
ČVUT
v Praze

in Prague

Middleware
Introduction from the robotics point of view

Václav Hlaváč

Czech Technical University in Prague (ČVUT)

Czech Institute of Informatics, Robotics,
and Cybernetics (CIIRC)

Prague 6, Zikova 4, Czech Republic

hlavac@ciirc.cvut.cz
http://people.ciirc.cvut.cz/hlavac/

Courtesy: Vladimír Petrík, Libor Wagner

http://www.ciirc.cvut.cz/
mailto:hlavac@ciirc.cvut.cz
http://people.ciirc.cvut.cz/hlavac/

ČVUT
v Praze

in Prague

Middleware in computer science

 Middleware is software providing services to
applications beyond those available from the operating
system.

 Middleware makes it easier for software developers to
perform communication and input/output.

 Most commonly used in the context of distributed
applications.

 More specifically: dash in “client-server”.

 Also used in a sense of: a software driver, an abstraction
layer hiding details of hardware
and software from an application.

May 2016 V. Hlaváč, A3M33IRO Intelligent Robotics 2

ČVUT
v Praze

in Prague

Middleware taxonomy

1. Message oriented
middleware:
asynchronous store and
forward application
messaging.

2. Object middleware:
object request brokers,
manages communication
between objects.

3. RPC middleware:
synchronous interaction,
usually within an
application.

4. Database middleware:
direct access to data
structures allowing
interaction with DB directly.

5. Transaction middleware:
transaction processing as
well as web application
servers.

6. Portals: enterprise portal
servers allowing access
from user’s desktop to back
end systems
and services.

May 2016 V. Hlaváč, A3M33IRO Intelligent Robotics 3

ČVUT
v Praze

in Prague

CORBA, my first middleware

 Common Object Request
Broker Architecture
(CORBA) is a standard
enabling software
components written in
multiple computer
languages and running on
multiple computers to work
together.

 Used in our ActIPret project
(2001-2004) to control a
robot with various vision
sensors.

 It was to heavy and slow.

 There was a need to write a
lightweight middleware
allowing real-time
interaction.

May 2016 V. Hlaváč, A3M33IRO Intelligent Robotics 4

ČVUT
v Praze

in Prague

Middleware in robotics

 Glue software to
connect software and
hardware components
together.

 Often, communication
between components is
considered to be
middleware.

 The look is from the
software developer
perspective.

 In addition, all
application-
independent helping
composition of
subsystems into larger
systems are often
included too.

 Middleware should be
invisible.

May 2016 V. Hlaváč, A3M33IRO Intelligent Robotics 5

ČVUT
v Praze

in Prague

Four minimal primitive concepts

 Communication: components
must exchange information
(data, events, commands,…),
and how this exchange is done
is an important property of
the composite system.

 Computation: each
component performs certain
computations that are
necessary to provide the
functionality that is expected
from the system.

 Configuration: components
should be usable in more than
one possible configuration
(i.e., concrete settings for each
of their variable parameters).

 Coordination: at the system
level. Involves: decision
making, scheduling,
(de)activating subsystems
and/or their interconnections,
etc.

May 2016 V. Hlaváč, A3M33IRO Intelligent Robotics 6

ČVUT
v Praze

in Prague

Robotic middleware examples

 OpenRDK
http://openrdk.sourceforge
.net/

 Urbi – for complex
organization of
components, French
company GOSTAI

 MIRO, based on CORBA,

 http://miro-
middleware.berlios.de/

 OpenNI – middleware for
3D sensing,
http://www.openni.org/

Middleware V. Hlaváč has
some experience with

 RSB - U of Bielefeld

 ROS

May 2016 V. Hlaváč, A3M33IRO Intelligent Robotics 7

http://openrdk.sourceforge.net/
http://miro-middleware.berlios.de/
http://www.openni.org/

ČVUT
v Praze

in Prague

Three issues to be tackled

when developing robot software:

1. Sequential programming ill-suited to asynchronous
world.

2. Must manage significant complexity.

3. Details of a specific robot hardware have to be
abstracted.

May 2016 V. Hlaváč, A3M33IRO Intelligent Robotics 8

ČVUT
v Praze

in Prague

Ad 1. Avoiding seq. programming

Callback:

 Function that’s called whenever data is available for
processing.

 Asynchronous: callback can happen anytime.

Examples:

 An image is read from the camera.

 A bumper tells that the robot hit something.

May 2016 V. Hlaváč, A3M33IRO Intelligent Robotics 9

ČVUT
v Praze

in Prague

Ad 2. Tackling complexity

Code organization

 Separate processes:
cameras, odometry, map
creation …
Can be separated out and
interact through an
interface.

