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Multi- vs. Hyper-

0 Hyper-: Narrow bands (< 20 nm In resolution
or FWHM) and continuous measurements.
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Figure 3. The concept of hvperspectral imagery. Image measurements are made at
many narrow contiguous wavelength bands, resulting in a complete spectrum for each
pixel.

Source: http://satjournal.tcom.ohiou.edu/pdf/shippert.pdf



Current and recent hyderspectral sensors

Table 1. Current and Recent Hyperspectral Sensors and Data Providers

Satellite Manufacturer Number of Bands Spectral Range

Sensors

FTHSI on Air Force Research 256 0.35to 1.05 um
MightySat II Lab

www . vs afrl af mil
TechProgs/MightvSatll

Hyperion on EO- | NASA Goddard Space 220 0.4to 2.5 um
1 Flight Center
eol osfc nasa cov
OMEGA ESA Mars Express 351 0.351t05.12 pum
x

_ 70or4nmin 0.5-1.1 microns
Spectral resolution: 13 nm in 1.0-2.7 microns
20 nm in 2.6-5.2 microns

Spatial resolution: 300 m -5 km



Scientific Objectives

CMEGA (which stands for Observatoire pour 13
Mineralogie, I'Eau, les Glaces et 'Activit) is an infrared
mapping spectrometer, designed to examine the global
distribution of minerals and chemicals on the surface of
hars. Its goals are to:

« Map surface materials, including silicate minerals,
fydrated minerals, oxides and carbonates, organic
frosts, and ices

o« Map the concentrations of carbon dioxide, carbn
monoxide, and water in the atmosphere and how
they change owver time

o |dentify the aerosols and dust paricles in the atmosphere and observe their time and
space distributions

« Monitor the transportation of dust across the surface

The optics and electronics of the

OMEGA instrument
Image: Institut d'Astrophysique Spatiale.

ilick here for mare imades from
Mars Express




Airborne Manufacturer NMumber of Bands Spectral Range
Sensors
AVIRIS NASA Jet Propulsion 224 041025 um
(Airborne Visible Lab
Iﬂf_mred Imaging makaln ipl. nasa. gov
Spectrometer)
HYDICE Naval Research Lab 210 041025 um
{Hyperspectral
Dhgital Imagery
Collection
Expeniment)
PROBE-1 Earth Search Sciences 128 041025 pm
Inc.
www earthsearch com
casl ITRES Research up to 228 0.4to 1.0 um
(Compact Limited
Airborne e
Spectrographic
Imager)
HvMap Integrated Spectronics 100 to 200 Visible to thermal
— infrared
W W ANTSeC . COMm
EP5-H GER Corporation VIS/NIR (76), SWIR1 (32), VIS/NIR
(Environmental S SWIR2 (32), TIR (12} (.43 to 1.05 pm),
Protection I SWIR1
System) (1.5t0 1.8 um),
SWIR2
(2.01t0 2.5 um),
and TIR

(810 12.5 um)




Cont’

(810 12.5 um)

DATS 7015 GER Corporation VIS/NIR (32), SWIE1 (8), VIS/NIR
(Digital Airborne SWIR2 (32), MIE (1), {(0.43 to 1.05 um),
Imaging TIR (6) SWIR1
Spectrometer) (1.5 to0 1.8 um),
SWIR2
(2.0 to0 2.5 um),
MIE
(3.0t0 5.0 um),
and TIR
(8.7t0 12.3 um)
DAIS 21115 GER Corporation VIS/NIR (76), SWIR1 (64), VIS/NIR
(Digital Airborne SWIR2 (64), MIR (1), (0.40 to 1.0 pm),
Imaging TIR (6) SWIR1
Spectrometer) (1.0tc 1.8 um),
SWIR2
(2.0t0 2.5 um),
MIER
(3.0 t0 5.0 um),
and TIR
(8.0to 12.0 um)
AlsSA Spectral Imaging up to 288 04310 1.0 pm
(Airborme wWiww specim. fi
Imaging

