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Image matching and recognition with local features

The goal: establish correspondence between two or more 
images

Image points x and x’ are in correspondence if they are 
projections of the same 3D scene point X.

Images courtesy A. Zisserman
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Example I: Wide baseline matching and 3D reconstruction
Establish correspondence between two (or more) images.

[Schaffalitzky and Zisserman ECCV 2002]



Example I: Wide baseline matching and 3D reconstruction
Establish correspondence between two (or more) images.

[Schaffalitzky and Zisserman ECCV 2002]
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[Agarwal, Snavely, Simon, Seitz, Szeliski, ICCV’09] –
Building Rome in a Day

57,845 downloaded images, 11,868 registered images. This video: 4,619 images.   



3D reconstruction – capturing reality 



Example II: Object recognition

[D. Lowe, 1999]

Establish correspondence between the target image and 
(multiple) images in the model database.

Target 
image

Model 
database



Find these landmarks ...in these images and 1M more

Example III: Visual search

Given a query image, find images depicting the same place / 
object in a large unordered image collection.



Establish correspondence between the query image and all 
images from the database depicting the same object / scene.

Query image

Database image(s)



Bing visual scan

Mobile visual search



Example

Slide credit: I. Laptev



Visual navigation for autonomous robotics

http://mrg.robots.ox.ac.uk/theme/localisation/



Why is it difficult?

Want to establish correspondence despite possibly large 
changes in scale, viewpoint, lighting and partial occlusion

ViewpointScale

Lighting Occlusion

… and the image collection can be very large (e.g. 1M images)



Approach

0. Pre-processing:
• Detect local features.
• Extract descriptor for each feature.

1. Matching: Establish tentative (putative) correspondences 
based on local appearance of individual features (their 
descriptors). 

2. Verification: Verify matches based on semi-local / global 
geometric relations.

3. Learnable representations for visual correspondence 



Outline: feature detection

Edges
Corners 
Blobs
Contours
Regions

Local features

Interest Points
Patch descriptors, i.e. SIFT 

Contours/lines
Mi-points, angles 

Region segments 
Color/texture histogram

1. How do we use 
segmentation?

• Fast segmentation algorithm 
based on pairwise region 
comparison (by Felzenszwalb 
etal.) -> initial regions 

• Greedily group regions 
together by selecting the pair 
with highest similarity!

• Until the whole image become 
a single region 

• Generates a hierarchy of 
bounding boxes

Figure 2: A street scene (320 × 240 color image), and the segmentation results pro-

duced by our algorithm (σ = 0.8, k = 300).

Figure 3: A baseball scene (432 × 294 grey image), and the segmentation results

produced by our algorithm (σ = 0.8, k = 300).

Figure 4: An indoor scene (image 320 × 240, color), and the segmentation results

produced by our algorithm (σ = 0.8, k = 300).

17

Image regions  [Felzenszwalb et al., 2014]



Why extract features?
• Motivation: panorama stitching

• We have two images – how do we combine them?

Slide: S. Lazebnik



Why extract features?
• Motivation: panorama stitching

• We have two images – how do we combine them?

Step 1: extract features
Step 2: match features

Slide: S. Lazebnik



Why extract features?
• Motivation: panorama stitching

• We have two images – how do we combine them?

Step 1: extract features
Step 2: match features
Step 3: align images

Slide: S. Lazebnik



Characteristics of good features

• Repeatability
• The same feature can be found in several images despite geometric 

and photometric transformations 

• Saliency
• Each feature is distinctive

• Compactness and efficiency
• Many fewer features than image pixels

• Locality
• A feature occupies a relatively small area of the image; robust to 

clutter and occlusion
Slide: S. Lazebnik



A hard feature matching problem

NASA Mars Rover images

Slide: S. Lazebnik



NASA Mars Rover images
with SIFT feature matches
Figure by Noah Snavely

Answer below (look for tiny colored squares…)

Slide: S. Lazebnik



Blob detection

Slide: S. Lazebnik



Feature detection with scale selection
• We want to extract features with characteristic 

scale that is covariant with the image 
transformation

Slide: S. Lazebnik



Blob detection: basic idea

• To detect blobs, convolve the image with a 
“blob filter” at multiple scales and look for 
maxima of filter response in the resulting 
scale space

