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Randomized Sampling-based Motion Planning Techniques

Outline

1. Motion planning and overview of techniques
2. Randomized sampling-based algorithms
3. Optimal motion planners
4. Motion planning in robotic missions

• Multi-goal planning
• Autonomous data collection planning
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Randomized Sampling-based Motion Planning Techniques

Part I

Introduction to Motion Planning
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Motion Planning

Motivational problem:
• How to transform high-level task specification (provided by

humans) into a low-level description suitable for controlling
the actuators?

To develop algorithms for such a transformation.

The motion planning algorithms provide transformations how to
move a robot (object) considering all operational constraints.

It encompasses several disciples, e.g., mathematics,
robotics, computer science, control theory, artificial
intelligence, computational geometry, etc.
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Piano Mover’s Problem
A classical motion planning problem

Having a CAD model of the piano, model of the environment, the
problem is how to move the piano from one place to another without
hitting anything.

Basic motion planning algorithms are focused pri-
marily on rotations and translations.

• We need a notion of model representations and formal def-
inition of the problem.

• Moreover, we also need a context about the problem and
realistic assumptions.

The plans have to be feasible and admissible.
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Randomized Sampling-based Motion Planning Techniques Notation and Terminology

Notation of the Configuration Space
• W – World model describes the robot workspace and its

boundary determines the obstacles Oi .
2D world,W = R2

• A Robot is defined by its geometry, parameters (kinemat-
ics) and it is controllable by the motion plan.

• C – Configuration space (C-space)
A concept to describe possible configurations of the robot.
The robot’s configuration completely specify the robot loca-
tion inW including specification of all degrees of freedom.

E.g., a robot with rigid body in a plane C = {x , y , ϕ} = R2 × SO(2).

• Let A be a subset ofW occupied by the robot, A = A(q).
• A subset of C occupied by obstacles is

Cobs = {q ∈ C : A(q) ∩ Oi ,∀i}

• Collision-free configurations are
Cfree = cl(C \ Cobs).

cl – closure of a set
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Randomized Sampling-based Motion Planning Techniques Notation and Terminology

Path and Trajectory

• Path is a continuous mapping in C-space such that

π : [0,1]→ Cfree, with π(0) = q0, and π(1) = qf ,

where q0 is the initial and qf the final robot configurations.
Only geometric considerations

• Trajectory is a path with explicit parametrization of the robot
motion, e.g.,

• accompanied by a description of the motion laws

γ : [0,1]→ U ,

where U is the robot’s action space.
It includes dynamics.

The planning problem is a determination of the function π(·).
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Randomized Sampling-based Motion Planning Techniques Notation and Terminology

Motion Planning Problem
Having

• a dynamical system with the state x and control u

dx
dt

= f (x ,u),

• set of obstacles Xobs ⊂ Rd and goal set Xgoal ⊂ Rd

the motion planning problem is to find control signal u such that
x(t) /∈ Xobs for t ∈ R+ and x(t) ∈ Xgoal for all t > Tf for some
finite Tf ≥ 0. Or, return no such control signal exists.

[T0,Tf ] 3 t  τ ∈ [0,1] : q(t) = π(τ) ∈ Cfree

Additional requirements can be given:
• Smoothness of the path
• Kinodynamic constraints

E.g., considering friction forces

• Optimality criterion
shortest vs fastest (length vs curvature)
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Randomized Sampling-based Motion Planning Techniques Notation and Terminology

Motion Planning Approaches
• Generalized piano mover’s problem is PSPACE-hard

Reif, 1979

• Complete algorithms exists, but are too complex to be
practical

• The research has been focused on approximation
algorithms

trade full completeness of the planner for efficiency

• Full completeness vs resolution completeness
returns valid solution (if exists) if the resolution parameter is fine enough

• Most successful approaches
• Cell decomposition methods
• Randomized sampling based planners (PRM, RRT)

sacrifice optimality for a feasibility and computational efficiency
• Probabilistic optimal sampling based planners (RRG)

Karaman and Frazzoli, 2011
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Example of Simple Planning in C-space
Robot motion planning robot for a disk robot with a radius ρ.