Spectrometer)
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CRISM

Compact Reconnaissance Imaging Spectrometer for Mars

.0' -‘-"l Mars

TIMELINE
AUGUST 12, 2005

MARS RECONNAISSANCE
ORBITER LAUNCH

MARCH 10, 2006
MARS ORBIT INSERTIOMN

SEPTEMBER 2006
CRISM'S FIRST DATA

MOVEMBER 2008 - NOVEMBER 2008
PRIMARY SCIENCE ORBIT

DECEMBER 2008 - DECEMBER 2010
EXTENDED SCIENCE PHASE

MIS5ION ELAPSED TIME

Beginning 12 Aug. 2005, 11:43:00 UTC

DAYS
2441

HRS MINS SECS
04 44 53

XML @

Olivine, Phyllosilicates,
and Ancient Crater Rims

Phyllosilicates imaged along
weathered crater rims suggests a
possible origin for this clay-rich
family of minerals.

Fead maore =

+ LATEST NEWS

November 2, 2011

Using instruments including APL's Compact
Reconnaissance Imaging Spectrometer (CRISM)
instrument on the Mars Reconnaissance Orbiter,
researchers now suggestthat Martian ervironments with
abundant liquid water on the surface existed only during
short episodes. [more

June 24, 2011

CRISM Principal Investigator Scott Murchie will be awarded
the MASA Distinguished Public Service Medal, the highest
honor that MASA bestows to an individual working outside
the government, while the CRISM team will be awarded two
MASA Public Senvice Group Achievement Awards. [more

MRO/CRISM =

Data Users' Workshop 2012

Thousands of CRISM high-
resolution images are available
in easy-to-view format accessible
through a searchable map. More
are being added as they are
converted from the full spectral

data... [more

+ CRISM CORNER

June 2010
Approximately 100 students,




/£ MRO/CRISM Data Users’ Workshop 2012 - Windows Internet Explorer o ]
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MRO/CRISM
Data Users' Workshop 2012

+ ABOUT THE CONFERENCE
Resources
+ OMLINE REGISTRATION

+ AGENDA AND PRESENTATIONS
+ VISITOR GUIDE CRISM Instrument Paper (AGL Online)

+ HOTEL INFORMATION CRISM PSP Investigation Summary

+ RESOURCES
+ CONTACT INFORMATION

CRISM Data Product Specification

CRISM Data Set Specification

CRISM Spectral Library

FDS Geosciences Workshops

CATTA
= CAT 7.1 Software Download (433 MB Zip file)
= CAT 7.1 Installation Guide (162 KB PDF)
= CAT 7.1 Release Notes (5.3 KB TXT file)
= CAT 7.1 History String Description (2 KB TXT file)
= CAT User's Guide (84 KB FDF)

FD3S Geopsciences MEOVCRISM Data Users” Workshop 2012 Forum

instructions Tor retneving CEISM data products, and prototype products from the workshop, from the
FL0s (637 KB PDF)

Privacy Motice/l egal Disclaimer JHUSAPL Official: E._Seelos
© 2012 Johns Hopkins University Applied Physics Laboratory Last verified: 41812




1. Basic concepts and processes

Endmember and pure pixel

Endmembers are spectra that are chosen to represent pure surface
materials in a spectral image

Spectral resample

Spectral mixing
Linear
Non-linear

Spectrum continuum and removal

Steps for finding endmembers
Minimum noise fraction (MNF) transformation
Pixel Purity Index (PPI)
n-Dimensional Visualization (nDV)
Spectral Analyst (SA)



Linear and non-linear mixing

The linear model assumes no interaction between materials. If each photon
only sees one material, these signals add (a linear process). Multiple scattering
Involving several materials can be thought of as cascaded multiplications (a
non-linear process). In most cases, the non-linear mixing is a second order
effect. Many surface materials mix in non-linear fashions but linear unmixing
techniques, while at best an approximation, appear to work well in many
circumstances (Boardman and Kruse, 1994).

A variety of factors interact to produce the mixing signal received by the
Imaging spectrometer:

A very thin volume of material interacts with incident sunlight. All the materials
present in this volume contribute to the total reflected signal.

Spatial mixing of materials in the area represented by a single pixel result in
spectrally mixed reflected signals.

Variable illumination due to topography (shade) and actual shadow in the area
represented by the pixel further modify the reflected signal, basically mixing with a
black endmember.