Slide: S. Lazebnik



Images as functions

Source: S. Seitz



Blob filter
Laplacian of Gaussian: Circularly symmetric 

operator for blob detection in 2D
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Slide: S. Lazebnik



Recall: Edge detection

g
dx
df *

f

g
dx
d

Source: S. Seitz

Edge

Derivative
of Gaussian

Edge = maximum
of derivative



Edge detection, Take 2

g
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df 2
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Edge

Second derivative
of Gaussian 
(Laplacian)

Edge = zero crossing
of second derivative

Source: S. Seitz



From edges to blobs
• Edge = ripple
• Blob = superposition of two ripples

Spatial selection: the magnitude of the Laplacian
response will achieve a maximum at the center of
the blob, provided the scale of the Laplacian is
“matched” to the scale of the blob

maximum

Slide: S. Lazebnik



Scale-space blob detector: Example

Slide: S. Lazebnik



Scale-space blob detector: Example

Slide: S. Lazebnik



Scale-space blob detector
1. Convolve image with scale-normalized 

Laplacian at several scales
2. Find maxima of squared Laplacian response 

in scale-space

Slide: S. Lazebnik



Scale-space blob detector: Example

Slide: S. Lazebnik



SIFT descriptors
4x4 spatial grid, 8 bins for gradient orientation
Þ dimension 128

David G. Lowe. "Distinctive image features from scale-invariant 
keypoints.” IJCV 60 (2), pp. 91-110, 2004. 

Slide: S. Lazebnik

SIFT descriptor [Lowe’99]SIFT descriptor [Lowe 99]

• Approach• Approach
– 8 orientations of the gradient 
– 4x4 spatial grid
– Dimension 128
– soft-assignment to spatial bins
– normalization of the descriptor to norm onenormalization of the descriptor to norm one
– comparison with Euclidean distance

gradient 3D histogramimage patch
x

o o
yy

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf


Affine adaptation
• Affine transformation approximates viewpoint 

changes for roughly planar objects and 
roughly orthographic cameras

Slide: S. Lazebnik





Approach

0. Pre-processing:
• Detect local features.
• Extract descriptor for each feature.

1. Matching: Establish tentative (putative) correspondences 
based on local appearance of individual features (their 
descriptors). 

2. Verification: Verify matches based on semi-local / global 
geometric relations.



Example I: Two images -“Where is the Graffiti?”

object



Step 1. Establish tentative correspondence

Establish tentative correspondences between object model image and target 
image by nearest neighbour matching on SIFT vectors

128D descriptor 
space

Model (query) image Target image 

Need to solve some variant of the “nearest neighbor problem” for all feature vectors,
, in the query image:

where,                      ,  are features in the target image.

Can take a long time if many target images are considered.



Step 1. Establish tentative correspondence

Examine the distance to the 2nd nearest neighbour [Lowe, IJCV 2004]

128D descriptor 
space

Model (query) image Target image 

If the 2nd nearest neighbour is much further than the 1st nearest neighbour
Match is more “unique” or discriminative.

Measure this by the ratio: r = d1NN / d2NN

r is between 0 and 1
r is small the match is more unique.

Works very well in practice.

Unique

Ambiguous



Problem with matching on local descriptors alone

• too much individual invariance

• each region can affine deform independently (by different amounts)

• locally appearance can be ambiguous

Solution: use semi-local and global spatial relations to verify matches.



Initial matches
Nearest-neighbor 
search based on 
appearance descriptors 
alone.

After spatial 
verification

Example I: Two images -“Where is the Graffiti?”



Approach

0. Pre-processing:
• Detect local features.
• Extract descriptor for each feature.

1. Matching: Establish tentative (putative) correspondences 
based on local appearance of individual features (their 
descriptors). 

2. Verification: Verify matches based on semi-local / global 
geometric relations.



Step 2: Spatial verification (now)

a. Semi-local constraints
Constraints on spatially close-by matches

b. Global geometric relations
Require a consistent global relationship between all 
matches 



Semi-local constraints: Example I. – neighbourhood consensus

[Schmid&Mohr, PAMI 1997]



Semi-local constraints:
Example I. –
neighbourhood 
consensus

[Schaffalitzky & 
Zisserman, CIVR 
2004]

Original images

Tentative matches

After neighbourhood consensus



Geometric verification with global constraints

• All matches must be consistent with a global geometric 
relation / transformation.

