
Points, Vectors, Geometry, Algebra
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Points and vectors in geometry and algebra
The notion point in geometry is considered here as well

known and as its definition is not mathematically simple, I
will not define it here. Let us emphasize that it should be
considered as “place in the space”, which is independent on
any numbers.

The term vector in geometry we can define as ordered pair
of points, which are called initial and terminal point of the
vector. We denote vector as ~AB.

We can use the phrases in geometry as “point A is inter-
section of circle k1 with the center in point B and containing
point C and line passing through points D and E”.

The problems in robotics are strictly speaking geometrical
problems (at least in kinematics). We need to represent the
geometry of robots in computer to be able to control robots.
Unfortunately the digital computer cannot handle geometry
directly.

Mathematical theory of linear spaces allows us to handle
mathematical objects like ordered n-tuple of numbers. It is
possible to show that structure preserving mapping (isomor-
phism) between geometrical and algebraic objects exists for
Euclidean geometry and algebraic linear spaces of the finite
dimension. To introduce such isomorphism, we need to in-
troduce coordinate system. Geometrical point in space could
be then made identical to the ordered triple of real numbers.
This triple is usually called vector, but this time being the al-
gebraic term. The real numbers in the triple mean coordinates

of geometrical point in the coordinate system. The radius vec-
tor in geometry could define the position of the point in the
space. The initial point of the radius vector is in the origin of
the coordinate system, the final point of the radius vector is
the represented geometrical point.

(Algebraic) linear space thus makes universal model of ge-
ometrical space and using the linear space we can represent
all properties of geometrical space and vice versa.

Considering the geometrical terms as primary can be jus-
tified by the historical fact, that geometry was cultivated by
mathematicians 2000 years without introducing coordinates.
The existence of isomorphism demonstrates that both de-
scriptions of the reality are (mathematically) equivalent and
we can switch between them arbitrarily. We can define be-
tween points and vectors in geometry several operators:

• two points define vector ~v = ~AB,

• point and vector define point A+ ~v = B

• vectors could be added and subtracted ~b = ~a+ ~v

These operations hold without introducing coordinate sys-
tem.

The same operations could be introduced in algebra be-
tween ordered triples (n-tuples) representing points and vec-
tors. The formulas remain the same, the meaning of the
objects in formulas differs. Algebraic objects in formulas
correctly represent geometrical objects if the coordinates of
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the geometrical objects are in the same coordinate system.
Further holds that coordinate system can be chosen arbitra-
rily. Form of the algebraic description will be for any choice
of coordinate system same, the numbers in equations will de-

pend on the choice of the coordinage system.

Situation with several coordinate systems will be descri-
bed later.
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Technical intermezzo
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The common approach for solving problems of determi-
ning parameters of triangle is to use e.g. Law of Cosine or Law
of Sine. Such laws, sum of inner angles and so on, are difficult
to apply in analytical geometry. The problem is that found
solutions should be interpreted for different quadrants, new
solutions shall be constructed or found solutions tested for sa-
tisfying input conditions. The reason is, that the orientation
of angles cannot be determined from such computations and
interpretation of results is difficult.

I recommend to avoid such approaches as much as possible
and use the following reliable tools.

• Try to calculate coordinates of corners instead of length
of sides or size of angles.

• Use φ = atan2(y, x) for determining angle as much as
possible. Avoid arccos as much as possible.

• When calculating angles and coordinates, strictly use
oriented versions of them. They can be then sumed and
subtracted without analysis of particular situations.

• If you need analytical equation of line, use the form
ax + by + c = 0, which unlike y = kx + q works in all
quadrants.

See the calculation of the angle between x axis and ~AB vector
(see figure above). The oriented, four quadrant angle α could
be calculated as α = atan2(By −Ay, Bx −Ax).

