
ČVUT
v Praze

in Prague

Václav Hlaváč

Czech Technical University in Prague (ČVUT)

Czech Institute of Informatics, Robotics,
and Cybernetics (CIIRC)

Prague 6, Zikova 4, Czech Republic

hlavac@ciirc.cvut.cz
http://people.ciirc.cvut.cz/hlavac/

State space search
A* Algorithm and way to it via
Breath-first search and Dijkstra algorithms

Courtesy: Antonín Vobecký and authors of several presentation on the web

http://www.ciirc.cvut.cz/
mailto:hlavac@ciirc.cvut.cz
http://people.ciirc.cvut.cz/hlavac/

ČVUT
v Praze

in Prague

Motivation

 Many analytical tasks can be solved by
searching through a space of possible
states.

 Starting from an initial state, we try to
reaching a goal state.

 Sequence of actions leading from
initial to goal state is the solution to
the problem.

 The issues: large number of states and
many choices to make in each state.

 Search has to be performed in a
systematic manner.

V. Hlaváč, State space search 2

ČVUT
v Praze

in Prague

Typical search tasks

V. Hlaváč, State space search 3

ČVUT
v Praze

in Prague

State space search, the basic idea

 State space search
amounts to a search
through a directed
graph.
• graph nodes = states

• arcs (directed edges) =
transitions between
states.

 Graph may be defined
explicitly or implicitly.

 Graph may contain
cycles.

 If we also need the
transition costs, we
work with a weighted
directed graph.

V. Hlaváč, State space search 4

ČVUT
v Praze

in Prague

Size of the search space

 The state space can be HUGE! (Combinatorial
explosion)

 Right representation helps.
• Eight puzzle: 181,440

• Draughts / Checkers / in Czech dáma: 1040

• Chess: 10120 (in an average length game)

• Theorem Proving: Infinite!

 Control strategy helps choose which operators to
apply:

• Small # of operators: general, but bushy tree.

• Large #: perhaps overly specific, but less bushy
trees.

V. Hlaváč, State space search 5

ČVUT
v Praze

in Prague

Search tree

 By searching through a
directed graph, we
gradually construct a
search tree.

 We do this by
expanding one node
after the other: we use
the successor function
to generate the
descendants of each
node.

 Open nodes or “the
frontier”: nodes that
have been generated,
but have not yet been
expanded.

 Closed nodes: already
expanded nodes.

 Search strategy is
defined by the order in
which the nodes are
expanded. Different
orders yield different
strategies.

V. Hlaváč, State space search 6

ČVUT
v Praze

in Prague

State space vs. search tree

Search tree is created while searching
through the state space.

Search tree can be infinite even if the state
space is finite. E.g. if the state space contains
cycles → search tree is infinite.

V. Hlaváč, State space search 7

ČVUT
v Praze

in Prague

Open nodes, pictorial illustration

V. Hlaváč, State space search 8

ČVUT
v Praze

in Prague

The basic search algorithm

Initialize: put the start node into OPEN

while OPEN is not empty
take a node N from OPEN
if N is a goal node, report success
put the children of N onto OPEN

Report failure

 If OPEN is a stack, this is a depth-first search.

 If OPEN is a queue, this is a breadth-first search.

 If OPEN is a priority queue, sorted according to most
promising first, we have a best-first search (Dijkstra
algorithm).

V. Hlaváč, State space search 9

ČVUT
v Praze

in Prague

Breadth-first search

(abbrev. BFS)

Implementation:

Pick and remove a location from the OPEN
(frontier).

Mark the location as visited so that we know
not to process it again.

Expand it by looking at its neighbors. Any
neighbors we haven’t seen yet we add to the
frontier.

