
Generic Process Shape Types

and the Poly✶ System

Jan Jakub̊uv

Submitted for the degree of Doctor of Philosophy

Heriot-Watt University

School of Mathematical and Computer Sciences

September 2010

The copyright in this thesis is owned by the authors, where Jakub̊uv is either the

sole author, the primary author, or the coauthor with Wells. Where indicated, this

thesis incorporates and revises published material whose copyright may have been

assigned to the publisher. This thesis must be acknowledged as the source of the

quotation from the thesis or any use of information contained in the thesis.

Abstract

Shape types are a general concept of process types which allows verification of

various properties of processes from various calculi. The key property is that shape

types “look like processes”, that is, they resemble process structure and content.

Poly✶, originally designed by Makholm and Wells, is a type system scheme which

can be instantiated to a shape type system for many calculi. Every Poly✶ in-

stantiation has desirable properties including subject reduction, polymorphism, the

existence of principal typings, and a type inference algorithm.

In the first part of this thesis, we fix and describe inconsistencies found in the

original Poly✶ system, we extend the system to support name restriction, and we

provide a detailed proof of the correctness of the system.

In the second part, we present a description of the type inference algorithm which

we use to constructively prove the existence of principal typings.

In the third part, we present various applications of shape types which demon-

strate their advantages. Furthermore we prove that shape types can provide the

same expressive power as and also strictly superior expressive power than predi-

cates of three quite dissimilar analysis systems from the literature, namely, (1) an

implicitly typed π-calculus, (2) an explicitly typed Mobile Ambients, (3) and a flow

analysis system for BioAmbients.

Acknowledgments

First of all, I would like to thank my first supervisor Dr. Joe Wells for his

patience and encouraging guidance throughout my PhD studies, and for his well-

directed advices and comments which have influenced my work and extended my

abilities. I am grateful to my second supervisor Prof. Fairouz Kamareddine for her

kind support and for creating a familial working environment. Thanks to Vincent

Rahli, Robert Lamar, Serguëı Lenglet, and all other members of the ULTRA group

for their kindness, help, and support both in and outside of the office. I am thankful

to Dr. Pierluigi Frisco and to Dr. Andrew D. Gordon for being my examiners.

I would also like to thank all the staff of the School of Mathematical and Com-

puter Sciences at Heriot-Watt University in Edinburgh for creating a stimulating,

supportive, well-equipped, well-maintained, clean, and secure research environment.

I would like to express my gratitude to the supervisor of my master thesis Prof.

Petr Štěpánek from Charles University in Prague for introducing me to the inspir-

ing world of type systems and formal logics. I am thankful to Dr. Josef Urban for

introducing me to the members of the ULTRA group. It would not be possible to

write this thesis without a financial support of EPSRC grant EP/C013573/1 for

which I am greatly grateful.

Last but not least, I would like to express my gratitude to my parents and to

all members of my family for their patience, kindness, and for the opportunity to

undertake my studies. Finally, let me express my gratitude to all good people who

have led science and society to this point where I was able to write this thesis.