• Need to simultaneously (i) estimate the geometric 
relation / transformation and (ii) the set of consistent 
matches

Tentative matches Matches consistent with an affine 
transformation



Examples of global constraints

1 view and known 3D model.
• Consistency with a (known) 3D model.

2 views
• Epipolar constraint
• 2D transformations

• Similarity transformation
• Affine transformation
• Projective transformation

N-views
Are images consistent with a 3D model?



3D constraint: example
• Matches must be consistent with a 3D model

[Lazebnik, Rothganger, Schmid, Ponce, CVPR’03]

3 (out of 20) images 
used to build the 3D 

model

Recovered 3D model

Offline: Build a 3D model



3D constraint: example
• Matches must be consistent with a 3D model

[Lazebnik, Rothganger, Schmid, Ponce, CVPR’03]

3 (out of 20) images 
used to build the 3D 

model

Recovered 3D model

Recovered poseObject recognized in a previously 
unseen pose

Offline: Build a 3D model

At test time:



Given 3D model (set of known 3D points X’s) and a set of 
measured 2D image points x, 

find camera matrix P and a set of geometrically consistent 
correspondences  x    X.

3D constraint: example

x

X

P

C



2D transformation models

Similarity
(translation, 
scale, rotation)

Affine

Projective
(homography)

Why are 2D planar transformations important?



Recall perspective projection

Slide credit: A. Zisserman



Plane projective transformations

Slide credit: A. Zisserman



Projective transformations continued

• This is the most general transformation between the world 
and image plane under imaging by a perspective camera.

• It is often only the 3 x 3 form of the matrix that is important in 
establishing properties of this transformation.

• A projective transformation is also called a ``homography'' 
and a ``collineation''.

• H has 8 degrees of freedom. How many points are needed to 
compute H?

Slide credit: A. Zisserman



Planes in the scene induce homographies

x

x'

H1
H2

H

H = H2H1



Points on the plane transform as  x’ = H x, where x and x’ 
are image points (in homogeneous coordinates), and H 
is a 3x3 matrix.

Planes in the scene induce homographies

Hx

x'



Case II: Cameras rotating about their centre

image plane 1

image plane 2

• The two image planes are related by a homography H

• H depends only on the relation between the image 
planes and camera centre, C, not on the 3D structure 



Case II: Example of a rotating camera

Images courtesy of A. Zisserman. 



Homography is often approximated well by 2D 
affine geometric transformation

HAx

x'



Two images with similar camera viewpoint

Tentative matches Matches consistent with an affine 
transformation

Homography is often approximated well by 2D 
affine geometric transformation – Example II.



Example: estimating 2D affine transformation

• Simple fitting procedure (linear least squares)
• Approximates viewpoint changes for roughly planar 

objects and roughly orthographic cameras
• Can be used to initialize fitting for more complex models



Example: estimating 2D affine transformation

• Simple fitting procedure (linear least squares)
• Approximates viewpoint changes for roughly planar 

objects and roughly orthographic cameras
• Can be used to initialize fitting for more complex models



Fitting an affine transformation

Assume we know the correspondences, how do we get the 
transformation?
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Linear system with six unknowns

Fitting an affine transformation

Each match gives us two linearly independent 
equations: need at least three to solve for the 
transformation parameters
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Dealing with outliers

The set of putative matches may contain a high percentage 
(e.g. 90%) of outliers

How do we fit a geometric transformation to a small subset 
of all possible matches?

Possible strategies:
• RANSAC
• Hough transform



Example: restricted affine transform
1. Test each correspondence



2. Compute a (restricted) planar affine transformation (5 dof)

Need just one correspondence

Example: restricted affine transform



3. Score by number of consistent matches

Re-estimate full affine transformation (6 dof)

Example: restricted affine transform



Similarity transformation is specified by four parameters: 
scale factor s, rotation θ, and translations tx and ty.

Recall, each SIFT detection has: position (xi, yi), scale si, 
and orientation θi.

How many correspondences are needed to compute 
similarity transformation? 

Example II: Similarity transformation



RANSAC (references)

M. Fischler and R. Bolles, “Random Sample Consensus: A Paradigm for Model Fitting 
with Applications to Image Analysis and Automated Cartography,” Comm. ACM, 1981

R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, 2nd ed., 2004.

