S
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Problem 2: Optimality @
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" With Best-first search, are you guaranteed . rws.c
a shortest path is found when

® goal is first seen?
* when goal is removed from priority queue (as with

Dijkstra?)



Sub-optimal solution %
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"No! Goal is by definition at distance 0O: will
be removed from priority queue
immediately, even if a shorter path exists!

(5 blocks)
S s
52nd Gt e l h=2
51st St h=4 ‘ ‘ ‘(3 h=1
E Q @ Sl =
> = =0 =0 =0



Synergy? @

CVUT
= Dijkstra / Breadth First guaranteed to find i
optimal solution
" Best First often visits far fewer vertices, but

may not provide optimal solution

* Can we get the best of both?



A*, heuristics %\%
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Order vertices in priority queue to minimize

(distance from start) + (estimated distance to goal)

t(n) = g(n) + h(n)

f(n) = priority of a node
g(n) = true distance from start

h(n) = heuristic distance to goal



Optimality %
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" Suppose the estimated distance (h) is
always less than or equal to the true

distance to the goal
® heuristic is a lower bound on true distance

* heuristic is admissible

"Then: when the goal is removed from the
priority queue, we are guaranteed to have

found a shortest path!



A* in action %é
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5 blocks vertex g(n) | h(n) | f(n)
5214 St g2 (5 blocks)
52nd & 9th | 0 5 5
51st St G
50t St

NV 16
ONY ;8
CI\vATYA
Y 19
O G
Y w7



A* in action

52nd St

51t St

50t St
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? 52nd & 4th | 5 2 7
t th
® G 51¢& 9" |1 |4 |5
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A* in action %
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5 blocks vertex g(n) | h(n) | f(n)
52nd St .S ( ) ®

52nd & 4t | 5 2 7

51St — &b @ G 51t&gh |2 |3 |5

50th & 9th | 2 5 7

50th St o

IAY 1,16
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Y 19
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A* in action

52nd St

51t St

50t St
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.S (5 blocks) vertex g(n) | h(n) | f(n)
? 52nd & 4t | 5 2 7
S o ® G 51t & 7th | 3 2 5
50th & 9th | 2 5 7
O O
50t & 8 |3 4 7
E ? R a =
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A* in action %
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5 blocks vertex g(n) | h(n) | f(n)
52d St .S ( ) o
52nd & 4t | 5 2 7

50t & 9th | 2 5 /
50t St PN PN PN

50" & 8" |3 4 7

50" & 71 | 4 3 7
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A* in action

52nd St

51t St

50t St
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.S (5 blocks) vertex g(n) | h(n) | f(n)
¢ 52nd & 4th | 5 2 7
t th
....@ 51t&5th |5 |0 |5
50th & 9th | 2 5 7
O O O O
50th & 8 | 3 4 7
Q 0 - o o o~ |50 &7 |4 3 7
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A* in action

52nd St

51t St

50t St

.S (5 blocks)

@
O O O O ‘5
@ @ @ @
& BN, 2 g &
> = =0 =0 =0

fes

CVUT
v Praze
in Prague
vertex g(n) | h(n) | f(n)
52nd & 4th | 5 2 7
50th & 9t | 2 5 7
50th & 8t | 3 4 7
50t & 7t | 4 3 7




What would Dijkstra have done? %\%
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5 blocks
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Importance of Heuristics /%%
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"h1 = number of tiles in the wrong place in Prague

= h2 = sum of distances of tiles from correct
ocation

D IDS A*(h1) A*(h2)
2 10 6 6
4 112 13 12
6 680 20 18
8 6384 39 25
10 47127 93 39
12 364404 227 73
14 3473941 539 113
18 3056 363

24 39135 1641



Summary %é
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Finding path to ALL Finding path to ONE e
locations: location:
= Same cost " Preferably use A*

— Breadth-first search algorithm

= Costs vary -
Dijkstra algorithm

V. Hlavac, State space search 38



