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SLAM = Simulataneus Localization
and Mapping
 SLAM task:

Robot navigation in a previously unknown (static) 
environment while building and updating a map of its 
workspace continuously using on-board sensors only.
When is SLAM necessary?

• When a robot must be truly autonomous (no human input).
• When there is no prior knowledge about the environment.
• When we cannot place beacons (also in GPS-denied 

environments).
• When the robot needs to know where it is.

 SLAM keeps being a challenge in probabilistic robotics.

V. Hlaváč, B3M33ARO Autonomous robotics 2



ČVUT
v Praze

in Prague

SLAM Applications

Indoors

Space

Undersea

Underground
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Simpler relevant tasks than SLAM

 Pure localization: the map is known
and the location has to be estimated along the way. 
Mapping with known poses: the poses are known and 

the map is estimated along the way. 

Mapping: 
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Where does SLAM fit?
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SLAM – task formulation

 Inputs:
• Time sequence of proprioceptive and exteroceptive 

measurements made as robot moves through an initially 
unknown environment.
o The robot controls.
o Observations of nearby features.

• No external coordinate reference.

Outputs:
• Localization: A robot pose estimate associated with each 

measurement in the coordinate system of the map.
• Mapping: An update to the map of the robot environment.
• Path of the robot.
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SLAM is an incremental task

 State/Output:
• Map of the environment, which has been observed so far.
• Robot pose estimate with respect to the map.

 Action/Input:
• Move to a new position/orientation.
• Acquire additional observations.

Update state:
• Re-estimate robot pose.
• Revise the map appropriately.

• Errors come from inaccurate measurement of actual robot 
motion (noisy action) and the distance from 
obstacle/landmark (noisy observation).

• Small errors will quickly accumulate over time steps.
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SLAM difficulties (1)

 SLAM is a chicken or egg 
problem.

• A map is needed for localizing a 
robot.

• A good robot position estimate is 
needed to create/update the 
map.

 Consequently, SLAM is 
regarded as hard problem in 
robotics.
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SLAM difficulties (2)

 SLAM is considered one of 
the most fundamental 
problems for (mobile) 
robots to be truly 
autonomous.
 Variety of approaches have 

been tried to approach 
SLAM problem.
 Probabilistic methods rule!
History of SLAM dates to 

mid-1980s.
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Why is SLAM hard?

Uncertainty at every level of the problem.
Many ingredients:

• Autonomous, persistent, collaborative robots.
• Mapping is multi-scale in generic environments.

Map-making ∼ learning:
• Difficult also for humans.
• Humans make mapping mistakes.

 Scaling issues:
• Large spatial extent ⇒ combinatorial expansion.
• Persistent autonomous operations.
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Robot world representations

Grid maps or scans

[Lu & Milios, 97; Gutmann, 98: Thrun 98; Burgard, 99; Konolige & Gutmann, 00; Thrun, 00; Arras, 99; Haehnel, 01;…]

 Landmark-based

[Leonard et al., 98; Castelanos et al., 99: Dissanayake et al., 2001; Montemerlo et al., 2002;…
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Structure of the Landmark-based 
SLAM task
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Markovian assumption

V. Hlaváč, B3M33ARO Autonomous robotics

x0 x1 x2 xt-1 xt…

z1 zt-1…

u1 ut-1…

z2 zt

u2 ut

m

State transition: 

Observation function:

),|( 1 ttt uxxp −

)|( tt xzp

controls

states

observations

map
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Why is SLAM a hard problem?

 In the real world, the mapping between observations 
and landmarks is unknown.
 Picking wrong data associations can have 

catastrophic consequences.
 Pose error correlates data associations.
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Why is SLAM a hard problem?

SLAM: robot path and map are both unknown.

Robot path error correlates errors in the map.
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SLAM

 Full SLAM:

Online SLAM:

Integrations typically done one at a time 

),|,( :1:1:1 ttt uzmxp

121:1:1:1:1:1 ...),|,(),|,( −∫ ∫ ∫= ttttttt dxdxdxuzmxpuzmxp 

Estimates the most recent pose and map!

Estimates the entire path and map!
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Graphical model of Full SLAM

),|,( :1:1:1 ttt uzmxp
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Graphical model of online SLAM

121:1:1:1:1:1 ...),|,(),|,( −∫ ∫ ∫= ttttttt dxdxdxuzmxpuzmxp 
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Techniques for generating
consistent maps

V. Hlaváč, B3M33ARO Autonomous robotics

1. Scan matching = Given a scan and a map (or scan-scan, 
map-map), find the rigid transformation that aligns them the 
best. Two approaches.
• Optimize over x: p(z|x,m)
• Reduce scan-map to a point cloud and run the Iterative Point Cloud algorithm 

(ICP).

2. Parametric method – (Extended) Kalman filter
• Represent the distribution of the robot location 𝑥𝑥𝑡𝑡(and map 𝑚𝑚𝑡𝑡) by a Gaussian 

distribution.
• Update 𝜇𝜇𝑡𝑡 and ∑𝑡𝑡 sequentially.