The imaging spectrometer integrates the reflected light from each pixel.



Linear mixing for a single pixel

a single pixel with three
malerials: & Band C

IFOV of pixel

endmember
has a unigue
spactrum

c

the mixed spectrum is just
a weighted average

mix=0.25"A+0.25*B+0.5*C
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A fitted continuum (bottom) and a continuum-
removed (top) spectrum for the mineral kaolinite



MNF Mininmum _Egmnamicg

MNoise Fraction MNoise Statistics
\ Existing
slatistcs
O MNF is used determine the inherent o Transform
dimensionality of image data, to segregate noise in |
the data, and to reduce the computational - Flgenvalues
requirements for subsequent processing. AT
Images
o Itistwo cascaded PCASs in ENVI Figure 20-1: MINF Procedures in ENVI

The first transformation, based on an estimated noise covariance matrix,
decorrelates and rescales the noise in the data. This first step results in
transformed data in which the noise has unit variance and no band-to-band
correlations.

The second step Is a standard Principal Components transformation of the
noise-whitened data. The data space can be divided into two parts:
o one part associated with large eigenvalues and coherent eigenimages, and

o acomplementary part with near-unity eigenvalues and noise-dominated
images.

By using only the coherent portions, the noise is separated from the data,
thus improving spectral processing results.



Pl

0 PPl is a means of finding the most
“spectrally pure”, or extreme,
pixels in multiple and
hyperspectral images.

0 The PPI is computed by
repeatedly projecting n-
dimensional scatter plots onto a
random unit vector. The extreme
pixels in each projection are
recorded and the total number of
times each pixel is marked as
extreme Is noted. A Pixel Purity
Index (PPI) image is created in
which the DN of each pixel O
corresponds to the number of
times that pixel was recorded as o
extreme.

Pixel Purity Select Discard

Index (PPI) Data Low MNFs

Std. Deviation
// Threshaold

Maxdmize

Tteratioms
Evalaate Display and
PPIResults ~—  Histograms

Threshald
PPI to ROI(s)

Figure 20-3: Pixel Purity Index Procedures in ENV/

In the PPI image, brighter
pixels represent more
spectrally extreme finds
(pure). Darker pixels are less
spectrally pure.

Using histogram to examine
the distribution of pixels.

Using ROI tool to only
Include the top purest pixels



Select Data

n D V n-Dimensiomal Visualizer

Spm Data

Paint

Extract Spectra |-—— |

Endmeruhers

1D Spertra

Figure 20-4: Steps Used in the n-Dimensional Visualizer

Spectra can be thought of as points in an n-D scatter plot, where n is

the number of bands.

The most purest pixels selected from PPI will used in the plot for you

to pick up (or paint) the endmemebrs.

You can view the reflectance spectra of your selection (Options -> Z-
Profile) using your middle mouse button. Using right mouse button

to collect spectrum.

Collapse Classes

|
\ Build ROTs

You can export the classes you selected as new ROls for the

classification.



O O

SA

SA matches unknown spectra to library spectra and
provides a score with respect to the library spectra
(usgs_min.sli). A score is bewteen 0 to 1, with 1
equaling a perfect match.

Linking SA to the nDV provides a means of
Identifying endmember spectra on-the-fly.

In SA, select the Auto Input via Z-profile

Double-click the spectrum name at the top of the list
to plot the unknown and the library spectrum in the
same plot for comparison.

Use Endmember Collection to collect the
endmembers for your classification



2. Special classification and
unmixing methods

O Per-pixel method
Spectral Angle Mapper and
Spectral Feature Fitting

0 Sub-pixel (fuzzy) method
Complete Linear Spectral Unmixing,
Matched Filtering,
Mixture-Tuned Matched Filtering (MTMF)

O Tetracorder
0 Spectral Hourglass



2.1. Per-pixel methods

0 Per-pixel analysis methods attempt to determine
whether one or more target materials are abundant
within each pixel in a hyperspectral (or multispectral)
Image on the basis of the spectral similarity between
the training (reference) pixel and target (unknown)
spectra.