Contents

1 Introduction 1

1.1 Motivation: Why Formal Models? . 1

1.2 Structure of this Chapter . 2

1.3 Basics of Process Calculi . 2

1.3.1 The π-calculus . 3

1.3.2 Mobile Ambients . 4

1.4 A Very Brief History of Process Calculi 5

1.5 Basics of Type and Analysis Systems 6

1.5.1 Principal Typings . 7

1.5.2 Polymorphism . 7

1.6 The History of the Poly✶ System 8

1.6.1 The PolyA System . 8

1.6.2 From PolyA to Poly✶ . 9

1.7 Overview of the Poly✶ System . 10

1.8 Contributions of the Thesis . 10

1.9 Structure of the Thesis . 12

2 Notations and Definitions 14

I Shape Types and the Poly✶ System 16

3 The Metacalculus Meta✶ 17

3.1 Generic Syntax of Processes . 17

3.2 Well Formed Processes . 19

3.3 Substitution . 20

3.4 Structural Equivalence . 21

4 Technical Details on Meta✶ 23

4.1 Free and Bound Names . 23

4.2 Name Swapping and α-equivalence 23

4.3 Changes in Well-Formedness . 25

4.4 Properties of Well Formed Processes 26

i

Contents

4.5 Changes in Substitution Application 27

4.6 Properties of Substitutions . 28

4.7 Properties of Structural Equivalence 29

5 Instantiations of Meta✶ 31

5.1 Templates and Rewriting Rule Descriptions 31

5.2 Meta✶ Rewriting Relation . 33

5.3 Example Instantiations . 34

6 Technical Details on Instantiations 36

6.1 Scope of Variables in Templates . 36

6.2 Additional Requirements on Rewriting Rules 37

6.3 Properties of Process Instantiations 41

6.4 Properties of Meta✶ Rewriting Relation 43

7 The Generic Type System Poly✶ 48

7.1 Types of Basic Meta✶ Entities . 48

7.2 Type Substitutions . 50

7.3 Poly✶ Shape Predicates . 51

7.4 Flow Edges and Flow Closed Graphs 53

7.5 Closed Shape Predicates . 56

7.6 Shape Types and Closure Test . 57

7.7 Spatial Polymorphism . 62

7.8 The in{open Anomaly . 64

8 Technical Details on Poly✶ and Subject Reduction 66

8.1 Properties of Basic Poly✶ Types . 66

8.2 Type Substitution Correctness . 68

8.3 Preservation of Subtyping Relation 71

8.4 Details on Flow Closure . 73

8.5 Flow Closure Correctness . 75

8.6 Properties of Type Instantiations . 77

8.7 Subject Reduction . 81

9 Changes and Extensions of Poly✶ 87

9.1 Name Restriction . 87

9.2 Changes from the Original Poly✶ 89

9.3 Possible Extensions and Future Work 90

9.3.1 Recursion and the µ Operator 90

9.3.2 The Choice Operator . 93

9.3.3 Other Extensions . 93

ii

Contents

II Type Inference 95

10 Principal Typings 96

10.1 Principal Typings and Types . 96

10.2 Restricted Shape Types . 97

10.3 Infinite Sets of Rewriting Rules . 99

10.4 Non-existence of Principal Types Among Unrestricted Types 101

11 Type Inference 105

11.1 Overview of the Type Inference Algorithm 105

11.2 Initial Shape Predicate . 106

11.3 Restriction Algorithm . 108

11.4 Local Closure Algorithm . 110

11.4.1 Matching Templates to Shape Graphs 111

11.4.2 Edges Required by a Rewriting Rule 113

11.4.3 Active Node Algorithm . 114

11.4.4 Local Closure in Steps . 115

11.5 Flow Closure Algorithm . 115

11.6 Type Inference Algorithm . 117

12 Technical Details on Type Inference 119

12.1 Overview of the Correctness Proof . 119

12.1.1 Termination . 119

12.1.2 Correctness . 121

12.1.3 Completeness . 122

12.2 Infinite Rewriting Rules . 123

12.3 Upper Bound on Almost Disjoint Paths 125

12.4 Note on Time Complexity of Type Inference 126

12.5 Properties of Renamings and Nestings 127

12.6 Properties of the Initial Shape Predicate 131

12.7 Properties of the Restriction Algorithm 135

12.7.1 Properties of RestrictWidth 136

12.7.2 Properties of RestrictDepth 137

12.7.3 Properties of RestrictGraph 139

12.8 Properties of the Local Closure Algorithm 142

12.8.1 Properties of MatchElement 142

12.8.2 Properties of MatchForm . 143

12.8.3 Properties of LeftMatches . 145

12.8.4 Properties of RightRequired 149

12.8.5 Properties of ActiveNodes . 151

12.8.6 Properties of LocalClosureStep 152

iii

Contents

12.9 Properties of the Flow Closure Algorithm 154

12.10Properties of the Type Inference Algorithm 157

III Applications and Expressiveness of Shape Types 161

13 General View of Analysis Systems 162

13.1 General View of Analysis Systems . 162

13.2 How To Use Poly✶ ? . 163

13.3 Relating Calculi C and CR . 163

13.4 Comparing Systems SC and SR . 164

14 Shape Types for the π-calculus 166

14.1 A Polyadic π-calculus . 166

14.2 Types for the Polyadic π-calculus (Tpi) 168

14.3 Instantiation of Meta✶ to the π-calculus 169

14.4 Embedding of Tpi in Poly✶ . 170

14.5 Conclusions . 171

15 Details on the Tpi Embedding 172

16 Shape Types for Mobile Ambients 177

16.1 Mobile Ambients (Ma) . 177

16.2 Types for Mobile Ambients (Tma) 180

16.3 Instantiation of Meta✶ to Ma . 181

16.4 Embedding of Tma in Poly✶ . 182

16.5 Conclusions and Further Possibilities 186

17 Details of the Tma Embedding 187

17.1 Faithfulness of Ma Encoding in Meta✶ 187

17.2 Correctness of Tma Embedding in Poly✶ 190

18 Shape Types for BioAmbients 196

18.1 BioAmbients (Ba) . 196

18.2 Flow Analysis of BioAmbients (Faba) 199

18.3 Instantiation of Meta✶ to BioAmbients 200

18.4 Poly✶ Types and Faba Results . 202

18.4.1 Faba Result from Shape Type 202

18.4.2 Shape Type from Faba Result 203

18.5 Conclusions and Further Discussions 206

19 Details on the Faba Embedding 207

iv

Contents

20 Conclusions 212

Bibliography 213

Indexes 217

Index of Metavariables . 217

Index of Rule and Condition Labels . 219

Index of Mathematical Objects . 221

General Index . 224

v

List of Figures

3.1 Syntax of Meta✶ processes. 18

3.2 Application of a substitution to Meta✶ entities. 20

3.3 Structural equivalence of Meta✶. 21

4.1 Free and bound names of Meta✶ process entities. 24

4.2 Free and all type tags of Meta✶ process entities. 24

4.3 The α-equivalence relation. 25

5.1 Syntax of Meta✶ templates and rule descriptions. 32

5.2 Meta✶ rewriting relation generated by R. 33

6.1 Free names and free/bound variables of Meta✶ template entities. . . 37

6.2 Instantiation of Meta✶ templates. 41

7.1 Syntax of Poly✶ shape predicates. 49

7.2 Application of a type substitution to Poly✶ entities. 50

7.3 Syntax and Semantics of Poly✶ shape predicates. 52

7.4 Instantiating templates to shape graphs. 57

7.5 Spatial polymorphism on the example of a messenger ambient. 63

8.1 Free and (input-) bound type tags of Poly✶ type entities. 67

14.1 The syntax and semantics of the π-calculus. 167

14.2 Syntax of Tpi types and typing rules. 168

14.3 Encoding of π-calculus processes in Meta✶. 170

14.4 Property of shape types corresponding to $ of Tpi. 170

16.1 Syntax and structural equivalence of Ma processes. 178

16.2 Semantics of Ma. 179

16.3 Syntax of Tma types and typing rules. 180

16.4 Encoding of Tma processes in Meta✶. 182

16.5 Embedding of Tpi in Poly✶. 184

18.1 Syntax and structural equivalence of Ba. 197

18.2 Rewriting relation of Ba. 198

vi

List of Figures

18.3 Faba analysis of Ba processes. 200

18.4 Closure conditions valid for Faba results. 201

18.5 Encoding of Ba processes in Meta✶. 202

18.6 Construction of a shape graph corresponding to a Faba result. 204

vii

List of Algorithms

11.1 Informal description of the type inference algorithm 105

11.2 Function SequenceTypeSet(M) . 106

11.3 Function MessageType(M) . 107

11.4 Function ElementType(E) . 107

11.5 Function FormType(F) . 107

11.6 Function ProcessShape(P) . 108

11.7 Function RestrictWidth(Π) . 109

11.8 Function RestrictDepth(Π) . 109

11.9 Function RestrictGraph(Π) . 110

11.10Function MatchElement(�, E̊, ε) . 111

11.11Function MatchForm(�, F̊ , ϕ) . 112

11.12Function LeftMatches(�, P̊ , Γ, χ) . 112

11.13Function RightRequired(�, Q̊, Γ, χ) 113

11.14Function ActiveNodes(Π,R) . 114

11.15Function LocalClosureStep(Π,R) 115

11.16Function FlowClosureStep(Π) . 116

11.17Function SelectApplicableRules(R, P) 117

11.18Function PrincipalType(P, R) . 117

viii

Chapter 1

Introduction

1.1 Motivation: Why Formal Models?

This thesis deals with formal models of concurrent systems and thus the question

of their purpose and usefulness should be addressed in the first place. A concurrent

system is any system where several units engage in activity at the same time. The

units can interact with each other and thus mutually affect their behavior. Many

examples of artificial concurrent systems are found in computer science, for exam-

ple, large computer networks containing various number of interacting computers,

or several processes running simultaneously in a single computer. Formal models

were originally developed for these computer systems but nowadays the same mod-

eling techniques are also used to model real-world concurrent systems like complex

molecular and biological systems or work flow in business management.

Formal models of concurrent systems use precise mathematical methods to cap-

ture overall or specific behavior of a selected system. Different formal models are

designed to achieve different aims. The common goals of formal modeling include

the following.

To study the behavior of a concurrent system. We create a formal model and

we compare its behavior with the behavior of the real system. This comparison

can provide us a valuable insight into the nature of the studied system and it

often allows us to improve the formal model. The newly improved model can

be again compared with the real system. Every iteration of this cycle gives us

a more refined formal model as well as it increases our understanding of the

real system.

To develop/reason about a concurrent system. Formal models provides an in-

valuable help with development of a new artificial concurrent systems. They

can help us to reveal mistakes in the system design before the system is im-

plemented or used in practice. In this way formal models help us to save

expensive resources. For example, if we had a faithful model of complex bio-

1

Chapter 1. Introduction

logical systems, we would be able to test new drugs on this model instead of

on living animals. Unfortunately, current formal models of biological systems

do not yet reach the level of reliability required to achieve this aim.