Disc robot

Goal position

Start position

Motion planning problem in
geometrical representation ofW

C−space

Cfree

Point robot

Start configuration

Goal configuration

obstC

Motion planning problem in
C-space representation

C-space has been obtained by enlarging obstacles by the disk
A with the radius ρ.

By applying Minkowski sum: O ⊕A = {x + y | x ∈ O, y ∈ A}.
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Example of Cobs for a Robot with Rotation

x

y

θ

y

Robot body

Reference point

θ=π/2

θ=0 x

x

y

obs
C

A simple 2D obstacle→ has a complicated Cobs

• Deterministic algorithms exist
Requires exponential time in C dimension,

J. Canny, PAMI, 8(2):200–209, 1986

• Explicit representation of Cfree is impractical to compute.
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Randomized Sampling-based Motion Planning Techniques Notation and Terminology

Representation of C-space

How to deal with continuous representation of C-space?

Continuous Representation of C-space

↓
Discretization

processing critical geometric events, (random) sampling
roadmaps, cell decomposition, potential field

↓
Graph Search Techniques
BFS, Gradient Search, A∗
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Randomized Sampling-based Motion Planning Techniques Motion Planning Methods Overview

Planning Methods Overview
(selected approaches)

• Roadmap based methods
Create a connectivity graph of the free space.

• Visibility graph
(complete but impractical)

• Cell decomposition
• Voronoi diagram

• Discretization into a grid-based representation
(resolution complete)

• Potential field methods
(complete only for a “navigation function”, which is
hard to compute in general)

• Sampling-based approaches
• Creates a roadmap from connected random samples in Cfree
• Probabilistic roadmaps

samples are drawn from some distribution
• Very successful in practice
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Randomized Sampling-based Motion Planning Techniques Motion Planning Methods Overview

Simple Roadmap Construction – Visibility Graph

Problem Visibility graph Found shortest path

• Shortest path is found in the created visibility graph
E.g., by Dijkstra’s algorithm

• Constructions of the visibility graph can be done in O(n3)
or in O(n2) using rotation trees for a set of segments

M. H. Overmars and E. Welzl, 1988

• Can be used for enlarged obstacles and a point robot
However, it is not practical for complex robots
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Randomized Sampling-based Motion Planning Techniques

Part II

Randomized Sampling-based Motion
Planning Algorithms
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Randomized Sampling-based Motion Planning Techniques Sampling-based Motion Planning

Sampling-based Motion Planning

• Avoids explicit representation of the obstacles in C-space
• A “black-box” function is used to evaluate a configuration q

is a collision free
(E.g., based on geometrical models and testing
collisions of the models)

• It creates a discrete representation of Cfree

• Configurations in Cfree are sampled randomly and connected
to a roadmap (probabilistic roadmap)

• Rather than full completeness they provides probabilistic
completeness or resolution completeness

Probabilistic complete algorithms: with increasing number of samples
an admissible solution would be found (if exists)
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Randomized Sampling-based Motion Planning Techniques Sampling-based Motion Planning

Probabilistic Roadmap
A discrete representation of the continuous C-space generated
by randomly sampled configurations in Cfree that are connected
into a graph.

• Nodes of the graph represent admissible configuration of
the robot.

• Edges represent a feasible path (trajectory) between the
particular configurations.

Having the graph, the final path (trajectory) is found by a graph search technique.
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Randomized Sampling-based Motion Planning Techniques Sampling-based Motion Planning

Probabilistic Roadmap Strategies
Multi-Query (Batch)

• Generate a single roadmap that is then used for planning
queries several times.

• Probabilistic RoadMap – PRM
Kavraki and Latombe, 1996

Single-Query (Incremental)
• For each planning problem constructs a new roadmap to

characterize the subspace of C-space that is relevant to the
problem.

