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Motivation

 Many analytical tasks can be solved by 
searching through a space of possible 
states.

 Starting from an initial state, we try to 
reaching a goal state.

 Sequence of actions leading from 
initial to goal state is the solution to 
the problem.

 The issues: large number of states and 
many choices to make in each state.

 Search has to be performed in a 
systematic manner.
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Typical search tasks
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State space search, the basic idea

 State space search 
amounts to a search 
through a directed 
graph.
• graph nodes = states

• arcs (directed edges) = 
transitions between 
states.

 Graph may be defined 
explicitly or implicitly.

 Graph may contain 
cycles.

 If we also need the 
transition costs, we 
work with a weighted 
directed graph.
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Size of the search space

 The state space can be HUGE! (Combinatorial 
explosion)

 Right representation helps.
• Eight puzzle: 181,440

• Draughts / Checkers / in Czech dáma: 1040

• Chess: 10120 (in an average length game)

• Theorem Proving: Infinite!

 Control strategy helps choose which operators to 
apply:

• Small # of operators: general, but bushy tree.

• Large #: perhaps overly specific, but less bushy 
trees.

V. Hlaváč, State space search 5



ČVUT
v Praze

in Prague

Search tree

 By searching through a 
directed graph, we 
gradually construct a 
search tree.

 We do this by 
expanding one node 
after the other: we use 
the successor function 
to generate the 
descendants of each 
node.

 Open nodes or “the 
frontier”: nodes that 
have been generated, 
but have not yet been 
expanded.

 Closed nodes: already 
expanded nodes.

 Search strategy is 
defined by the order in 
which the nodes are 
expanded. Different 
orders yield different 
strategies.
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State space vs. search tree

Search tree is created while searching 
through the state space.

Search tree can be infinite even if the state 
space is finite. E.g. if the state space contains 
cycles → search tree is infinite.
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Open nodes, pictorial illustration
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The basic search algorithm

Initialize: put the start node into OPEN

while OPEN is not empty
take a node N from OPEN
if N is a goal node, report success
put the children of N onto OPEN

Report failure

 If OPEN is a stack, this is a depth-first search.

 If OPEN is a queue, this is a breadth-first search.

 If OPEN is a priority queue, sorted according to most 
promising first, we have a best-first search (Dijkstra 
algorithm).
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Breadth-first search

(abbrev. BFS)

Implementation:

Pick and remove a location from the OPEN
(frontier).

Mark the location as visited so that we know 
not to process it again.

Expand it by looking at its neighbors. Any 
neighbors we haven’t seen yet we add to the 
frontier.
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Breadth-first search (2)
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Breadth-first search (3)

visits all reachable places

efficiency:
• time: O(bd)

• space: O(bd)

• b=branching factor, d=depth of goal

no priority

possible improvements:
• early exit = search stops when the goal is reached

•movement cost → Dijkstra algorithm

V. Hlaváč, State space search 12



ČVUT
v Praze

in Prague

Dijkstra algorithm

 Adding movement cost to Breath-first
search algorithm, expands in all directions

 Using priority queue
• Choosing move with the lowest cost

 Time efficiency: O(|E|+|V| log|V|),  
V=number of nodes, E=number of edges
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Dijkstra algorithm vs. BFS
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Greedy best first search

better for finding path to one exact location

use of heuristics:
• distance to the goal

• e.g.:

def heuristics(a,b):

return abs(a.x - b.x) + abs(a.y + b.y)

 time/space efficiency: O(bm)
• good heuristics can give huge improvements

priority queue
• priority = distance to goal
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Greedy best-first search - examples
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Greedy best-first search - examples

Problem with obstacles.

May not find the shortest path.
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A* algorithm (read “A star”)

Using the best of both Djikstra and Greedy 
algorithms, worst time/space: O(bd)

Expanding based on:
• distance from start

• distance to goal (=heuristics)
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A* algorithm
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Map of Manhattan

How would you find a path from S to G?
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Best-First Search

The Manhattan distance ( x+  y) is an 
estimate of the distance to the goal
• It is a heuristic function

Best-First Search
• Order nodes in priority queue to minimize 

estimated distance to the goal h(n)

Compare: Dijkstra
• Order nodes in priority queue to minimize distance 

from the start
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Best First in action

How would you find a path from S to G?
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Problem 1: Led astray

Eventually will expand vertex to get back on 
the right track

52nd St

51st St

50th St

1
0

th
A

v
e

9
th

A
v

e

8
th

A
v

e

7
th

A
v

e

6
th

A
v

e

5
th

A
v

e

4
th

A
v

e

3
rd

A
v

e

2
n

d
A

v
e

S
G



ČVUT
v Praze

in Prague

Problem 2: Optimality

With Best-first search, are you guaranteed
a shortest path is found when
• goal is first seen?

• when goal is removed from priority queue (as with 
Dijkstra?)
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Sub-optimal solution

No!  Goal is by definition at distance 0: will 
be removed from priority queue 
immediately, even if a shorter path exists!
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Synergy?

Dijkstra / Breadth First guaranteed to find 
optimal solution

Best First often visits far fewer vertices, but 
may not provide optimal solution

• Can we get the best of both?
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A*, heuristics

Order vertices in priority queue to minimize

(distance from start) + (estimated distance to goal)

f(n)  =   g(n) +   h(n)

f(n) = priority of a node

g(n) = true distance from start

h(n) = heuristic distance to goal
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Optimality

Suppose the estimated distance (h) is 
always less than or equal to the true
distance to the goal
• heuristic is a lower bound on true distance

• heuristic is admissible

Then:  when the goal is removed from the 
priority queue, we are guaranteed to have 
found a shortest path!
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A* in action
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A* in action
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A* in action

52nd St

51st St

9
th

A
v

e

8
th

A
v

e

7
th

A
v

e

6
th

A
v

e

5
th

A
v

e

4
th

A
v

e

S

G

(5 blocks)

50th St

vertex g(n) h(n) f(n)

52nd & 4th 5 2 7

51st & 8th 2 3 5

50th & 9th 2 5 7



ČVUT
v Praze

in Prague

A* in action
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A* in action
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A* in action
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A* in action
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What would Dijkstra have done?
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Importance of Heuristics

D IDS A*(h1) A*(h2)

2 10 6 6

4 112 13 12

6 680 20 18

8 6384 39 25

10 47127 93 39

12 364404 227 73

14 3473941 539 113

18 3056 363

24 39135 1641

h1 = number of tiles in the wrong place

h2 = sum of distances of tiles from correct 
location
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Summary

Finding path to ALL 
locations:

 Same cost 
→ Breadth-first search

 Costs vary →
Dijkstra algorithm

Finding path to ONE 
location:

 Preferably use A* 
algorithm

V. Hlaváč, State space search 38