A reliable model of a concurrent system can be used to reason about and

to prove various system properties which are of interest, including critical

properties like security and correctness of artificially constructed concurrent

systems. Formal reasoning about a concurrent system can help us to develop

the most efficient ways to use and to interact with the system.

To study the concepts of interaction and communication. The aim here is

to capture and describe the basic principles and mechanisms on which inter-

action and communication are based. A better understanding of these basic

principles allows us to construct more accurate formal models and thus it im-

proves the results obtained from applications of formal models. Moreover, a

better understanding of these principles improves our understanding of the

world and of ourselves, and thus it moves us one step towards the ultimate

goal of science.

1.2 Structure of this Chapter

The rest of this introductory chapter is structured as follows. Section 1.3 introduces

a basic terminology of process calculi which are one of the formalisms used to model

concurrent systems. Section 1.4 provides a very brief historical overview of process

calculi. Section 1.5 introduces basic ideas of type and analysis systems for process

calculi which are used to verify and reason about various properties of concurrent

systems. Section 1.6 provides a brief historical overview of the generic analysis

system Poly✶ which is the main topic of this thesis. Section 1.7 provides a short

overview of Poly✶. Finally Section 1.8 summarizes the thesis contributions.

1.3 Basics of Process Calculi

Various formal models of concurrent systems are found in the literature. In this

thesis we concentrate solely at process calculi which constitute one of the possible

approaches to model concurrent systems. Different process calculi are designed to

model different systems but they share the basic idea. Any process calculus C defines

the set of processes which are used to represent interacting units of the system. One

process can represent either a single unit or a more complex system consisting of

several units. Let B range over processes of calculus C.

In order to describe the behavior of a modeled system, calculus C defines a binary

rewriting relation on processes, written B0ÑB1, which is read as “B0 rewrites

2

Chapter 1. Introduction

to B1”. The statement B0ÑB1 means that the system described by process B0

evolves in one step to the system described by B1, that is, that B1 is an immediate

successor of B0. A single process can have more than one possible successor and

thus the rewriting relation can describe a nondeterministic behavior. As opposed

to rewriting systems used to describe the behavior of functions, like the λ-calculus,

consecutive applications of the rewriting relation which start with the same process

B0 do not necessarily need to converge to the single final state. Sometimes it is

even desirable that some rewritings do not converge at all because the modeled

system exhibits this behavior. In some process calculi the rewriting relation can be

additionally labeled with various labels but in this thesis we work only with unlabeled

rewriting relations.

Many process calculi share common operators which are used to construct pro-

cesses. Commonly, “0” is used to denote a finished or inactive process, “B0 |B1” is

used to denote two processes B0 and B1 running in parallel, and “N.B” is used to

denote a process which executes action N and then continues as process B. Further-

more, “!B” is used to describe a process which behaves like infinitely many copies of

B running in parallel, that is, like “B | B | � � � ”. Processes are usually constructed

from atomic units called names. A common operation is that of name restriction,

written “νn.B”, which makes the name n in B to be different from any other name

outside B (even though also called n).

Although there is no general consensus on which calculus should be considered a

base calculus to model concurrency, the π-calculus [MPW92b, Mil99] and the Mobile

Ambients calculus [CG98] are best-known nowadays. Many extensions, variations,

and combinations of these two calculi were introduced to model and to reason about

various properties of concurrent systems.

1.3.1 The π-calculus

The π-calculus [MPW92b, Mil99] models interaction as a channel-based communica-

tion where atomic entities called names are send and received over named channels.

Channels are identified by names which means that channel identifiers can be trans-

mitted during communication. There are two kinds of executable communication

actions: (1) sending a name n over a channel c (written “c<n>”), and (2) receiv-

ing a name over a channel c and saving it in (that is, substituting it for) x (written

“c(x)”). Processes in the π-calculus are constructed from communication actions by

parallel (“|”) and sequential (“.”) compositions. For example, the process “c<a>.0”

executes the action “c<a>” and ends while the process “c(x).x<d>.0” executes the

action “c(x)” and then the action “x<d>”. A communication is actually executed

when a sending and receiving process appear in parallel like in “c<a>.0|c(x).x<d>.0”.

In this case name a is substituted for x and the process evolves (rewrites) to its next

3

Chapter 1. Introduction

state as follows.

c<a>.0 | c(x).x<d>.0 Ñ 0 | a<d>.0

More details on the π-calculus can be found in Chapter 14.

1.3.2 Mobile Ambients

The Mobile Ambients calculus [CG98] of Cardelli and Gordon places processes into

separated abstract locations called ambients. An ambient is a named bounded place

and a process in one ambient can not directly interact with a process in another

ambient. A process B running inside an ambient n is written “n[B]”. An ambient

can contain processes and other ambients, like in “a[B0|b[B1]]”, and thus ambients

form a tree-like hierarchy. A process can execute instructions called capabilities

whose execution changes the ambient hierarchy. Processes in the same ambient

can also communicate by sending names and sequences of capabilities. Process

are constructed from capabilities and communication actions by parallel (“|”) and

sequential (“.”) compositions.

There are three kinds of capabilities in Mobile Ambients: in, out, and open. The

capability “in n” instructs the ambient which contains (the process that executes)

the capability to enter the sibling ambient n. The capability “in n” can actually be

executed only when there is some sibling ambient n, like in “a[in b.in c.0] | b[0]”.

This process evolves (rewrites) as follows.

a[in b.in c.0] | b[0] Ñ b[0 | a[in c.0]]

Similarly the capability “out n” instructs the ambient to move out of its parent n.

The capability “open n” instructs the ambient to dissolve the ambient boundary of

its child ambient n. Their semantics is described by the following rewriting axioms.

m[n[out m.B0 | B1] | B2] Ñ n[B0 | B1] | m[B2]

open n.B0 | n[B1] Ñ B0 | B1

Mobile Ambients also allow communication over (unnamed) channels. This is de-

scribed by the following axiom.

(n).B0 | <N>.B1 Ñ B0tn ÞÑ Nu | B1

In the above rule N is a metavariable ranging over sequences of capabilities and

names, and B0tn ÞÑ Nu denotes the application of the substitution tn ÞÑ Nu to B0.

More details on Mobile Ambients can be found in Chapter 16.

4

Chapter 1. Introduction

1.4 A Very Brief History of Process Calculi

The history of formal descriptions of concurrent systems can be traced back to 1960s.

Several formalisms intended to capture the concept of a computable function, like

Turing Machines and the λ-calculus, were already proposed in the first half of the

20th century. A need for more subtle definition of computation arose with the

expansion of Computer Science.

It is common for computations executed by computers to interact with the en-

vironment, for example, with users or with other computers. Thus the result of a

computation can depend on the state of the environment and does not need to be

uniquely determined by input parameters. Behavior of these computations can not

be straightforwardly described by functions. Formalisms were developed to model

similar concurrent systems where several interactive units engage in activity at the

same time.