 Interfaces: SW processes;
in ROS “nodes”
communicate about
shared “topics”.

 Publish/subscribe: each
piece of sw receives only
messages it requests.

May 2016 V. Hlaváč, A3M33IRO Intelligent Robotics 10

ČVUT
v Praze

in Prague

Ad 3. Hardware abstraction

May 2016 V. Hlaváč, A3M33IRO Intelligent Robotics 11

ČVUT
v Praze

in Prague

ROS Robot Operating System

Solves all three above
discussed issues
(callbacks, interface,
hardware).
 Initiated by Willow Garage.

 Meta-operating system.

 Message passing.

 Debugging tools.

 Visualization tools.

 Software Management
(compiling, packaging).

 Libraries.

 Hardware agnostic.

 Free + open source.

 Suitable for large scale
research.

 Emphasis on distributed
computing.

 Ubuntu Linux is the only
supported platform.

 Support for other
platforms, including
Windows, is experimental.

May 2016 V. Hlaváč, A3M33IRO Intelligent Robotics 12

ČVUT
v Praze

in Prague

ROS design goals

 Peer-to-peer: ROS components, potentially on
different hosts, are connected in peer-to-peer
topology.

 Tool-based: Microkernel design, with large number of
small tools, used to build, run and analyze ROS
components.

 Multi-lingual: ROS components can be written in
various languages. Commonly: Python, C++, Lisp.

 Thin: Drivers and algorithms are encouraged to be
written in separated libraries.

 Open-Source: ROS is distributed under terms of the
BSD license.

May 2016 V. Hlaváč, A3M33IRO Intelligent Robotics 13

ČVUT
v Praze

in Prague

ROS concepts

 Node:
A single computation unit (component).

 Message:
Data structure used by nodes to communicate.

 Topic:
Broadcast communication between nodes (publisher-
subscriber architecture).

 Service:
Synchronous communication between nodes (client-
server architecture).

 Package:
A software unit solving a specific task, e.g. navigation.

May 2016 V. Hlaváč, A3M33IRO Intelligent Robotics 14

ČVUT
v Praze

in Prague

Node

 A single process that performs a particular
computation.

 ROS supported application is often composed of a
large number of nodes.

 Nodes communicate with each other by passing
messages through topic or service.

 Connection between two nodes is accomplished
through roscore, which acts as a name server. There is
only one roscore that secures the communication.

May 2016 V. Hlaváč, A3M33IRO Intelligent Robotics 15

ČVUT
v Praze

in Prague

Example: initiating topic
communication

May 2016 V. Hlaváč, A3M33IRO Intelligent Robotics 16

ČVUT
v Praze

in Prague

ROS tools and packages

 rviz: visualisation tool.

 rosbag: allows recording all communication between
nodes and play it back later.

 rqt_graph: visualizes the graph of ROS application.

 rosparam: can manipulate data on the ROS parameter
server.

May 2016 V. Hlaváč, A3M33IRO Intelligent Robotics 17

ČVUT
v Praze

in Prague

ActionLib
 For preemptable tasks / Longtime running tasks.

 Communication build on top of ROS messages.

 Action is specied by three messages: goal, feedback
and result.

 For example Goto: Planning, Filtering, Trajectory
execution (can be interrupted).

May 2016 V. Hlaváč, A3M33IRO Intelligent Robotics 18

ČVUT
v Praze

in Prague

Transformation (tf)

 Transformations in a
tree structure.

 Any transformation
is relative to any
coordinate frame.

 Buffered in time, i.e.
it can be asked what
was the
transformation in
the past instant.

May 2016 V. Hlaváč, A3M33IRO Intelligent Robotics 19

ČVUT
v Praze

in Prague

URDF, Xacro

May 2016 V. Hlaváč, A3M33IRO Intelligent Robotics 20

ČVUT
v Praze

in Prague

URDF, Xacro (2)

May 2016 V. Hlaváč, A3M33IRO Intelligent Robotics 21

ČVUT
v Praze

in Prague

URDF, rviz vizualization

May 2016 V. Hlaváč, A3M33IRO Intelligent Robotics 22

ČVUT
v Praze

in Prague

SMACH – State MACHine

 Implements higher-Level behaviors via finite
automata.

 Hierarchical (every state machine can be the state in
another state machine).

 Concurrence containers (parallel).

May 2016 V. Hlaváč, A3M33IRO Intelligent Robotics 23

ČVUT
v Praze

in Prague

Gazebo

 Multi-robot dynamic simulator for outdoor
environments.

 Started in 2002, independent of ROS.

 There is an interface to ROS.

 Plenty of sensors (laser, camera, Kinect, GPS).

May 2016 V. Hlaváč, A3M33IRO Intelligent Robotics 24