Extensions:

B. Tordoff and D. Murray, “Guided Sampling and Consensus for Motion Estimation, 
ECCV’03

D. Nister, “Preemptive RANSAC for Live Structure and Motion Estimation, ICCV’03 

Chum, O.; Matas, J. and Obdrzalek, S.: Enhancing RANSAC by Generalized Model 
Optimization, ACCV’04

Chum, O.; and Matas, J.: Matching with PROSAC - Progressive Sample Consensus , 
CVPR 2005

Philbin, J., Chum, O., Isard, M., Sivic, J. and Zisserman, A.: Object retrieval with large 
vocabularies and fast spatial matching, CVPR’07

Chum, O. and Matas. J.: Optimal Randomized RANSAC, PAMI’08

Lebeda, Matas, Chum: Fixing the locally optimized RANSAC, BMVC’12 (code available).



Geometric verification for visual search (references)

Schmid and Mohr, Local gray-value invariants for image retrieval, PAMI 1997
Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Object retrieval with large 

vocabularies and fast spatial matching. CVPR (2007)
Perdoch, M., Chum, O., Matas, J.: Efficient representation of local geometry for large 

scale object retrieval. CVPR (2009)
Wu, Z., Ke, Q., Isard, M., Sun, J.: Bundling features for large scale partial-duplicate web 

image search. In: CVPR (2009)
Jegou, H., Douze, M., Schmid, C.: Improving bag-of-features for large scale image 

search. IJCV 87(3), 316–336 (2010)
Lin, Z., Brandt, J.: A local bag-of-features model for large-scale object retrieval. ECCV 

2010)
Zhang, Y., Jia, Z., Chen, T.: Image retrieval with geometry preserving visual phrases. In: 

CVPR (2011)
Tolias, G., Avrithis, Y.: Speeded-up, relaxed spatial matching. In: ICCV (2011)
Shen, X., Lin, Z., Brandt, J., Avidan, S., Wu, Y.: Object retrieval and localization with 

spatially-constrained similarity measure and k-nn re-ranking. In: CVPR. IEEE (2012)
H. Stewénius, S. Gunderson, J. Pilet. Size matters: exhaustive geometric verification for 

image retrieval, ECCV 2012.



Summary

Finding correspondences in images is useful for 
• Image matching, panorama stitching
• Object recognition
• Large scale image search: next time

Beyond local point matching
• Semi-local relations
• Global geometric relations:

• Epipolar constraint
• 3D constraint (when 3D model is available)
• 2D tnfs: Similarity / Affine / Homography

• Algorithms:
• RANSAC
• [Hough transform]



Convolutional neural networks for correspondence 
and instance-level recognition

Still an active area of research with some successes. 
Instance level matching and retrieval:
Babenko et al., ECCV 2014
Razavian et al., ArXiv 2014
Azizpour et al., ArXiv 2014
Babenko and Lempitsky, ICCV 2015
Gong et al., ECCV 2014
Altwaijry et al., CVPR 2015
Arandjelovic et al., CVPR 2016.
Radenovic and Chum, ECCV 2016.
A Gordo, J Almazan, J Revaud, D Larlus, ECCV 2016.

Patch descriptors and correspondence:
Verdie, Kwank, Fua and Lepetit, CVPR 2015
Fischer, A Dosovitskiy and T Brox, Arxiv, 2015
Simo-Serra, Trulls, Ferraz, Kokkinos, Fua, and Moreno-Noguer, CVPR 2015
Han, Leung, Jia, Sukthankar, and C Berg, CVPR 2015
Zagoruyko and Komodakis, CVPR 2015
Gwak, Savarese and Chandraker, ECCV 2016
KM Yi, E Trulls, V Lepetit, P Fua, ECCV 2016
Balntas, Johns, Tang, and Mikolajczyk, CVPR 2016
A Mishchuk, D Mishkin, F Radenovic, J Matas, NIPS 2017

Dense correspondence for motion estimation
Fischer, Dosovitskiy, Ilg, Häusser, Hazırbaş, Golkov, van der Smagt, Cremers and Brox, ICCV 2015 
T Zhou, M Brown, N Snavely, DG Lowe, CVPR 2017



Learnable representations for 
estimating visual correspondence

Ignacio Rocco and Josef Sivic

Inria, Ecole Normale Supérieure, PSL
and

Czech Technical University in Prague



Goal

Source Target



Goal

Source Target



Goal

Source Target



Challenges

Substan.al appearance differences



Challenges

Presence of background clu8er



Challenges

Lack of large annotated image pair dataset



Applications

Co-segmentation
[Taniai et al. '16]



Applica0ons

Co-segmentation
[Taniai et al. '16]



Applications

Medical image registration
[de Vos et al. ‘17, Rohé et al. ’17]



Visual localization in indoor environments

?