As the first work that mentions concurrency we can point out Petri nets, for the

first time published in the PhD thesis [Pet62] of Petri in 1962. Petri nets model a

concurrent system by a (bipartite) graph with two kind of nodes which represent

states and events of the system. Petri nets are also used nowadays but they use a

different approach to concurrency than the one used in process calculi.

Another important researcher studying behavior of concurrent systems was Bekič,

who worked for IBM and was well-known for his work on semantics of programming

languages in the 60s and 70s. In his paper [Bek84] from 1971 he addresses parallel

execution of processes. He was the first one who used an operator to denote a paral-

lel composition of processes, in particular to denote what he called a quasi-parallel

execution of processes. This parallel composition operator plays a central role in

every modern process calculus.

The first process calculi are due to the independent work of Milner and Hoare.

The work of Milner between the year 1973 and 1980 culminated in the Calculus

of Communicating Systems (CCS) described in his book published in 1980 [Mil80].

CCS already defines operators for sequential, parallel and alternative composition

which are milestones of process calculi. In 1978 Hoare published the paper that

describes the language Communicating Sequential Processes (CSP) [Hoa78]. CSP

provides a way to describe synchronous communication and also has been practically

applied in industry to formal verification of the concurrent aspect of several systems.

The subsequent development of CSP was influenced by the development of CCS

and vice versa. Both the theory of CCS and CSP are still the subject of active

research. While process calculi like CCS and CSP usually use transition systems to

give a semantics to programs, there is also a different approach that uses algebraic

equations to describe the behavior of the calculus. These approaches are usually

called process algebras. Among them we can mention probably the first one: Algebra

5

Chapter 1. Introduction

of Communicating Processes (ACP) [BK84] of Bergstra and Klop. Furthermore,

there exist also algebraic approaches to CCS and CSP. Algebraic approaches are

used to prove various properties of CCS and CSP, and a huge amount of formal

proofs elaborated in details can be found in the literature. This implies a great level

of reliability and is one of reasons while CCS and CSP are still used, even though

their successors are in some sense either more expressive, simpler or more suitable

for different purposes.

From the 1960s to now a large variety of process calculi have been developed.

There are several different aspects that they are trying to address. Among these

aspects are data treatment, time treatment, probability (a stochastic information

treatment), and mobility. Probably the most popular modern process calculi con-

cerning mobility are the π-calculus, which is the successor of CCS, and Mobile Am-

bients. The π-calculus and Mobile Ambients have attracted many researchers and

have led to a spreading of the process calculi approach and its applications. Now, for

both the π-calculus and Mobile Ambients many extensions, variations, and combi-

nations exist. A more detailed historical overview can be found in a paper of Baeten

[Bae05].

1.5 Basics of Type and Analysis Systems

Type and static analysis systems formalize certain kinds of reasoning about prop-

erties of processes. For any process calculus C, one or more type/static analysis

systems can be designed. An analysis system SC for calculus C is usually designed

to formally reason about and to verify a specific property of processes from calcu-

lus C. Different analysis system can be designed to reason about different process

properties and thus to reason about different properties of the modeled concurrent

system.

A typical type or static analysis system SC for process calculus C works as

follows. Firstly, it defines the set of predicates. Let ρ range over these predicates.

Predicates in many systems consist of several parts, typically they contain all non-

process entities which form typing judgments. For example, judgments of a type

system for the π-calculus described in Chapter 14 have the form “∆ $ B” in which

case predicates are contexts ∆. Judgments of a type system for Mobile Ambients

described in Chapter 16 have the form “∆ $ B : κ” in which case predicates are

pairs p∆, κq. Finally, Chapter 18 describes a flow analysis system of a biologically

inspired process calculus BioAmbients with statements of the shape “pS,N q (l B”,

and in this case, predicates are triples pS,N , lq.
Predicates formally represent properties which the system reasons about and

verifies. Secondly, the analysis system defines a binary relation on processes and

predicates. Let us write the relation as ⊲B : ρ. This relation formally represents

6

Chapter 1. Introduction

the statement “B has the property ρ”. The relation is desired to be effectively

verifiable. Thirdly, the system (usually) enjoys the subject reduction property, which

states that the relation ⊲ is preserved under rewriting of processes, that is, ⊲B0 : ρ

and B0ÑB1 imply ⊲B1 : ρ.

Usually it is easy to verify that one process B has a specific property ρ. On the

other hand, to verify that the process B and all its successors have the property ρ is

in general a much more complicated task because the set of all successors of B can

be infinite. Type systems considerably simplify this task because subject reduction

implies that it is enough to verify ρ only for the initial state B, that is, it is enough

to check ⊲B : ρ.

1.5.1 Principal Typings

For every predicate ρ we can define its meaning vρw to be the set of all processes

B such that ⊲B : ρ. A principal predicate of a process B is a predicate such that

⊲B : ρ and vρw � vρ0w for any other ρ0 such that ⊲B : ρ0. Principal predicates are

usually called principal typings [Wel02]. Existence of a principal typing for every

process is a desirable property of an analysis system. It is important for efficient

type inference, compositionally, and reusing of results and it is further discussed in

Chapter 10.

1.5.2 Polymorphism

Polymorphic predicates uniformly describe behavior of processes which concerns

values of various concrete types. Thus they support reusing of code in programming

languages, and they allow more comfortable description and modeling of concurrent

systems.

Some analysis systems for the π-calculus assign to every channel c the type of

values that can be transmitted over c. These analysis systems can be, for example,

used to guarantee that only integers are sent over channel c. This is useful to avoid

type errors which can occur when a receiving process receives a value of unexpected

type, for example, a string instead of an integer. Some channels can be, however,

used to legally (that is, without a type error) transfer values of various concrete

types. A typical example is the repeater process “c(x).c<x>.0” where the channel c

can safely transfer a value of any type. Analysis systems whose predicates describe

processes where the same channel name can be used to transfer values of various

types are called polymorphic. This particular case of polymorphism is called channel

polymorphism.

Another kind of polymorphism can be encountered in analysis systems of Mobile

Ambients and similar systems which work with ambients. Some analysis systems

for Mobile Ambients assign to every ambient n an allowed communication topic

7

Chapter 1. Introduction

which describes type values values that can be exchanged inside n. Some ambients

can, however, allow exchange of values of different types depending on the position

of the ambient in the ambient hierarchy. For example, the exchange of integers

can be allowed in a when a is inside ambient b while the exchange of strings can

be allowed in a when a is inside ambient c. We call this kind of polymorphism,

where communication actions and capabilities allowed inside an ambient depends

of the ambient position in the ambient hierarchy, spatial polymorphism. Spatial

polymorphism was firstly describe in the PolyA system. Spatial polymorphism in

the Poly✶ system is further discussed in Section 7.7.