• Rapidly-exploring Random Tree – RRT
LaValle, 1998

• Expansive-Space Tree – EST
Hsu et al., 1997

• Sampling-based Roadmap of Trees – SRT
(combination of multiple–query and single–query approaches)

Plaku et al., 2005
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Randomized Sampling-based Motion Planning Techniques Probabilistic RoadMap (PRM)

Probabilistic RoadMap (PRM) Planner

Build a roadmap (graph) representing the environment

• Learning phase
1. Sample n points in Cfree
2. Connect the random configurations using a local planner

• Query phase
1. Connect start and goal configurations with the PRM

E.g., using a “local planner”
2. Use the graph search to find the path

Probabilistic Roadmaps for Path Planning in High Dimensional Configuration
Spaces
Lydia E. Kavraki and Petr Svestka and Jean-Claude Latombe and Mark H.
Overmars,
IEEE Transactions on Robotics and Automation, 12(4):566–580, 1996.

First planner that demonstrates ability to solve general planning prob-
lems in more than 4-5 dimensions.
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Randomized Sampling-based Motion Planning Techniques Probabilistic RoadMap (PRM)

PRM Construction/Query
Given problem domain

C

C

obs

obs
C

free

C

obs
C

obs
C

obs
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PRM Construction/Query
Random configurations

C

obs
C

C
free

obs

obs

C
obs

C

obs
C
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PRM Construction/Query
Connecting random samples

Local planner

C

Cobs

obsC

obs

freeC

Cobs

Cobs

collision
δ
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PRM Construction/Query
Connected roadmap

C

free
C

C
obs

C
obs

C
obs

C
obs

obs
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PRM Construction/Query
Query configurations

C

free
C

C
obs

C
obs

C
obs

C
obs

obs
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PRM Construction/Query
Final found path

C

free
C

C
obs

C
obs

C
obs

C
obs

obs
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Practical PRM

• Incremental construction
• Connect nodes in a ra-

dius ρ
• Local planner tests colli-

sions up to selected res-
olution δ

• Path can be found by Di-
jkstra’s algorithm

ρ

obs

obs
C

obs
C

obs
C

C
free

obs

C

C

What are the properties of the PRM algorithm?

We need a couple of more formalism.
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Randomized Sampling-based Motion Planning Techniques Probabilistic RoadMap (PRM)

Path Planning Problem Formulation

• Path planning problem is defined by a triplet
P = (Cfree,qinit ,Qgoal),

• Cfree = cl(C \ Cobs), C = (0,1)d , for d ∈ N, d ≥ 2
• qinit ∈ Cfree is the initial configuration (condition)
• Ggoal is the goal region defined as an open subspace of Cfree

• Function π : [0,1]→ Rd of bounded variation is called :
• path if it is continuous;
• collision-free path if it is path and π(τ) ∈ Cfree for τ ∈ [0,1];
• feasible if it is collision-free path, and π(0) = qinit and
π(1) ∈ cl(Qgoal ).

• A function π with the total variation TV(π) <∞ is said to have bounded
variation, where TV(π) is the total variation

TV(π) = sup{n∈N,0=τ0<τ1<...<τn=s} =
∑n

i=1 |π(τi)− π(τi−1)|

• The total variation TV(π) is de facto a path length.
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Randomized Sampling-based Motion Planning Techniques Probabilistic RoadMap (PRM)

Path Planning Problem

• Feasible path planning:
For a path planning problem (Cfree,qinit ,Qgoal)

• Find a feasible path π : [0,1]→ Cfree such that π(0) = qinit
and π(1) ∈ cl(Qgoal ), if such path exists.

• Report failure if no such path exists.

• Optimal path planning:
The optimality problem ask for a feasible path with the minimum cost.

For (Cfree,qinit ,Qgoal) and a cost function c : Σ→ R≥0
• Find a feasible path π∗ such that

c(π∗) = min{c(π) : π is feasible}.
• Report failure if no such path exists.