Applica0ons

[Taira et al., CVPR 2018]



[Sa8ler et al., CVPR 2018]

Applications
Visual localization across changing conditions



Related work

Figure 3. An exemplar with a subset of feature points marked (left), the novel “probe” image with all feature points in white, and
the feature points found to correspond with the exemplar feature points marked in corresponding colors (left center), the exemplar
with all its feature points marked in color, coded by location in the image (right center), and the probe with the exemplar feature
points mapped by a thin plate spline transform based on the correspondences, again colored by position in the exemplar (far right).
See Figure 7 for more examples

Cdistortion(σ) =
∑

ij

γda(σ) + (1 − γ)dl(σ) (4)

da(σ) =

(

αd

|rij |
+ βd

)
∣

∣

∣

∣

arcsin

(

si′j′ × rij

|si′j′ ||rij |

)
∣

∣

∣

∣

(5)

dl(σ) =
||si′j′ |− |rij ||

(|rij | + µd)
(6)

where da penalizes the change in direction, and dl penal-
izes change in length. A correspondence σ resulting from
pure scale and translation will result in da(σ) = 0, while
σ resulting from pure translation and rotation will result in
dl(σ) = 0. The constants αd, βd, µd, are all terms allowing
slightly more flexibility for nearby points in order to deal
with local “noise” factors such as sampling, localization,
etc. They should be set relative to the scale of these lo-
cal phenomena. The constant γ weighs the angle distortion
term against the length distortion term.
Outliers Each point pi, in P , is mapped to a qσ(i), in Q.

This mapping automatically allows outliers in Q as it is not
necessarily surjective – points qj may not be the image any
point pi under σ. We introduce an additional point qnull and
use σ(i) = null to allow a point pi to be an outlier. We limit
the number of points pi which can be assigned to qnull, thus
allowing for outliers in both P andQ.

5. Correspondence Algorithm
Finding an assignment to minimize a cost function de-

scribed by the terms in Equations 3 and 2 above can be
written as an Integer Quadratic Programming (IQP) prob-
lem.

cost(x) =
∑

a,b

H(a, b)xaxb +
∑

a

c(a)xa (7)

Where the binary indicator variable x has entries xa, that
if 1, indicate σ(ai) = aj . We then have H(a, b) =
H(ai, aj , bi, bj), and c(a) = c(ai, aj) from Equations 3
and 2.
We constrain x to represent an assignment. Write xij in

place of xaiaj
. We require

∑

j xij = 1 for each i. Futher-
more if we allow outliers as discussed in Section 4, then we

require
∑

i xinull ≤ k, where k is the maximum number of
outliers allowed. Using outliers does not increase the cost
in our problems, so this is equivalent to

∑

i xinull = k.
Each of these linear constraints are encoded in one row of
A and an entry of b. Replacing H with a matrix having
entries Hab = H(a, b) and c with a vector having entries
ca = c(a). We can now write the IQP in matrix form:

min cost(x) =x′Hx + c′x subject to, (8)
Ax = b, x ∈ {0, 1}n

5.1. Approximation
Integer Quadratic Programming is NP-Complete, how-

ever specific instances may be easy to solve. We follow a
two step process that results in good solutions to our prob-
lem. We first find the minimum of a linear bounding prob-
lem, an approximation to the quadratic problem, then follow
local gradient descent to find a locally minimal assignment.
Although we do not necessarily find global minima of the
cost function in practice the results are quite good.
We define a linear objective function over assignments

that is a lower bound for our cost function in two steps. First
compute qa = min

∑

b Habxb. Note that from here on we
will omit writing the constraints Ax = b and x ∈ {0, 1}n

for brevity.
If xa represents σ(i) = j then qa is a lower bound for

the cost contributed to any assignment by using σ(i) = j.
Now we have L(x) =

∑

a(qa + ca)xa as a lower bound for
cost(x) from Equation 8. This construction follows [19],
and is a standard bound for a quadratic program. Of note is
the operational similarity to geometric hashing.
The equations for qa and L are both integer linear pro-

gramming problems, but since the vertices of the constraint
polytopes lie only on integer coordinates, they can be re-
laxed to linear programming problemswithout changing the
optima, and solved easily. In fact due to the structure of the
problems in our setup they can be solved explicitly by con-
struction. If n is the length of x, each problem takes O(n)
operations with a very small constant. Computing qa for
a = 1 . . . n requiresO(n2) time.