1.6 The History of the Poly✶ System

Poly✶ was presented by Makholm and Wells [MW05] in 2005, previously presented

in the technical report [MW04a] in 2004. Poly✶ was developed from the previous

work of the above authors and Amtoft on PolyA [AMW04a, AMW04b]. PolyA

is a type system for Mobile Ambients and it is motivated by the previous work of

Amtoft and Wells [AW02].

1.6.1 The PolyA System

Unlike Poly✶, PolyA only works for one specific process calculus, Mobile Ambi-

ents. PolyA does not assign a fixed communication topic to each ambient as de-

scribed in the previous section. Instead, it assigns a type to each process that gives

upper bounds on (1) a possible ambient hierarchy tree contained in the process, (2)

values that may be communicated, and (3) capabilities that may be used. PolyA

allows, for example, typing of a messenger ambient that can collect a message of

non-predetermined type and deliver it to a non-predetermined location. PolyA

provides spatial polymorphism described in the previous section. Spatial polymor-

phism in PolyA means that a type of an ambient process may depend on a location

where it is found.

Types in PolyA are dependent in the sense that they are build from the same

building blocks as process (from names in PolyA and later in Poly✶ from type

tags). PolyA types are selected from the set of shape predicates. A shape predicate

is a graph which represents all possible future states of a process merged together.

Shape types are those shape predicates which are provably closed under rewriting.

The basic idea of shape predicates is that they resemble process structure and con-

tent. A shape predicate looks like a process term syntax tree. A process term

matches the shape predicate if its syntax tree can be “bent into shape” described

by the shape predicate (edges of the shape predicate can be used more than once

during the matching). This basic idea comes to trouble because there may be a

8

Chapter 1. Introduction

term that can evolve to a term with an arbitrarily deep syntax tree (for example,

“!a[!in a.0]” in Mobile Ambients). It means that we would have to consider infinite

shape predicates. On the other hand, it is desired to keep types finite. Thus PolyA

restricts itself to possibly infinite trees with finite representations, specifically, regu-

lar trees. Although PolyA defines a linear notion of shape predicates called shape

expression, it is easiest to use directly graphs.

Not all shape predicates are shape types in PolyA. Because a desired property

here is subject reduction, only those shape predicates that are closed under rewriting

are called types. Shape predicates which are closed under rewriting are called seman-

tically closed in PolyA. Because the recognition of semantic closure was found far

from easy, another, easier to recognize notion of syntactically closed shape predicates

is defined in PolyA. Syntactic closure implies the semantics closure. Syntactically

closed shape predicates are called shape types in PolyA.

Although the recognition of shape types is relatively easy to implement, it is still

not enough to prove existence of principal typings [Wel02]. That is why PolyA

defines a subclass of types called restricted types. Restricted types are those which

satisfy two conditions called a discrete and a modest condition1. Among restricted

types, the existence of principal typings is proved and a type inference algorithm

has been implemented [MW04b]. The existence of principal typings among all un-

restricted PolyA types has never been either proved or disproved. As noted in

Section 1.5, principal typings are important for efficient type inference algorithm,

compositionally, and reusing of results.

1.6.2 From PolyA to Poly✶

The work on PolyA gives rise to Poly✶, a generalization from a type system for

Mobile Ambients to a family of type systems for a large family of process calculi.

Poly✶ takes from PolyA the concept of shape types. It provides the way to

describe reduction semantics of the process calculus in question. Based on this

description, the reduction relation is automatically inferred. Again, notions similar

to the semantic and the syntactic closure from PolyA are defined in Poly✶. A

notable change is that Poly✶ leaves off the discrete and modest restrictions, and

instead, it defines simpler conditions on types called a width and a depth restriction.

The main reasons are that the discrete and modest restrictions, although more

powerful, were very complex and hard to understand. Types which satisfy the width

and depth restriction are called restricted and the existence of principal typings is

proved only among these restricted types.

Problems were found in the previously published Poly✶ [MW05, MW04a]. They

are fixed and described in this thesis, which is the first publication which contains

1We will not even try to explain these conditions here because they are exceedingly complex.

9

Chapter 1. Introduction

detailed proofs of Poly✶ properties (subject reduction, principal typings, and oth-

ers) as well as a detailed description and correctness proofs of the type inference

algorithm.

1.7 Overview of the Poly✶ System

Poly✶ is a generic type system scheme which can be used to verify various prop-

erties of processes from various calculi. Poly✶ is built on top of the metacalculus

Meta✶ which can be instantiated to many calculi including, for example, the π-

calculus, Mobile Ambients, numerous variations of these, and other systems. The

instantiation of Meta✶ to a process calculus is done by a straightforward descrip-

tion R of the rewriting rules in the syntax that Meta✶ provides for this purpose.

A rule description R instantiates Meta✶ to the calculus CR and the very same rule

description R is the only thing that is necessary to instantiate Poly✶ to the type

system SR for CR.

The type system SR provided by Poly✶ is not designed to verify and reason

about just one specific property of processes. Rather, Poly✶ uses the generic

notion of shape predicates which describe allowed syntactic configurations of Meta✶

processes. Shape R-types are those shape predicates which are provably closed under

rewriting with R by a simple procedure. Every shape (R-)type Π describes the set

of Meta✶ processes which have the syntactic configuration allowed by Π. Many

interesting properties of processes can be expressed as properties of shape types. The

type system SR can be thus used to verify and reason about all the properties which

can be expressed as properties of shape types. The question of the expressiveness of

shape types is further investigated in Part III of this thesis where we formally prove

that shape types can have both the same expressive power as and also superior

expressive power than predicates of three selected analysis systems which earlier

researchers handcrafted to verify specific process properties of specific calculi. Every

Poly✶ instance SR has desirable properties such as subject reduction, the existence

of principal typings [Wel02], and an already-implemented type inference algorithm.

1.8 Contributions of the Thesis

The contributions of this is thesis are briefly summarized in the following list.

Extensions of the Poly✶ System. A major extension of the Poly✶ system in-

troduced in this thesis is the support of name restriction (“ν”). Details can be

found in Section 9.1. The support of name restriction is significant because the

functionality of name restriction is very often used when modeling concurrent

systems.

10

Chapter 1. Introduction

Fixes of the theory. Many problems were found in the theory of the previously

published Poly✶ system. These are fixed and described in this thesis. Sec-

tion 9.2 contains a detailed list of changes together with references to related

parts of this thesis.

Clarifications of the theory. Some notations in the previously published Poly✶

theory were used in an informal way without an exact definition. Explicit

definitions of these notions are provided in this thesis. Some definitions were

also simplified and clarified. Details can be found in Section 9.2.

Formalization of a type inference algorithm. Although an implementation of

the type inference algorithm accompanied the previously published Poly✶

system, no formal description of type inference was available before this thesis.

The type inference algorithm is described and proved correct in Part II of this

thesis.

Proofs. An enormous amount of detailed proofs can be found in this thesis. No

proofs of Poly✶ properties were previously published except for a very short

(1 page) proof sketch of subject reduction. The discovery of the above-

mentioned inconsistencies in the original Poly✶ system called for much more

detailed proofs. Proofs of subject reduction, principal typings, correctness of

the type inference algorithm, and other important properties of the Poly✶

system are first presented in this thesis.