The cost function is assumed to be monotonic and bounded,
i.e., there exists kc such that c(π) ≤ kc TV(π).
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Randomized Sampling-based Motion Planning Techniques Probabilistic RoadMap (PRM)

Probabilistic Completeness 1/2

First, we need robustly feasible path planning problem
(Cfree,qinit ,Qgoal).

• q ∈ Cfree is δ-interior state of Cfree
if the closed ball of radius δ cen-
tered at q lies entirely inside Cfree.

δ

q

−interior state

int  (        )

obs

Cfree
δ

C

• δ-interior of Cfree is intδ(Cfree) = {q ∈ Cfree|B/,δ ⊆ Cfree}.
A collection of all δ-interior states.

• A collision free path π has strong δ clearance, if π lies
entirely inside intδ(Cfree).

• (Cfree,qinit ,Qgoal) is robustly feasible if a solution exists and
it is a feasible path with strong δ-clearance, for δ>0.
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Randomized Sampling-based Motion Planning Techniques Probabilistic RoadMap (PRM)

Probabilistic Completeness 2/2

An algorithm ALG is probabilistically complete if, for any ro-
bustly feasible path planning problem P = (Cfree,qinit ,Qgoal)

lim
n→0

Pr(ALG returns a solution to P) = 1.

• It is a “relaxed” notion of completeness
• Applicable only to problems with a robust solution.

C

C

obs

freeint  (        )
δ

init

Cobs

Cfree
δ

int  (        )

q

We need some space, where random configurations
can be sampled
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Randomized Sampling-based Motion Planning Techniques Probabilistic RoadMap (PRM)

Asymptotic Optimality 1/4

Asymptotic optimality relies on a notion of weak δ-clearance
Notice, we use strong δ-clearance for probabilistic completeness

• Function ψ : [0,1] → Cfree is called homotopy, if ψ(0) = π1 and
ψ(1) = π2 and ψ(τ) is collision-free path for all τ ∈ [0,1].

• A collision-free path π1 is homotopic to π2 if there exists homo-
topy function ψ.

A path homotopic to π can be continuously trans-
formed to π through Cfree.
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Randomized Sampling-based Motion Planning Techniques Probabilistic RoadMap (PRM)

Asymptotic Optimality 2/4

• A collision-free path π : [0, s]→ Cfree has weak δ-clearance
if there exists a path π′ that has strong δ-clearance and ho-
motopy ψ with ψ(0) = π, ψ(1) = π′, and for all α ∈ (0,1]
there exists δα > 0 such that ψ(α) has strong δ-clearance.

Weak δ-clearance does not require points along a
path to be at least a distance δ away from obstacles.

π

π’
init

obs

Cfree
δ

int  (        )

q

C • A path π with a weak δ-
clearance

• π′ lies in intδ(Cfree) and it is the
same homotopy class as π
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Randomized Sampling-based Motion Planning Techniques Probabilistic RoadMap (PRM)

Asymptotic Optimality 3/4

• It is applicable with a robust optimal solution that can be
obtained as a limit of robust (non-optimal) solutions.

• A collision-free path π∗ is robustly optimal solution if it
has weak δ-clearance and for any sequence of collision free
paths {πn}n∈N, πn ∈ Cfree such that limn→∞ πn = π∗,

lim
n→∞

c(πn) = c(π∗).

There exists a path with strong δ-clearance, and π∗
is homotopic to such path and π∗ is of the lower cost.

• Weak δ-clearance implies robustly feasible solution problem
(thus, probabilistic completeness)
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Randomized Sampling-based Motion Planning Techniques Probabilistic RoadMap (PRM)

Asymptotic Optimality 4/4

An algorithm ALG is asymptotically optimal if, for any path
planning problem P = (Cfree,qinit ,Qgoal) and cost function c that
admit a robust optimal solution with the finite cost c∗

Pr
({

lim
i→∞

YALGi = c∗
})

= 1.