The safest and easiest way, how to calculate the oriented
angle β between vectors ~v and ~u is the following:

α = atan2(By −Ay, Bx −Ax), (1)

γ = atan2(Cy −By, Cx −Bx), (2)

β = γ − α. (3)
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Technical intermezzo II
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Let us have given the coordinates of points A and C and
lengths of vectors ~v and ~u. The safest way how to determine
the point B and associated angles, is not to fight via Law
of Cosine with the angle δ but to calculate the intersection

of circles with the centers in A and C and appropriate radii.
This gives two solutions for point B. The angles could be then
determined by the above equations.
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Body in the coordinate system and its motion
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The rigid body in a plane has 3 degree of freedom.
The same body in 3D space has 6 degree of freedom:
Questions:
How many DOF has a rubber tape?

Rigid body – in this course we always consider links and
manipulated objects as rigid bodies. We can attach the
coordinate system to the rigid body and position of the
individual points on the rigid body is then unique and
supposed to be known apriori, e.g. from CAD drawings
of the body.

Actual body position in time could be described by the
position of the attached coordinate system in other,
nonmoving, “world” coordinate system.

Motion of the body in time could be described as a

actual position of the body as a function of time.

Relative position of two coordinates system can
always be decomposed into the translation and rotation.

Let the coordinate system of a base is O−xyz. The coor-
dinate system of a body is O′ − xbybzb. The description of a
coordinate system O′−xbybzb in coordinate system of a base
is:

~OO′ = xo =




xo
yo
zo


 (n, t, b) .

Let us form a matrix R = (n, t,b), n, t, b are unit and
orthogonal vectors, then a matrix R is ortonormal, that is
R−1 = RT .

ROBOTICS: Vladimír Smutný Slide 10, Page 5



Description of Body Position

Point in 3D - described by three coordinates.

Rigid body in 3D - described by 6 coordinates:

� 3 coordinates of reference point t00 =




x0
y0
z0


,

� orientation could be described e.g. by:

• coordinates of vectors attached to the body (n, t,b),

• Euler angles (φ, θ, ψ),

• rotational matrix R,

• axis – angle,

• quaternions,

• rotation vector.

Coordinates of reference point and rotation matrix could be
combined into transformation matrix.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Rotation matrix see Eric W. Weisstein. ”Rotation Mat-
rix.” From MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/RotationMatrix.html

For conversion among different descriptions see

http://www.euclideanspace.com/maths/geometry /rotati-
ons/conversions/index.htm Pay attention to the definitions
used so you do mix different definitions from different sour-
ces.
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Axis–Angle, Quaternions, Rotation Vector
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Euler’s rotation theorem states than any rotation
in 3–D could be represented as a single rotation
around a certain axis. We can describe this axis as
s and angle of the rotation as θ. This pair (s, θ)
could represent rotation and is called axis–angle.
Quaternions can be expressed as:

q = (cos(θ/2), sin(θ/2)sT ) =

(cos(θ/2), sin(θ/2)sx, sin(θ/2)sy, sin(θ/2)sz)

Rotation vector uses the fact, that vector s
is normalized and has only 2 DOF, so one can
express rotation using three numbers v = (θs).
Rodrigues’ rotation formula:

r2 = r1 cos θ+ (s× r1) sin θ+ s(s · r1)(1− cos θ)

R = I cos θ + [s]x sin θ + ssT (1− cos θ)

Quaternions have various properties, among them:

• all four components are equal “important”, unlike Euler
angles,

• q and −q describe same rotation,

• it is relatively easy to interpolate the rotation in qua-
ternion parametrisation.

The task to rotate smoothly (e.g. manipulate in robotics or
display in computer graphics) could be easily achieved using
quaternions. The method is called spherical linear interpo-
lation (SLERP). We interpolate from q1 to q2 getting q and
having interpolating parameter t, the angle α is the amount
of rotation needed (angle between quaternions interpreted as
four dimensional vectors is half of it, absolute value assures
the shorter rotation):

q = (q2 · q−11 )tq1 , (4)

q =
sin((1− t)α)

sin(α)
q1 +

sin(tα)
sin(α)

q2 , (5)

cos(α/2) = ‖q1 · q2‖ , (6)

t ∈ < 0, 1 > . (7)

For details about quaternions see Eric W. Weisstein.
”Quaternion.” From MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/Quaternion.html

Interpolation in axis-angle system is rotation around given
axis, where angle changes linearly from 0 to θ.