O Per-pixel scale tools include standard supervised
classifiers such as Minimum Distance or Maximum
Likelihood, as well as tools developed specifically for
hyperspectral imagery such as

Spectral Angle Mapper and
Spectral Feature Fitting.



Spectral Feature Fitting

O To match target and reference pixel spectra by examining
specific absorption features in the spectra (continuum
removed spectrum) .

o A relatively simple form of this method, called Spectral
Feature Fitting, Is available as part of ENVI. In Spectral
Feature Fitting the user specifies a range of wavelengths
within which a uniqgue absorption feature exists for the chosen
target. The reference (training) spectra are then compared to
the target spectrum using two measurements:

the depth of the feature in the target is compared to the
depth of the feature in the reference, and

the shape of the feature in the target is compared to the
shape of the feature In the reference (using a least-squares
technique).



2.2 Sub-pixel method (Fuzzy)

0 Sub-pixel analysis methods can be used to calculate
the quantity of target materials in each pixel of an
Image. Sub-pixel analysis can detect quantities of a
target that are much smaller than the pixel size itself.
In cases of good spectral contrast between a target
and its background, sub-pixel analysis has detected
targets covering as little as 1-3% of the pixel.

0 Sub-pixel analysis methods include

Complete Linear Spectral Unmixing,

Matched Filtering,
Mixture-Tuned Matched Filtering (MTMF)



Complete Linear Spectral Unmixing

O Any pixel spectrum is a linear combination of the spectra of all
endmemebers inside that pixel. Each endmember weight is the
proportion of area that pixel contains the endmember.

0o  Unmixing simply solves a set of n linear equations for each pixel,
where n is the number of bands in the image. The unknown variables
In these equations are the fractions of each endmember in the pixel.
To be able to solve the linear equations for the unknown pixel
fractions it is necessary to have more equations than unknowns,
which means that we need more bands than endmember materials.
With hyperspectral images, this is almost always true.

O The results of Linear Spectral Unmixing include one abundance
Image for each endmember. The pixel values in these images indicate
the percentage of the pixel made up of that endmember. For example,
If a pixel in an abundance image for the endmember quartz has a
value of 0.90, then 90% of the area of the pixel contains quartz. An
error image is also usually calculated to help evaluate the success of
the unmixing analysis.



Matched filtering

o A type of unmixing in which only user chosen targets are mapped. Unlike
Complete Unmixing, we don’t need to find the spectra of all endmembers in
the scene to get an accurate analysis (hence, this type of analysis is often called
a ‘partial unmixing’ because the unmixing equations are only partially solved).

0o Matched Filtering “filters” the input image for good matches to the chosen
target spectrum by maximizing the response of the target spectrum within the
data and suppressing the response of everything else (which is treated as a
composite unknown background to the target). Like Complete Unmixing, a
pixel value in the output image is proportional to the fraction of the pixel that
contains the target material. Any pixel with a value of 0 or less would be
Interpreted as background (i.e., none of the target is present).

0 One potential problem with Matched Filtering is that it is possible to end up
with false positive results. One solution to this problem that is available in
ENVI is to calculate an additional measure called “infeasibility”. Which is the
method called MTMF.



MTMF (Mixture-Tuned Matched Filtering )

0 Is a hybrid method based on the combination of the
matched filter method (no requirement to know all
the endmembers) and linear mixture theory.

0O The results are two images:

a MF score image with 0 to 1 (1 is perfect match), and

A Infeasibility image, the smaller the better match.

o Infeasibility is based on both noise and image statistics and
Indicates the degree to which the Matched Filtering result is a
feasible mixture of the target and the background. Pixels with

high infeasibilities are likely to be false positives regardless of
their matched filter value.

Use 2-D scatter plot to locate those pixels in an image.