• YALGi is the extended random variable corresponding to the
minimum-cost solution included in the graph returned by
ALG at the end of iteration i .
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Randomized Sampling-based Motion Planning Techniques Probabilistic RoadMap (PRM)

Properties of the PRM Algorithm

• Completeness for the standard PRM has not been
provided when it was introduced

• A simplified version of the PRM (called sPRM) has been
mostly studied

• sPRM is probabilistically complete

What are the differences between PRM and sPRM?
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PRM vs simplified PRM (sPRM)
PRM
Input: qinit , number of samples n, radius ρ
Output: PRM – G = (V ,E)

V ← ∅; E ← ∅;
for i = 0, . . . , n do

qrand ← SampleFree;
U ← Near(G = (V ,E), qrand , ρ);
V ← V ∪ {qrand};
foreach u ∈ U, with increasing
||u − qr || do

if qrand and u are not in the same
connected component of
G = (V ,E) then

if CollisionFree(qrand , u)
then

E ← E ∪
{(qrand , u), (u, qrand )};

end
end

end
end
return G = (V ,E);

sPRM Algorithm
Input: qinit , number of samples n,

radius ρ
Output: PRM – G = (V ,E)

V ← {qinit} ∪
{SampleFreei}i=1,...,n−1; E ← ∅;
foreach v ∈ V do

U ←Near(G = (V ,E), v , ρ) \ {v};
foreach u ∈ U do

if CollisionFree(v , u) then
E ← E∪{(v , u), (u, v)};

end
end

end
return G = (V ,E);

There are several ways for the set U of
vertices to connect them

• k -nearest neighbors to v
• variable connection radius ρ as a

function of n
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PRM – Properties

• sPRM (simplified PRM)
• Probabilistically complete and asymptotically optimal
• Processing complexity O(n2)
• Query complexity O(n2)
• Space complexity O(n2)

• Heuristics practically used are usually not probabilistic
complete

• k -nearest sPRM is not probabilistically complete
• variable radius sPRM is not probabilistically complete

Based on analysis of Karaman and Frazzoli

PRM algorithm is:
+ very simple implementation
+ Completeness (for sPRM)
- Differential constraints (car-like vehicles) are not straightforward
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Randomized Sampling-based Motion Planning Techniques Sampling

Comments about Random Sampling 1/2

• Different sampling strategies (distributions) may be applied

• Notice, one of the main issue of the randomized sampling-
based approaches is the narrow passage

• Several modifications of sampling based strategies have
been proposed in the last decades

Jan Faigl, 2014 CTU, FEE, Department of Computer Science 35 / 63



Randomized Sampling-based Motion Planning Techniques Sampling

Comments about Random Sampling 2/2
• A solution can be found using only a few samples.

Do you know the Oraculum? (from Alice in Wonderland)

• Sampling strategies are important
• Near obstacles
• Narrow passages
• Grid-based
• Uniform sampling must be carefully considered.

James J. Kuffner, Effective Sampling and Distance
Metrics for 3D Rigid Body Path Planning, ICRA, 2004.
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• Sampling strategies are important
• Near obstacles
• Narrow passages
• Grid-based
• Uniform sampling must be carefully considered.
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Metrics for 3D Rigid Body Path Planning, ICRA, 2004.

Naïve sampling Uniform sampling of SO(3) using Euler angles
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Rapidly Exploring Random Tree (RRT)
• Motivation is a single query and control-based path finding
• It incrementally builds a graph (tree) towards the goal area.

RRT Algorithm
Input: qinit , number of samples n
Output: Roadmap G = (V ,E)

V ← {qinit}; E ← ∅;
for i = 1, . . . , n do

qrand ← SampleFree;
qnearest ← Nearest(G = (V ,E), qrand );
qnew ← Steer(qnearest , qrand );
if CollisionFree(qnearest , qnew ) then

V ← V ∪ {xnew}; E ← E ∪ {(xnearest , xnew )};
end

end
return G = (V ,E);

Extend tree by a small step, but often a direct control u ∈ U that will
move robot to the position closest to qnew is selected (applied for dt).