Expressiveness evaluation of Poly✶. Poly✶ can be instantiated to a type sys-

tem for a large variety of process calculi. The expressiveness of type systems

provided by Poly✶ has, however, not been evaluated before the presentation

of results from this thesis. Part III of this thesis deals with this question of

expressiveness and it shows that shape types can have both the same expres-

sive power as and also superior expressive power than predicates of three quite

dissimilar analysis systems from the literature, namely, (1) an implicitly typed

π-calculus, (2) an explicitly typed Mobile Ambients, (3) and a flow analysis

system for BioAmbients.. We believe that the results reached and the diver-

sity of the three systems justify the claim that shape types can be widely used

instead of predicates of many other systems.

Applications of Poly✶. Apart from the proofs of superior expressiveness, Part III

of this thesis also shows on concrete examples how to use the Poly✶ system

to achieve specific tasks. This helps to bridge over the problem of complexity

of Poly✶ which is inevitably implied by its high generality and which has

been daunting to some readers of earlier papers. We also demonstrate spatial

polymorphism, which is not common for other systems, on concrete examples.

Handling of infinite sets of rewriting rules. The previously published Poly✶

system works only with process calculi with finite sets of rewriting rules. Some

11

Chapter 1. Introduction

process calculi support polyadic communication which allows exchange of ar-

bitrarily long tuples of objects. Polyadic communication is usually described

by infinitely many rewriting rules (a separate rule for every tuple arity). Han-

dling of infinite sets of rewriting rules which is sufficient to support polyadic

calculi is first presented in Section 10.3 of this thesis.

Non-existence of principal typings among unrestricted types. As noted in

Section 1.6.2, the existence of principal types in Poly✶ is proved only among

restricted types. Section 10.4 constructs a Poly✶ instantiation with no prin-

cipal typings among all Poly✶ types. This result, which is first published in

this thesis, explains the reasons for introduction of restricted types.

Part I of this thesis partially overlaps with previous Poly✶ publications of

Makholm and Wells [MW05, MW04a]. It, however, contains some extensions and

the differences are summarized in Section 9.2. The materials from Part II have not

been published before. Part III is mainly based on recent publications of Jakub̊uv

and Wells [JW09, JW10].

1.9 Structure of the Thesis

Basic mathematical and other notations used throughout the thesis are introduced

in Chapter 2. The rest of the thesis is divided into three parts which deal with the

following topics.

Part I: Shape Types and the Poly✶ System. This part fixes and extends the

generic Poly✶ type system previously published by Makholm and Wells [MW05,

MW04a]. See Section 1.7 for basic overview of Poly✶ and shape types. Differ-

ences between the previously published Poly✶ system and the one presented

in this thesis are summarized in Section 9.2.

Part II: Principal Typings and Type Inference. Part II presents a type infer-

ence algorithm and proves it to be correct and complete. The type inference

algorithm together with the proof of its correctness and completeness provide

a constructive proof of the existence of principal typings (see Section 1.5 and

Chapter 10 about principal typings). These results are published for the first

time in this thesis.

Part III: Application and Expressiveness of Shape Types. The last part de-

monstrates how to use Poly✶ with concrete calculi from the literature, namely,

with the π-calculus, Mobile Ambients, and BioAmbients. For each of the three

calculi we select its analysis system from the literature and we prove that shape

types can provide the same results as the original analysis system. Further-

more, we prove that Poly✶ can additionally provide greater expressiveness

than the original system.

12

Chapter 1. Introduction

Some topics are presented in two consecutive chapters where the first chapter pro-

vides a compact overview of the topic and the second chapter contains additional

details, explanations, and proofs. The overview chapters contain all the definition

necessary to comprehend the rest (of the overview chapters) of the thesis. The detail

chapters can be skipped for the first reading and the reader can look them up later as

necessary, either the whole chapter or just some particular parts. The chapter with

details always follows the corresponding overview chapter and it is titled “Technical

Details on . . . ”.

13

Chapter 2

Notations and Definitions

This short chapter presents some definitions which are not specific to the work of

this thesis.

Throughout this thesis let i, j, k range over natural numbers. Let pu, vq denote

the pair of u and v. A function f is a pair set such that pu, vq P f and pu, wq P f

implies v � w. Let u ÞÑ v be an alternate pair notation used when writing functions.

Given the function f and the sets U and V we suppose the following definitions.

powerpUq � tV : V � Uu the power set
powerfinpUq � tV : V � U & V is finiteu the set of finite subsets
UzV � tu : u P U & u R V u set subtraction
U �V � tpu, vq : u P U & v P V u Cartesian product
dompfq � tu : pu ÞÑ vq P fu function domain
rngpfq � tv : pu ÞÑ vq P fu function range
f�1 � tpv, uq : pu ÞÑ vq P fu inverse function/relation
f ru ÞÑ vs � tpu1 ÞÑ v1q P f : u � u1u Y tu ÞÑ vu function extension/replacement
U Ñ V � tf � pU � V q | f is a functionu all functions from U to V

U Ñfin V � tf P pU Ñ V q | f is finiteu all finite functions from U to V

We shall use following BNF-like statements to define sets with members of a

particular syntax.

i, j, k P Nat ::� 0 | 1 | 2 | � � �
The above statement defines a set called Nat to be the set of natural numberst0, 1, . . .u and it states that metavariables i, j, and k (possibly with indexes) will be

used to range over Nat. We also use similar statements with equality “�” instead of

“::�” to describe a set directly. The following has the same meaning as the previous

statement.

i, j, k P Nat � t0, 1, 2, . . .u
14

Chapter 2. Notations and Definitions

Syntactic sets can be additionally defined recursively as in the following example.

T P Term ::� i | -T | pT0 +T1q | pT0 *T1q
The above set Term can be equivalently defined by the following recursive definition.

(1) Every natural number is in Term.

(2) When T P Term then “-T” is in Term.

(3) When T0 and T1 are from Term then “pT0 +T1q” and “pT0 *T1q” are in Term.

(4) Any member of Term is constructed by finitely many applications of (1)-(3).

We use metavariables consistently, that is, all occurrences of the same metavari-

able in the same chapter always range over the same set. Upper case metavariables

range over more complicated (usually recursively defined) sets. Greek metavariables

range over type entities. An index of metavariables can be found at the end of this

thesis.

In Part II we describe a type inference algorithm using a C-like pseudo-pro-

gramming language. We do not formally define its semantics in favor of the follow-

ing description. We assume the call-by-value semantics, that is, every function call

makes a copy of its arguments. Names of variables correspond to names of metavari-

ables used throughout the thesis and thus the name of a variable determines the type

of its value. For example, variables i and i0 can hold only natural number values.

The scope of a variable is the whole function where it is used. Exceptions are

variables which are introduced by an existential quantification in conditions of if

and while statements. The scope of these existentially quantified variables is only

the body of the if branch or the while cycle whose condition introduces the variable.