V. Hlaváč, State space search 10

ČVUT
v Praze

in Prague

Breadth-first search (2)

V. Hlaváč, State space search 11

ČVUT
v Praze

in Prague

Breadth-first search (3)

visits all reachable places

efficiency:
• time: O(bd)

• space: O(bd)

• b=branching factor, d=depth of goal

no priority

possible improvements:
• early exit = search stops when the goal is reached

•movement cost → Dijkstra algorithm

V. Hlaváč, State space search 12

ČVUT
v Praze

in Prague

Dijkstra algorithm

 Adding movement cost to Breath-first
search algorithm, expands in all directions

 Using priority queue
• Choosing move with the lowest cost

 Time efficiency: O(|E|+|V| log|V|),
V=number of nodes, E=number of edges

V. Hlaváč, State space search 13

ČVUT
v Praze

in Prague

Dijkstra algorithm vs. BFS

V. Hlaváč, State space search 14

ČVUT
v Praze

in Prague

Greedy best first search

better for finding path to one exact location

use of heuristics:
• distance to the goal

• e.g.:

def heuristics(a,b):

return abs(a.x - b.x) + abs(a.y + b.y)

 time/space efficiency: O(bm)
• good heuristics can give huge improvements

priority queue
• priority = distance to goal

V. Hlaváč, State space search 15

ČVUT
v Praze

in Prague

Greedy best-first search - examples

V. Hlaváč, State space search 16

ČVUT
v Praze

in Prague

Greedy best-first search - examples

Problem with obstacles.

May not find the shortest path.

V. Hlaváč, State space search 17

ČVUT
v Praze

in Prague

A* algorithm (read “A star”)

Using the best of both Djikstra and Greedy
algorithms, worst time/space: O(bd)

Expanding based on:
• distance from start

• distance to goal (=heuristics)

V. Hlaváč, State space search 18

ČVUT
v Praze

in Prague

A* algorithm

V. Hlaváč, State space search 19

http://youtube.com/v/19h1g22hby8
http://youtube.com/v/19h1g22hby8

ČVUT
v Praze

in Prague

Map of Manhattan

How would you find a path from S to G?

52nd St

51st St

50th St

1
0

th
A

v
e

9
th

A
v

e

8
th

A
v

e

7
th

A
v

e

6
th

A
v

e

5
th

A
v

e

4
th

A
v

e

3
rd

A
v

e

2
n

d
A

v
e

S

G

ČVUT
v Praze

in Prague

Best-First Search

The Manhattan distance ( x+  y) is an
estimate of the distance to the goal
• It is a heuristic function

Best-First Search
• Order nodes in priority queue to minimize

estimated distance to the goal h(n)

Compare: Dijkstra
• Order nodes in priority queue to minimize distance

from the start

ČVUT
v Praze

in Prague

Best First in action

How would you find a path from S to G?

52nd St

51st St

50th St

1
0

th
A

v
e

9
th

A
v

e

8
th

A
v

e

7
th

A
v

e

6
th

A
v

e

5
th

A
v

e

4
th

A
v

e

3
rd

A
v

e

2
n

d
A

v
e

S

G

ČVUT
v Praze

in Prague

Problem 1: Led astray

Eventually will expand vertex to get back on
the right track

52nd St

51st St

50th St

1
0

th
A

v
e

9
th

A
v

e

8
th

A
v

e

7
th

A
v

e

6
th

A
v

e

5
th

A
v

e

4
th

A
v

e

3
rd

A
v

e

2
n

d
A

v
e

S
G

ČVUT
v Praze

in Prague

Problem 2: Optimality

With Best-first search, are you guaranteed
a shortest path is found when
• goal is first seen?

• when goal is removed from priority queue (as with
Dijkstra?)

ČVUT
v Praze

in Prague

Sub-optimal solution

No! Goal is by definition at distance 0: will
be removed from priority queue
immediately, even if a shorter path exists!

52nd St

51st St

9
th

A
v

e

8
th

A
v

e

7
th

A
v

e

6
th

A
v

e

5
th

A
v

e

4
th

A
v

e
S

G

(5 blocks)

h=2

h=1
h=4

h=5

ČVUT
v Praze

in Prague

Synergy?

Dijkstra / Breadth First guaranteed to find
optimal solution

Best First often visits far fewer vertices, but
may not provide optimal solution

• Can we get the best of both?

ČVUT
v Praze

in Prague

A*, heuristics

Order vertices in priority queue to minimize

(distance from start) + (estimated distance to goal)

f(n) = g(n) + h(n)

f(n) = priority of a node

g(n) = true distance from start

h(n) = heuristic distance to goal

ČVUT
v Praze

in Prague

Optimality

Suppose the estimated distance (h) is
always less than or equal to the true
distance to the goal
• heuristic is a lower bound on true distance

• heuristic is admissible

Then: when the goal is removed from the
priority queue, we are guaranteed to have
found a shortest path!