The rotation vector is nonredundant and has good topo-
logy, so it is heavily used e.g. in computer vision for rotation
estimation. Good topology means here that rotation vectors
which are closed to each other (their difference is small) re-
present rotations which differ only little. This hols also near
zero rotation vector.

Rodrigues’ rotation formula allow to calculate vector r2 or
equivalently point P2 when rotating around axis s by an angle
θ. The modified Rodriques’ formula allows to calculate easily
rotation matrix from axis–angle representation. The inverse
transformation is:

θ = arccos

(
trace(R− 1)

2

)
(8)

s =
1

2 sin θ



r3,2 − r2,3
r1,3 − r3,1
r2,1 − r1,2


 (9)
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Definition of Euler angles

1 – precession 2 – nutation

3 – rotation
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Euler angles

The matrix R has nine coeficients, but its dimension is only
three, the bounding condition is unit size and orthogonality
of vectors n, t, b:

nT t = 0 tTb = 0 bTn = 0
|n| = 1 |t| = 1 |b| = 1

The matrix R can be contructed easily using Euler angles

1. Rotate the coordinate system O−xyz around the axis
z by the angle φ. We will get O − x′y′z.

2. Rotate the coordinate system O−x′y′z around the axis
x′ by the angle θ. We will get O − x′y′′z′′.

3. Rotate the coordinate system O − x′y′′z′′ around the
axis z′′ by the angle ψ. We will get O − xbybzb.

R = Rz(φ)Rx′(θ)Rz′′(ψ)

Rz(φ) =




cosφ − sinφ 0
sinφ cosφ 0

0 0 1


 (10)

Rx′(θ) =




1 0 0
0 cos θ − sin θ
0 sin θ cos θ


 (11)

Rz′′(ψ) =




cosψ − sinψ 0
sinψ cosψ 0

0 0 1


 (12)

R =

[
cosφ cosψ − cos θ sinφ sinψ − cos θ cosψ sinφ − cosφ sinψ sinφ sin θ
cosψ sinφ + cosφ cos θ sinψ cosφ cos θ cosψ − sinφ sinψ − cosφ sin θ

sin θ sinψ cosψ sin θ cos θ

]

(13)

Euler angles define uniquely the rotation, the same ro-
tation can be reached by different triples of angles. Other
definitions like roll–pitch–yaw define similar angles with simi-
lar properties but with different equations. If the matrix R
is given, Euler angles can be calculated by the comparison of
the matrix coeficients r33, r32, r23.
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Rotation Matrix Resulting from Euler Angles

Euler angles according definition used here (Asada, Slotine):



cosϕ cosψ − cosϑ sinϕ sinψ − cosϑ cosψ sinϕ− cosϕ sinψ sinϑ sinϕ
cosψ sinϕ+ cosϑ cosϕ sinψ cosϑ cosϕ cosψ − sinϕ sinψ − cosϕ sinϑ

sinϑ sinψ cosψ sinϑ cosϑ




Rotation matrix based on Yaw, Pitch, Roll used in CRS robot, that is rotation around z,
then y, then x:



cosα cosβ cosα sinβ sin γ − cos γ sinα cosα cos γ sinβ + sinα sin γ
cosβ sinα cosα cos γ + sinα sinβ sin γ cos γ sinα sinβ − cosα sin γ
− sinβ cosβ sin γ cosβ cos γ




How to calculate Euler angles when rotation
matrix is known

• Let us have the known matrix R (3 × 3) and symbo-
lic matrix composed of three rotations defined by three
angles. Our task is to find those angles. The symbolic
matrix has for three consecutive rotations around per-
pendicular axes special form, similar to the form on the
above slide. So one has to solve the equation similar
(not necessary indentical) to (13) with three uknowns
φ, θ, ψ.

• First one has to find a pivot element in the symbolic
matrix which is function of just one variable (monom).
This element (e.g. element in the third row and third
column in the example) is in the form either ± cos or
± sin. This can be directly compared to the correspon-
ding element in the known matrix and angle calculated.
Note that generally there are two solutions in the each
interval of length 2π.