Existentially quantified variables are read-only. Variables which are used as control

variables in for and foreach cycles have also only the corresponding block as their

scope and they are read-only. There are no global variables.

An attempt to read an uninitialized variable to which no value has been assigned

yet terminates the execution with failure. Some assignment uses a simple pattern

matching, for example “pi, jq :� p1, 2q;”. The execution terminates with failure when

the right-hand side has not the required shape, like for example in “pi, jq :� 3;”.

Finally, the execution terminates with failure if the argument of switch command

has a shape which is not described by any case branch and there is no otherwise

branch. Above failures do not, however, happen in algorithms from Part II if ar-

guments have expected values. After the execution of a case branch which is not

finished by return, the execution continues with the first command after the switch

statement (and not by the next case branch like in C).

15

Part I

Shape Types and the Poly✶

System

16

Chapter 3

The Metacalculus Meta✶

Poly✶ is built on the metacalculus Meta✶ which is based on the observation that

many syntactic constructions have similar semantics in many process calculi found

in the literature. Examples of these constructions are parallel composition (“|”),

prefixing a process with an executable or non-executable prefix (“.”), replication

(“!”), and name restriction (“ν”). Process calculi differ mainly in the set of prefixes

and their meanings. Meta✶ collects constructors shared among process calculi and

introduces a general concept of forms used to encode various prefixes of other calculi.

Meta✶ is instantiated with a rewriting rule set R that specifies the behavior of

prefixes (forms). Meta✶ can be instantiated to many calculi including, for example,

the π-calculus, Mobile Ambients, numerous variations of these, and other systems.

We stress that metacalculus Meta✶ is mainly intended to provide a base for

the generic type system Poly✶. Meta✶ is not supposed to be used on its own. In

this chapter we describe generic syntax of Meta✶ processes together with general

operations and relations which are used by all Meta✶ instances. How to instantiate

Meta✶ to a concrete process calculus is described in Chapter 5.

3.1 Generic Syntax of Processes

Here we introduce the Meta✶ process syntax which is designed to allow straight-

forward encodings of other calculi and we introduce some useful conventions.

The syntax of Meta✶ processes is given in Figure 3.1. A Meta✶ entity is any

entity defined in Figure 3.1, that is, any basic name, type tag, name, sequence,

message, element, form, or process. Let metavariable Z range over all Meta✶

entities.

Processes in process calculi are usually built from atomic names. A Meta✶

name aι is a pair of the atomic basic name a and the type tag ι. Later we shall

define α-conversion of bound names to preserve type tags. Thus the main point

of type tags is to provide identifiers of bound names which are not changed by α-

17

Chapter 3. The Metacalculus Meta✶

a, b P BasicName ::� a | b | c | � � � | in | out | open | � � � | [] |
 | � � �
ι P TypeTag � BasicName

x, y P Name ::� aι

s P Sequence ::� x0 . . . xk

M P Message ::� 0 | s | M0.M1

E P Element ::� x | (x1, . . . , xk) | <M1, . . . , Mk>

F P Form ::� E0 . . . Ek

P, Q, R P Process ::� 0 | F.P | pP | Qq | νx.P | !P
Figure 3.1: Syntax of Meta✶ processes.

conversion. Type tags and basic names are taken from the same set and we shall

abbreviate aa simply as a when no confusion can arise. This abbreviation allows us

to resemble process syntax of other calculi.

Process constructors have standard semantics. The null process “0” is an inactive

or finished process, “P | Q” runs processes P and Q in parallel, “νx.P” behaves as

P with private name x (i.e., x in P differs from all names outside P), and finally

“!P” acts as infinitely many copies of P in parallel (“P | P | � � � ”).

The input element (x1, . . . , xk) is used to encode name input binders of other

calculi and it binds the names x1, . . ., xk. The output element <M1, . . . , Mk> can

be used to encode message sending. Both elements can be empty (when k � 0).

Forms can encode executable action prefixes from various calculi such as π-calculus

communication actions (as “x(y)” and “x<y>”) or Mobile Ambients capabilities

(as “in x”, “out x”, and “open x”). When a form F encodes an executable action

then “F.P” encodes the process that runs F and continues as described by P .

Forms are also used to encode non-executable prefixes or other calculus-specific

constructions like ambients boundaries from Mobile Ambients. We encode the

Mobile Ambient syntax “x[P]” in Meta✶ as “x[].P” and we use the former syntax

as an abbreviation (“[]” is a single name).

We omit parenthesis in pP |Qq when possible. Let “.” bind more tightly than “|”,

that is, “F.P | Q � pF.P q | Q” and “νx.P | Q � pνx.P q | Q”. Let the composition

of messages “.” associate to the right, that is, “M0.M1.M2 � M0.pM1.M2q”. Let “|”

associate to the right.

Name restriction “νx” binds all underneath occurrences of x and the input ele-

ment “(x1, . . . , xk)” binds x1, . . ., xk. The occurrence of type tag ι in aι is bound

when this occurrence of aι is. For every P we define the set fnpP q of free names,

the set ftagspP q of free type tags, the set itagspP q of input-bound type tags, the set

ntagspP q of ν-bound type tags, and the set tagspP q of all type tags of process P . A

detailed definition of these notions and sets can be found in Section 4.1.

A bound occurrence of aι can be α-converted to bι but the type tag ι has to

be preserved. We identify α-convertible processes. Details on α-conversion can be

18

Chapter 3. The Metacalculus Meta✶

found in Section 4.2.

3.2 Well Formed Processes

Some names can have a special meaning in some process calculi like for example in,

out, and open in Mobile Ambients. It is desirable not to allow these special names to

be bound in Meta✶ processes. In the 2004 technical report [MW04a] special names

can be bound and this causes an inconsistency in the subject reduction property.

This is further discussed in Remark 8.7.2. Because of the introduction of type tags

in the version of Poly✶ presented here, special names might be allowed to be bound

but it would unnecessarily complicate proofs and encodings of other calculi.

We suppose that the set SpecialTag � TypeTag contains all special type tags of

names to which a special meaning is assigned by rewriting rules. The set is not fixed

but can be extended as necessary to cover all special name tags in rewriting rules. For

example in the case of Mobile Ambients we assess SpecialTag � t
, [], in, out, openu.
We suppose
 P SpecialTag for any Meta✶ instantiation. We introduce the set

SpecialTag here in order to make the following definition of well formed processes

independent on descriptions of rewriting rules.

Definition 3.2.1. The process P is well formed when all the following hold.

(W1) The type tags ftagspP q Y ntagspP q are disjoint with itagspP q.
(W2) When F.Q is a subprocess of P then itagspF q and itagspQq are disjoint.

(W3) Any F in P contains exactly one occurrence of ι for every aι P bnpF q.
(W4) Bound tags itagspP q Y ntagspP q are disjoint with SpecialTag.

Henceforth we suppose only well scoped processes. Section 4.3 describes the changes

in this definition from the previous Meta✶ [MW05]. The following remark explains

the purpose of the conditions.