2.3. Tetracorder

0 An advanced example of matching absorption features called
Tetracorder (http://speclab.cr.usgs.gov/tetracorder.html), has been
developed by the U.S. Geological Survey (Clark et al., 2000)
(source: http://speclab.cr.usgs. gov/PAPERS/tetracorder/ This
method can be used to do per-pixel based and sub-pixel based (both

linear and non-linear) classification. This method includes five
Innovations:

the comparison of a specific reference to the unknown, only the

portions of the spectrum that are known to be dlagnostlc of the
reference material are used

guantitatively compare the similarity of an unknown spectrum to
all entries in the library

mitigate these coincidental ambiguities using ancillary spectral
Information (other wavelengths)

partition analyses across the spectrum
Allow “no answer” or unclassified pixels.
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The continuum removed spectra are fit together using a modified least squares calculation. Kaolinite is the
best match to the Cuprite spectrum. The muscovite spectrum has two features, one near 2.2 and the other near
2.3 um. No 2.3-um muscovite feature could be detected in the Cuprite spectrum, so the weighted fit is zero
(left hand column). Note the very similar fits between kaolinite (0.996) and halloysite (0.963), yet the
halloysite profile clearly does not match as well as the kaolinite profile. This illustrates that small differences
in fit numbers are significant. Alunite has two diagnostic spectral features, but the 1.5-um feature is not
shown.
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CONTINUUM REMOVED
REFLECTANCE

REFLECTANCE
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As the grain size
becomes larger,
more light is
absorbed, the
reflectance
decreases, and the
absorption feature
bottoms flatten
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Piute Reservoir Sediment Load
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USGS - EPA Utah AML Project .1,..
Rockwell et al., 2000
Fe Minerals and Water

Marysvale/Antelope Range

AVIRIS high altitude data
August 5, 1998
Run 10 subset

Tetracorder 3.6a5 Product
Iron Sulfate Minerals
fine grained jarosite - propylitic zone
coarse grained jarosite - argillic zone
goethite + jarosite

Iron Hydroxide Minerals
goethite - thin coating
goethite - fine grained
goethite - medium grained
goethite - coarse grained

Iron Oxide Minerals
hematite - fine grained

hematite - med. to coarse grained

Other iron oxides/hydroxides

water + chlorophyll
water + red algae

Fe2+-bearing minerals
generic
with hematite
with goethite and muscovite

chlorite + aoethite alteration

Using the
Teteracorder

Source: http://popo.jpl.nasa
.gov/html/data.htmi



2.4 Spectral Hourglass

This "hourglass” processing flow begins with reflectance or radiance input
data and aids you in spectrally and spatially subsetting the data. It helps
you to visualize the data in n-dimensions and cluster the purest pixels into
endmembers, and optionally allows you to supply your own endmembers.
It also helps you map the distribution and abundance of the endmembers,
use ENVI's Spectral Analyst to aid you in identifying the endmembers,
and aids you in reviewing the mapping results.

Each step in the wizard executes a stand-alone ENVI function and all
steps can be performed using the individual functions separately. Detailed
documentation for the functions used in this wizard can be found in the
online help under each separate function name (that is, Forward MNF
Transform, n-Dimensional Visualizer, etc.). The name of the function
executed in each step appears in the top panel of the screen. Results from
specific steps are output to the Available Bands List and can be viewed
using standard ENVI methods. Various plots appear to help assess results
along the way.



Introduetom

Input'Cutput
Selection

( )

MHnimum Molse
Transform [T

¥

Revlew of MINE Results

¥

Data Dimensionality
Determination

Derive Endmembers

from Data?

Pixel Purity Index (FPI)

¥

Examine PPI Results

¥

n-Dimensional Visnalization
and Endmember Selection

Input User-Supplied
Endmembars?

IMapping with SAM, Unmixing
and/or MTMF

Input User-Supplied

Endmembers?

Endmember Collectom

¥

Investlgate Mapping Results

o)

-~



	Hyperspectral image processing and analysis
	Multi- vs. Hyper-
	Slide Number 3
	Current and recent hyderspectral sensors
	Slide Number 5
	Slide Number 6
	Cont’
	CRISM
	Slide Number 9
	1. Basic concepts and processes
	Slide Number 11
	Slide Number 12
	Slide Number 13
	MNF
	PPI
	nDV
	SA
	2. Special classification and unmixing methods
	2.1. Per-pixel methods
	 Spectral Feature Fitting
	2.2 Sub-pixel method (Fuzzy)
	Complete Linear Spectral Unmixing
	Matched filtering
	MTMF (Mixture-Tuned Matched Filtering )
	2.3. Tetracorder
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	2.4 Spectral Hourglass
	Slide Number 32