Rapidly-exploring random trees: A new tool for path planning
S. M. LaValle,
Technical Report 98-11, Computer Science Dept., Iowa State University, 1998
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RRT Construction

init q new
q

#1 new random configuration

init

q near
q new

q

#2 the closest node

new

u 3

u 5

u 4

u 2

u 1

q near
qinitq

#3 possible actions from qnear

q init

#4 extended tree

Expansion is repeated until Qgoal is achieved or
maximum iteration is reached.
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Properties of RRT Algorithms

• Rapidly explores the space
qnew will more likely be generated in large not yet
covered parts of Cfree.

• Allows considering kinodynamic/dynamic constraints
during the expansion

• Can provide trajectory or a sequence of direct control com-
mands for robot controllers

• A collision detection test is usually used as a “black-box”.
E.g., RAPID, Bullet libraries.

• Poor performance in narrow passage problems
similarly to PRM

• Provides feasible paths
more expansions can improve paths; however, . . .

• Many variants of RRT have been proposed
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Car-Like Robot

• Configuration

x(t) =

 x
y
φ


position and orientation

• Controls

u(t) =

(
v
ϕ

)
forward velocity, steering angle

• System equation
ẋ = v cosφ
ẏ = v sinφ

ϕ̇ =
v
L

tanϕ

(x, y)

L

θ

ϕ

ICC

Kinematic constraints dim(
−→u ) < dim(

−→x )

Differential constraints on possible q̇:

ẋ sin(φ)− ẏ cos(φ) = 0
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Control-Based Sampling

• Select a configuration q from the tree T of the current
configurations

• Pick a control input u = (v , ϕ)
and integrate system (motion)
equation over a short period ∆x

∆y
∆ϕ

 =

∫ t+∆t

t

 v cosφ
v sinφ
v
L tanϕ

dt

• If the motion is collision-free, add the endpoint to the tree
E.g., considering k configurations for kδt = dt.
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RRT – Examples 1/2

Alpha puzzle benchmark Apply rotations to reach the goal

Bugtrap benchmark Variants of RRT algorithms
Courtesy of V. Vonásek and P. Vaněk
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RRT – Examples 2/2

• Planning for a car-like robot

• Planning on a 3D surface

• Planning with dynamics
(friction forces)

Courtesy of V. Vonásek and P. Vaněk
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RRT and Quality of Solution

• RRT provides a feasible solution without quality guarantee
Despite of that, it is successfully used in many prac-
tical applications

• In 2011, a systematical study of the asymptotic behaviour of
randomized sampling-based planners has been published

It shows, that in some cases, they converge to a non-
optimal value with a probability 1.

Sampling-based algorithms for optimal motion planning
Sertac Karaman, Emilio Frazzoli
International Journal of Robotic Research, 30(7):846–894, 2011.
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RRT and Quality of Solution 1/2

• Let Y RRT
i be the cost of the best path in the RRT at the end

of iteration i .
• Y RRT

i converges to a random variable

lim
i→∞

Y RRT
i = Y RRT

∞ .

• The random variable Y RRT
∞ is sampled from a distribution

with zero mass at the optimum, and

Pr [Y RRT
∞ > c∗] = 1.

Karaman and Frazzoli, 2011

• The best path in the RRT converges to a sub-optimal solu-
tion almost surely.
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RRT and Quality of Solution 2/2

• RRT does not satify a necessary condition for the asymp-
totic optimality

• For 0 < R < infq∈Qgoal ||q − qinit ||, the event
{limn→∞ Y RTT

n = c∗} occurs only if the k -th branch of the
RRT contains vertices outside the R-ball centered at qinit for
infinitely many k .

See Appendix B in Karaman&Frazzoli, 2011

• It is required the root node will have infinitely many subtrees
that extend at least a distance ε away from qinit

The sub-optimality is caused by disallowing new better paths
to be discovered.
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