3. Sample-based method – Particle filter
• Represent the distribution of robot location xt (and map mt) by a large amount 

of simulated samples.
• Resample xt (and mt) at each time step.

19



ČVUT
v Praze

in Prague

Scan Matching, optimal x: p(z|x,m)

Maximize the likelihood of the pose t and map
relative to the pose t-1 and to the map.

Calculate the map       according to “mapping with known poses” 
based on the poses and observations.

{ })ˆ,|( )ˆ ,|( maxargˆ 11
]1[

−−
− ⋅= ttt

t
tt

x
t xuxpmxzpx

t

robot positioncurrent measurement

map constructed so far

][ˆ tm
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General filter- example

Measurement (Observation)

Prediction

Estimation

t

x
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The Kalman filter, a simple example
Where are you (1)
 Where are you (in 1D)?
 [from star sighting]: at time t1, you are in z1, with accuracy σz1

 Best estimate: x(t1)=z1

 Variance of the error: (σx(t1))2 = (σz1)2

x
V. Hlaváč, B3M33ARO Autonomous robotics 22
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Where are you (2)

 [from GPS]: at time t2 ≅ t1, you are in z2, with
the accuracy σz2

x

V. Hlaváč, B3M33ARO Autonomous robotics 23
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How should we combine the 
information?
 The best estimate:
X(t2) = [(σz2

2)/(σz1
2+σz2

2)] z1 + [(σz1
2)/(σz1

2+σz2
2)] z2

 Variance of the error:
1/(σ)2=1/(σz1)2 +1/(σz2)2

x
V. Hlaváč, B3M33ARO Autonomous robotics 24
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Kalman filter update equations

x(t2)   = x(t1)    +  K(t2) (z2-x(t1))
σx(t2)2 =σx(t1)2   - K(t2)  σx(t1)2

Where: K(t2)=(σz1
2)/(σz1

2+σz2
2)

Predictor      Corrector

And so on for the next measurement…

Kalman
gain

V. Hlaváč, B3M33ARO Autonomous robotics 25
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x

Moving objects
 t2 ≅ t1 t3 → t2

 The motion equation:
dx/dt = u + w

x(t3-)  =  x(t2)    +  u [t3 - t2]
σx(t3-)2 =σx(t2)2   - σw

2[t3 - t2]
V. Hlaváč, B3M33ARO Autonomous robotics 26
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Combining the information

x(t3)   = x(t3-)    +  K(t3)/(z3-x(t3-))
σx(t3)2 = σx(t3-)2   - K(t3) σx(t3-)2

Where:

Predictor         Corrector

K(t3-) = (σt3-2) / (σt3-2 + σz3
2)

And so on for the next measurement…

V. Hlaváč, B3M33ARO Autonomous robotics 27
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General scheme

Receiving measurement zi

Estimating x(ti), σx(ti)2

Predicting x(ti+1-), σx(ti+1-)2

V. Hlaváč, B3M33ARO Autonomous robotics 28
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Kalman filter- a general model

 The Model:
• Equations:

o Xt = AXt-1 + But-1 + wt-1
o Zt = HXt + vt

• wt: model error (“Brownian motion”). Gaussian white 
noise.

• vt: measurment error. Gaussian white noise.
 The “best” estimator (in Minimal Mean Square Error sense) 

is:

 Kalman filter gives the “best” estimation for the given model 
(linear, Gaussian noise).

,...],|[ 1

^

−= tttt zzXEX
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Kalman Filter Algorithm 

1. Algorithm Kalman_filter( µt-1,Σt-1, ut, zt):

2. Prediction:
3.
4.

5. Correction:
6.
7.
8.

9. Return µt,Σt

ttttt uBA += −1µµ

t
T
tttt RAA +Σ=Σ −1

1)( −+ΣΣ= t
T
ttt

T
ttt QCCCK

)( tttttt CzK µµµ −+=

tttt CKI Σ−=Σ )(
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Map with N landmarks:(3+2N)-dimensional Gaussian

 Can handle hundreds of dimensions

(E)KF-SLAM
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Classical Solution – The EKF

 Approximate the SLAM posterior with a high-
dimensional Gaussian [Smith & Cheesman, 1986] …

 Single hypothesis data association

Blue path = true path   Red path = estimated path   Black path = odometry

V. Hlaváč, B3M33ARO Autonomous robotics 32
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EKF-SLAM

Map              Correlation matrix
V. Hlaváč, B3M33ARO Autonomous robotics 33
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EKF-SLAM

Map              Correlation matrix
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EKF-SLAM

Map              Correlation matrix
V. Hlaváč, B3M33ARO Autonomous robotics 35
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Properties of KF-SLAM 
(Linear Case)

Theorem:
The determinant of any sub-matrix of the map 
covariance matrix decreases monotonically as 
successive observations are made.