• When first angle is calculated, other angles could be
calculated using atan2 function from elements on the
pivot’s row and column.

• One has to consider the case when the corresponding
element in the constant matrix R has value close to

±1. This leads to degenerate case, where in each inter-
val of the length 2π is only one solution. The second
problem is that the rest of the elements in the pivot’s
column and row are 0 for this degenerate case, so one
cannot calculate other unknown angles from other ele-
ments in pivot’s row and column. When the angle cal-
culated from monom is inserted to the submatrix of the
symbolic matrix after removing pivot’s column and row,
the formulas could be simplified and one will find that
the submatrix is function either of sum or difference
of the still unknown angles. When solving symbolically
one will get one dimensional space of solutions. When
solving numerically, one can either fix one angle (e.g.
to 0) and calculate the other. In certain situations, one
has to find other constraints for the solution. In robo-
tics this situation indicates singular point and one can
use additional information e.g where the robot arm was
before or when it should move to preserve continuity of
the trajectory.

• Another aspect of the numerical solution is error caused
by rounding in measurement or calculations. This can
easily produce for example the element of the known
matrix to be larger than 1, which shall be handled ap-
propriately.
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Other Systems of Three Angles

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

ROBOTICS: Vladimír Smutný Slide 15, Page 10



Comparison of Rotation Descriptions

System Symbol Equivalent Pars Conditions
Rotation matrix R 9 orthonormal
Vectors of axes n, t,b R 9 unit vectors, orthogonal
Euler angles φ, θ, ψ yaw, pitch, roll,. . . 3
Axis, angle s, θ 4 unit vector
Quaternion q axis, angle 4 unit vector
Rotation vector v axis, angle 3

System Advantages Disadvantages Used by
R good for calculations redundant Matlab toolbox
n, t,b human understandable redundant
φ, θ, ψ nonredundant complicated topology Mitsubishi

Staubli, CRS
s, θ human understandable redundant

easy interpolation
q easy interpolation redundant ABB
v good topology rotation estimation

nonredundant
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Coordinate transformation
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We know the coordinates of a point P in the coordinate

system O1 − x1y1z1: P 1 = p11 =




u
v
w


 and we are loo-

king for its coordinates in coordinate system O0 − x0y0z0:

P 1 = p00 =




x
y
z


.

Lower right index refers usually to the coordinate system,
to which the element relates, upper right index refers to the
coordinate system in which the element is described. So ori-
gin of the coordinate system 1 (point) O1 has coordinates in
coordinate system 1: O11 = (0, 0, 0)T but in the coordinate

system 0 it has coordinates O01 = t00.
Geometrically:

~OP ′ = ~OO′ + ~O′A+ ~AB + ~BP .

Algebraically:

P 0 = p00 = t00 + un0 + vt0 + wb0.

Rewritten:
p00 = t00 +Rp11.

Inverse transform:

p11 = −RT t00 +RTp00.
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Homogeneous Coordinates
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Homogeneous coordinates

Let us define homogenneous coordinates:
Euclidean -metric Homogeneous - projective

x =




x
y
z


 ⇒ x =




x
y
z
1




x =




x/w
y/w
z/w


 ⇐ x =




x
y
z
w


 ∧ w 6= 0

does not exist
(point at infinity)

⇐ x =




x
y
z
0




It is possible to show, that

x = Axb,

where A is a matrix 4x4:

A =

[
R t00

0 0 0 1

]

Inverse matrix:

A−1 =

[
RT −RT t00
0 0 0 1

]
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Consecutive coordinate transformations
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Consecutive coordinate transformations in euclidean co-
ordinates

P a = paa = ta1 +Ra
bp

b
b = ta1 +Ra

b (tb2 +Rb
cp

c
c)

and in homogenneous coordinates:

P a = paa = Aa
bA

b
cp

c
c = Aa

bA
b
cP

c

P 0 = A01A
1
2A
2
3A
3
4 . . .A

n−1
n Pn. (14)
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