[Lamdan et al.’90, Leung et al.’95, Schmid and Mohr’97, Lowe’99, Fergus et al.’03, Berg and Malik’05, Philbin
et al.’07, Liu et al.’08, Kim et al.’13, Revaud et al.’13, …]

[Berg and Malik’05]

Philbin et al.’07 Aubry et al.’14



Convolu0onal neural network architecture
for geometric matching

Ignacio Rocco    Relja Arandjelović Josef Sivic



Classical image correspondence pipeline

1. Feature extraction
(SIFT)

2. Matching
(Euclidean dist.+2nd NN test)

3. Transforma.on
es.ma.on

(RANSAC)

Transf.
es.ma.on

[Schmid and Mohr’97, Lowe’99, Berg’05, Philbin et al.’07, Liu et al.’08, Kim et al.’13, Revaud et al.’13, …]



: geometric transforma.on parameters
(affine: 6-D vector)

Transf.
estimation

Classical image correspondence pipeline



Transf.
estimation

Proposed approach

classical pipeline → CNN



Proposed approach



Proposed approach

Source

Target



Proposed approach

Source

Target



Proposed approach

grids of    -dim features



Proposed approach



Proposed approach



Proposed approach

similar to [Weinzaepfel et al.’13, Fischer et al ’15]



Proposed approach

Dims.1-2: index of    Dim.3: fla8ened index of    



Proposed approach



Proposed approach

Output consists of similarity scores isolating the feature information



Proposed approach



Proposed approach



Proposed approach



Proposed approach



Proposed approach



Proposed approach



Proposed approach



Proposed approach



Proposed approach

: all matches between               and all the



Proposed approach

Ideally: a single good match along 



Proposed approach

In practice: ambiguous matches along 



Proposed approach

Correlation
map

Normalized
correlation map

=
[Lowe’99]



Proposed approach

Correla.on
map

Normalized
correlation map

=



Proposed approach

: Scores for all possible feature pairs

- Affine: D=6
- Thin-plate spline: D=18



Proposed approach

- Affine: D=6
- Thin-plate spline: D=18

Source Aligned



Coarse to fine architecture

Affine transformation estimation
Coarse

alignment



Coarse to fine architecture

Thin-plate spline transformation estimation

Fine
alignment



Training

Annotating correspondences at a large scale is difficult



Training

Synthetically generated pairsModel generalizes to other image content
Tokyo StreetView images from [Arandjelovic et al. ‘15]



Training loss



Results on PF

Source Target



Source Target

Results on PF



Source Target

Results on PF



Source Target

Results on PF



Source Target

Results on PF



Results on PF



[Hartley&Zisserman’04, Lazebnik et al.03, 
Philbin et al.,’17, … ]

Do we need global geometric model?

Global 2D affine transformation Semi-local constraints

[Ferrari et al.’05, Schaffalitzky and 
Zisserman’02, Schmid and Mohr’97, Sivic 
and Zisserman’03, Zhang et al.’95, Bian et 
al’17, …]



[Rocco et al., NIPS 2018]

Neighborhood consensus networks
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(conv. layer 2)

4D input
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4D filtered
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Figure 2: Neighbourhood Consensus Network (NC-Net). A neighbourhood consensus CNN operates on the
4D space of feature matches. The first 4D convolutional layer filters span NA ⇥NB , the Cartesian product of
local neighbourhoods NA and NB in images A and B respectively. The proposed 4D neighbourhood consensus
CNN can learn to identify the matching patterns of reliable and unreliable matches, and filter the matches
accordingly.

where by cT we mean swapping the pair of dimensions corresponding to the first and second images:172 �
cT
�
ijkl

= cklij .173

This final output constitutes the filtered matches c̃ using the neighbourhood consensus network, where174

matches with inconsistent local patterns are downweighted or removed. Further filtering can be done175

by means of a global filtering strategy, as presented next.176

3.3 Soft mutual nearest neighbour filtering177

Although the proposed neighbourhood consensus network can suppress and amplify matches based178

on the supporting evidence in their neighbourhoods – that is, at a semi-local level – it cannot enforce179

global constraints on matches, such as being a reciprocal match, where matched features are required180

to be mutual nearest neighbours:181

(fA
ab, f

B
cd) mutual N.N. ()