Theorem:
In the limit the landmark estimates become fully 
correlated

[Dissanayake et al., 2001]

V. Hlaváč, B3M33ARO Autonomous robotics 36
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Victoria Park data set

[courtesy E. Nebot]V. Hlaváč, B3M33ARO Autonomous robotics 37
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Victoria Park Data Set Vehicle

[courtesy E. Nebot]V. Hlaváč, B3M33ARO Autonomous robotics 38
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Data acquisition

[courtesy E. Nebot]V. Hlaváč, B3M33ARO Autonomous robotics 39
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SLAM

[courtesy E. Nebot]V. Hlaváč, B3M33ARO Autonomous robotics 40
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Map and Trajectory 

Landmarks
Covariance

[courtesy E. Nebot]V. Hlaváč, B3M33ARO Autonomous robotics 41
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Landmark Covariance

[courtesy E. Nebot]V. Hlaváč, B3M33ARO Autonomous robotics 42
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Estimated Trajectory

[courtesy E. Nebot]V. Hlaváč, B3M33ARO Autonomous robotics 43
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EKF SLAM Application

[courtesy John Leonard]V. Hlaváč, B3M33ARO Autonomous robotics 44
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EKF SLAM Application

odometry estimated trajectory

[courtesy John Leonard]V. Hlaváč, B3M33ARO Autonomous robotics 45
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 Local submaps

[Leonard et al.99, Bosse et al. 02, Newman et al. 03]

 Sparse links (correlations) 
[Lu & Milios 97, Guivant & Nebot 01]

 Sparse extended information filters 
[Frese et al. 01, Thrun et al. 02]

 Thin junction tree filters 
[Paskin 03]

 Rao-Blackwellisation (FastSLAM) 
[Murphy 99, Montemerlo et al. 02, Eliazar et al. 03, Haehnel et al. 03]

Approximations for SLAM

V. Hlaváč, B3M33ARO Autonomous robotics 46
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EKF-SLAM Summary

Quadratic in the number of landmarks: O(n2)

 Convergence results for the linear case. 

 Can diverge if nonlinearities are large!

Have been applied successfully in large-scale 
environments.

 Approximations reduce the computational complexity. 

V. Hlaváč, B3M33ARO Autonomous robotics 47
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Particle filtering
(Sequential Monte-Carlo)

- Hammersley & Morton 1954, Rosenbluth 1955
- … …
- Gordon et. al. 1993  (Re-sampling)
- Van der Merwe, Doucet, de Freitas, Wan …(90-)

• Kalman Filter – linear system, Gaussian noise.
• Kalman extensions (EKF,UKF) for non-linear systems.
• Particle Filtering – general filtering problems.

• Application areas: statistics, physics, engineering, finance…

V. Hlaváč, B3M33ARO Autonomous robotics 48
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Computer vision: CONDENSATION
(conditional density propagation)

 Kalman filter in contour tracking:
• Major assumption: 

Gaussian PDF of object’s state –
• Works relatively poorly in clutter: 

Multi-modal density -

p(x)
Michael Isard & Andrew Blake – ECCV 1996

p(x)

V. Hlaváč, B3M33ARO Autonomous robotics 49



ČVUT
v Praze

in Prague

Propagation by Kalman filter

t-1

t

tx̂

dynamics

tx̂1−tx

measurement

V. Hlaváč, B3M33ARO Autonomous robotics 50
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Propagation by Multi-Modal PDF

t-1

t

dynamics

tx̂

measurement
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Discrete-time propagation

 Probabilistic model:
• xt – object state at time t.

Xt={x1,…,xt}
• zt – image features at time t.

Zt={z1,…,zt}
 The goal – given Zt , 

find the most likely xt .
 Better to approximate the whole 

posterior density:

xt-1 xt

zt-1 zt

xt-2

zt-2

Xt

Zt

)|( tt Zxp

p(x|Z)

x
V. Hlaváč, B3M33ARO Autonomous robotics 52
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We use iterative sampling to approximate the 
complex posterior p(x|z):

1) Sample “particles” from p(x) – {s(1),…,s(N)}

)()|()|( xpxzkpzxp =

p(x)

S(i)

Observation
(Likelihood)

PriorPosterior

Factored sampling (1)
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2) Weight them according to the observation p(z|x):

)()|()|( xpxzkpzxp =

)|( )(i
i sxzp =∝π ∑ =1iπ

S(i)

πi

p(z|x)

Factored sampling (2)

V. Hlaváč, B3M33ARO Autonomous robotics 54
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3) The “weighted particles” are approximation of p(x|z)

)()|()|( xpxzkpzxp =

Choosing x’=xi according to πi will have a distribution 
that approximates the posterior p(x|z). Accuracy increases with N.

Factored sampling (3)

V. Hlaváč, B3M33ARO Autonomous robotics 55
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 e.g., the mean - g(x)=x:

∑
=

≈
N

i
i

isgzxgE
1

)( )(]|)([ π

weighted samples the mean

Factored sampling (4)
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Dynamics

Observation

one iteration:

t-1

t

Condensation

V. Hlaváč, B3M33ARO Autonomous robotics 57
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Condensation, illustrative video

V. Hlaváč, B3M33ARO Autonomous robotics 58
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