ČVUT
v Praze

in Prague

A* in action

52nd St

51st St

9
th

A
v

e

8
th

A
v

e

7
th

A
v

e

6
th

A
v

e

5
th

A
v

e

4
th

A
v

e

S

G

(5 blocks)

50th St

vertex g(n) h(n) f(n)

52nd & 9th 0 5 5

ČVUT
v Praze

in Prague

A* in action

52nd St

51st St

9
th

A
v

e

8
th

A
v

e

7
th

A
v

e

6
th

A
v

e

5
th

A
v

e

4
th

A
v

e

S

G

(5 blocks)

50th St

vertex g(n) h(n) f(n)

52nd & 4th 5 2 7

51st & 9th 1 4 5

ČVUT
v Praze

in Prague

A* in action

52nd St

51st St

9
th

A
v

e

8
th

A
v

e

7
th

A
v

e

6
th

A
v

e

5
th

A
v

e

4
th

A
v

e

S

G

(5 blocks)

50th St

vertex g(n) h(n) f(n)

52nd & 4th 5 2 7

51st & 8th 2 3 5

50th & 9th 2 5 7

ČVUT
v Praze

in Prague

A* in action

52nd St

51st St

9
th

A
v

e

8
th

A
v

e

7
th

A
v

e

6
th

A
v

e

5
th

A
v

e

4
th

A
v

e

S

G

(5 blocks)

50th St

vertex g(n) h(n) f(n)

52nd & 4th 5 2 7

51st & 7th 3 2 5

50th & 9th 2 5 7

50th & 8th 3 4 7

ČVUT
v Praze

in Prague

A* in action

52nd St

51st St

9
th

A
v

e

8
th

A
v

e

7
th

A
v

e

6
th

A
v

e

5
th

A
v

e

4
th

A
v

e

S

G

(5 blocks)

50th St

vertex g(n) h(n) f(n)

52nd & 4th 5 2 7

51st & 6th 4 1 5

50th & 9th 2 5 7

50th & 8th 3 4 7

50th & 7th 4 3 7

ČVUT
v Praze

in Prague

A* in action

52nd St

51st St

9
th

A
v

e

8
th

A
v

e

7
th

A
v

e

6
th

A
v

e

5
th

A
v

e

4
th

A
v

e

S

G

(5 blocks)

50th St

vertex g(n) h(n) f(n)

52nd & 4th 5 2 7

51st & 5th 5 0 5

50th & 9th 2 5 7

50th & 8th 3 4 7

50th & 7th 4 3 7

ČVUT
v Praze

in Prague

A* in action

52nd St

51st St

9
th

A
v

e

8
th

A
v

e

7
th

A
v

e

6
th

A
v

e

5
th

A
v

e

4
th

A
v

e

S

G

(5 blocks)

50th St

vertex g(n) h(n) f(n)

52nd & 4th 5 2 7

50th & 9th 2 5 7

50th & 8th 3 4 7

50th & 7th 4 3 7

DONE!

ČVUT
v Praze

in Prague

What would Dijkstra have done?

52nd St

51st St

9
th

A
v

e

8
th

A
v

e

7
th

A
v

e

6
th

A
v

e

5
th

A
v

e

4
th

A
v

e

S

G

(5 blocks)

50th St

49th St

48th St

47th St

ČVUT
v Praze

in Prague

Importance of Heuristics

D IDS A*(h1) A*(h2)

2 10 6 6

4 112 13 12

6 680 20 18

8 6384 39 25

10 47127 93 39

12 364404 227 73

14 3473941 539 113

18 3056 363

24 39135 1641

h1 = number of tiles in the wrong place

h2 = sum of distances of tiles from correct
location

ČVUT
v Praze

in Prague

Summary

Finding path to ALL
locations:

 Same cost
→ Breadth-first search

 Costs vary →
Dijkstra algorithm

Finding path to ONE
location:

 Preferably use A*
algorithm

V. Hlaváč, State space search 38