⇢
(a, b) = argminij kfA

ij � fB
cdk

(c, d) = argminkl kfA
ab � fB

klk.
(3)

Filtering the matches by imposing the hard mutual nearest neighbour condition expressed by (3)182

would eliminate the great majority of candidate matches, which makes it unsuitable for usage in an183

end-to-end trainable approach, as this hard decision is non-differentiable.184

We therefore propose a softer version of the mutual nearest neighbour filtering (M(·)), both in the185

sense of softer decision and better differentiability properties, that can be applied on dense 4-D match186

scores:187

ĉ = M(c), where ĉijkl = rAijklr
B
ijklcijkl, (4)

and rAijkl and rBijkl are the ratios of the score of the particular match cijkl with the best scores along188

each pair of dimensions corresponding to images A and B respectively:189

rAijkl =
cijkl

maxab cabkl
, and rBijkl =

cijkl
maxcd cijcd

. (5)

This soft mutual nearest neighbour filtering operates as a gating mechanism on the input, down-190

weighting the scores of matches that are not mutual nearest neighbours. While this filtering step has191

no trainable parameters, it can be inserted in the CNN pipeline at both training and evaluation stages,192

and it will help to enforce the global reciprocity constraint on matches. In the proposed approach, the193

soft mutual nearest neighbour filtering is used to filter both the correlation map, as well as the output194

of the neighbourhood consensus CNN, as illustrated in Fig. 1.195

3.4 Extracting correspondences from the correlation map196

Suppose that we want to match two images IA and IB . Then, the output of our model will produce a197

4-D filtered correlation map c, which contains (filtered) scores for all pairwise matches. However, for198

5

Neighborhood consensus networks



Method PCK (↵ = 0.1)

HOG+PF-LOM [8] 62.5
SCNet-AG+ [9] 72.2
CNNGeo [20] 71.9
WeakAlign [21] 75.8
NC-Net 78.9

Table 1: Results for semantic keypoint

transfer. We show the rate (%) of correctly
transferred keypoints within the threshold
↵ = 0.1.

Distance SparsePE DensePE DensePE InLoc InLoc
(m) [31] [31] + NC-Net [31] + NC-Net

0.25 21.3 35.3 34.7 38.9 41.0

0.50 30.7 47.4 50.8 56.5 59.0

1.00 42.6 57.1 60.2 69.9 71.4

2.00 47.1 61.1 64.7 74.2 77.8

Table 2: Comparison of indoor localization methods.

We show the rate (%) of correctly localized queries within
a given distance (m) and 10� angular error.

Figure 3: Semantic keypoint transfer. The an-
notated (ground truth) keypoints in the left image
are automatically transferred to the right image
using the dense correspondences between the two
images obtained from our NC-Net.

Figure 4: Instance-level matching. Top row: cor-
respondences (shown as green dots) obtained by our
approach (InLoc+NC-Net). Bottom row: Baseline corre-
spondences (InLoc). Our method provides a much larger
and locally consistent set of matches.

the first variant, denoted DensePE+NC-Net, we use the correspondences from our network (NC-Net)290

as the input to the camera localization step (DensePE). In the second variant, denoted InLoc+NC-Net,291

we use the full InLoc pipeline but plug-in the correspondences from our network (NC-Net) for both292

camera localization and re-ranking using pose-verification. Results are summarised in Table 2 and293

clearly demonstrate benefits of our approach (DensePE+NC-Net) compared to both sparse keypoint294

(DoG+SIFT) matching ( SparsePE) and the CNN feature matching used in [31] (DensePE). When295

inserted into the entire localization pipeline our approach (InLoc + NC-Net) obtains state-of-the-296

art results on the indoor localization benchmark. An example of obtained correspondences on a297

challenging indoor scene with repetitive structures and texture-less areas is shown in figure 4. Please298

see the Supplementary material for additional examples.299

5 Conclusion300

We have developed a neighbourhood consensus network — a CNN architecture that learns local301

patterns of correspondences for image matching without the need for a global geometric model.302

We have shown the model can be trained effectively from weak supervision and obtains strong303

results outperforming state-of-the-art on two very different matching tasks. These results open up304

the possibility for end-to-end learning of other challenging visual correspondence tasks, such as 3D305

category-level matching [12], or visual localization across day/night illumination [23].306
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as the input to the camera localization step (DensePE). In the second variant, denoted InLoc+NC-Net,291
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(DoG+SIFT) matching ( SparsePE) and the CNN feature matching used in [31] (DensePE). When295

inserted into the entire localization pipeline our approach (InLoc + NC-Net) obtains state-of-the-296

art results on the indoor localization benchmark. An example of obtained correspondences on a297

challenging indoor scene with repetitive structures and texture-less areas is shown in figure 4. Please298

see the Supplementary material for additional examples.299

5 Conclusion300

We have developed a neighbourhood consensus network — a CNN architecture that learns local301

patterns of correspondences for image matching without the need for a global geometric model.302

We have shown the model can be trained effectively from weak supervision and obtains strong303

results outperforming state-of-the-art on two very different matching tasks. These results open up304

the possibility for end-to-end learning of other challenging visual correspondence tasks, such as 3D305

category-level matching [12], or visual localization across day/night illumination [23].306
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(DoG+SIFT) matching ( SparsePE) and the CNN feature matching used in [31] (DensePE). When295
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see the Supplementary material for additional examples.299
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Ours Baseline (SparsePE)

0.23m, 1.04� Not localized

0.22m, 1.43� Not localized

0.16m, 1.02� 7.64m, 93.15�

0.46m, 1.75� 10.80m, 6.93�

0.79m, 4.75� Not localized

Figure D: Examples of query images that are more accurately localized using the proposed
matcher (left) than the sparsePE baseline matching sparsely detected SIFT features (right).
The numbers below each pair of images show the localization error (meters, degrees) with respect to
the reference camera pose. Green dots show inlier matches used for camera pose estimation.
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the reference camera pose. Green dots show inlier matches used for camera pose estimation.
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Plug into localiza.on pipeline of
[Taira et al., CVPR’18]

Ours

SIFT matching

Results:
Indoor localization



Visual 
localization 
indoors
[Taira et al., CVPR 2018]
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(a) (b)
Figure E. Failure cases. Our InLoc approach fails to localize
these examples due to many moving objects, e.g. people (a) or
chairs (b), and highly dynamic scenes, e.g. opened/closed shutters
(a) or pictures on the wall/removed (b). From top to bottom: query
image and the reference database image.
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□ InLoc dataset
- 10K DB images, 23,000m2

- 329 test images with 

reference poses

Evalua0on
Dense verifica.on

Dense representation

Dense matching

Sparse feature baseline
[Arandjelović ACCV 2014]

InLoc (ours)



Example: Visual localization in changing 
conditions

[Sattler et al., CVPR 2018]



Conclusion
• Dense feature and matching clearly outperforms the 

state-of-the-art local feature based methods.

• Harnessing the power of high quality RGBD images 
further improves the localiza.on accuracy 
(pose verifica.on with view synthesis )

• Code/dataset will be available

2
2
6Benchmarking 6DOF Outdoor Visual 

Localization in Changing Conditions

Torsten Sattler Will Maddern Carl Toft Akihiko Torii Lars Hammarstrand Erik Stenborg

Daniel Safari Masatoshi Okutomi Marc Pollefeys Josef Sivic Fredrik Kahl Tomas Pajdla
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Query ActiveSearch DenseVLAD NetVLAD FAB-MAP LocalSfM DenseSfM

Figure 7. Night-time query images 11 to 20 from the Aachen Day-Night dataset. The numbers above the images indicate the position and
orientation error of the pose estimates, measured in meters and degree, respectively. Green margins indicate poses with errors smaller than
5m and 10�. For DenseVLAD, NetVLAD, and FAB-MAP, the best retrieved image is shown.
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What is the right representation for visual localization and navigation?
- changing conditions, outdoor/indoor, generalization to new environments.



Next challenge : Embodied computer vision
Problems: 
1. Can we localize large-scale 
changing environments?

2. Can we learn to navigate in 
never seen before places?

3. How can we transfer these 
capabilities to a real robot?

4. How to learn to communicate 
with people about visually grounded
concepts (spaces, directions, 
objects)?

5. Can we learn these capabilities 
without direction input/output 
supervision?

Image from: https://matterport.com/blog/2017/09/20/announcing-matterport3d-research-dataset/ 