Remark 3.2.2. All the well-formedness conditions except W3 are required only for

subject reduction and type inference in Poly✶ and are not required for a proper

functionality of Meta✶ itself.

Condition W1 forbids mixing of input bound tags with other (not input bound)

tags. For example, “νx.x.0 | (x).x.0” and “ay.0 | (by).by.0” are forbidden. Recall

that a standalone x at a name position stands for xx. Condition W1 is necessary

for subject reduction and it is further discussed in Remark 6.3.3, Remark 8.2.1,

Remark 8.5.2, and mainly in Remark 8.7.1. Free name tags and ν-bound tags can

mix, for example, “x.0 | νx.x.0” is a well formed process. Processes like this have to

be allowed to achieve the property that any subprocess of a well formed process is

well formed. This property is essential for proofs which use structural induction on

processes.

19

Chapter 3. The Metacalculus Meta✶

Message decomposition operator:

0�P � P s�P � s.P pM0.M1q�P � M0�pM1�P q
Application of a substitution to names, sequences, elements, and forms:

S̄x � $'&'%Spxq if Spxq P Name

x if x R dompSq
 otherwise

S̄px0 . . . xkq � pS̄x0q . . . pS̄xkq
S̄(x1, . . . , xk) � (x1, . . . , xk)

S̄<M1, . . . , Mk> � < 9SM1, . . . , 9SMk>

S̄pE0 . . . Ekq � pS̄E0q . . . pS̄Ekq
Application of a substitution to messages:9SpM0.M1q � 9SM0. 9SM19S0 � 0

9Ss � #
Spxq if s � x P dompSq
S̄s otherwise

Application of a substitution to processes:

S̄0 � 0 S̄pP | Qq � S̄P | S̄Q S̄p!P q � !S̄P

S̄pνx.P q � νx.S̄P if x R dompSq Y fnpSq
S̄pF.P q � #

Spxq�S̄P if F � x P dompSq
S̄F.S̄P if F R dompSq & bnpF q X pdompSq Y fnpSqq � ∅

Figure 3.2: Application of a substitution to Meta✶ entities.

Condition W2 forbids nesting of input binders which bind the same type tag.

For example “(ay).(by).by.0” is banned. This is essential for the subject reduction

property to hold and it is further discussed in Remark 8.7.1. Condition W3 disallows

a single type tag to be bound more than once in a single form. For example the

following forms are not allowed in any well formed process: “(x, x)”, “(x)(x)”,

“x(x)”, and “(ax, bx)”. These could lead to a formation of an invalid substitution.

The purpose of W4 has already been discussed.

3.3 Substitution

Now we define substitutions in Meta✶ and their actions on processes and other

entities.

Definition 3.3.1. A Meta✶ substitution, denoted S, is a finite function from

Name to Message.

Application of S to various Meta✶ entities is defined in Figure 3.2. Application

of S to messages is written 9SM while application to all other Meta✶ entities is

written S̄Z. Especially, application of S to process P is written S̄P . Let substitution

application bind more tightly than other operators, that is, let “S̄P | Q” stand for

“pS̄P q | Q”.

Application of a substitution to processes uses an auxiliary message decompo-

sition operation M�P defined in the top part of Figure 3.2. It discards empty

20

Chapter 3. The Metacalculus Meta✶

P � P
(SRef)

P � Q

Q � P
(SSym)

P � Q Q � R

P � R
(STra)

P � Q

P | R � Q | R
(SPar)

P � Q

F.P � F.Q
(SFrm)

P � Q

!P � !Q
(SRep)

P � Q

νx.P � νx.Q
(SNu)

P | Q � Q | P
(SPCom)

P | pQ | Rq � pP | Qq | R
(SPAsc)

P | 0 � P
(SPNul)

0 � !0
(SRNul)

νx.νy.P � νy.νx.P
(SNuNu)

!P � P | !P
(SBang)

x R fnpF q
F.νx.P � νx.F.P

(SNuFrm)
x R fnpP q

P | νx.Q � νx.pP | Qq (SNuPar)

Figure 3.3: Structural equivalence of Meta✶.

messages 0 from M and pushes components of M from right to left onto P (for

example ppa.bq.cq�P � a.b.c.P). In other calculi this operation is often incorporated

into a structural equivalence relation.

Substitution replaces names by messages, but non-name messages are Meta✶

syntax errors at some name positions. For example, substituting “in a” for x in

“open x” would yield “open pin aq” which is invalid syntax. In some process calculi,

the syntax allows such expressions but they are semantically inert. In Meta✶,

substitution places a special name “
” at positions that would otherwise be syntax

errors, that is, the above substitution yields “open
”.

Note that we really need two different application operators because a substitu-

tion is applied in different ways to names inside forms or sequences, and to single

name messages. For example, when S � tx ÞÑ in au then “ 9Sx � in a” but “S̄x �
”
and hence we have “S̄px<x, in x>q �
<in a, in
>”. The result of S̄ applied to a name

is always a name. Also note that substitution application does not touch names

inside input elements, that is, we have for example S̄p(x)q � (x) for any S even

when x P dompSq. This is because input-elements act as binders.

Basic properties of substitutions are proved in Section 4.6. In Section 4.5 we de-

scribe changes in the definition of substitution application from the previous Meta✶

[MW05].

3.4 Structural Equivalence

The Meta✶ structural equivalence relation � is the smallest binary relation on

Meta✶ processes that satisfies the rules in Figure 3.3. Labels like SRef or SSym

21

Chapter 3. The Metacalculus Meta✶

are rule names with no impact on semantics. Structural equivalence expresses the

following standard properties of parallel composition, name restriction, and replica-

tion. Parallel composition is commutative and associative and has 0 as its unit (rules

SPCom, SPAsc, and SPNul). The scope of name restriction can be extruded from

name restriction, parallel composition, and form when there is no binding conflict

(rules SNuNu, SNuPar, and SNuFrm). Replication implements repetitive behavior

(rule SBang). This basic semantics of operators described by structural equiva-

lence is fixed and does not vary with instantiation of Meta✶. Basic properties of

structural equivalence are proved in Section 4.7.

22

Chapter 4

Technical Details on Meta✶

This chapter contains technical details related to the previous chapter. It can be

skipped for the first reading and looked up later, either the whole chapter or just

some particular part.

4.1 Free and Bound Names

We proceed by defining notions of free and bound names and type tags. These

notions are used to define α-equivalence in the next section.

Definition 4.1.1. All occurrences of the name x in “νx.P” are called (ν-)bound.

When a form F contains an element “(x1, . . . , xk)” then all occurrences of x1, . . .,

xk in “F.P” as well as in F on its own are called (input-)bound. An occurrence

of x that is not bound is called free. The occurrence of ι in aι is called bound (resp.

free) when this occurrence of aι is.

The set fnpP q of free names of P and the set bnpF q of bound names of the form

F are defined in Figure 4.1. We do not define, however, the set of bound names of

a process because we identify processes up to α-conversion and this set would not

be preserved under α-conversion of bound names in the process.

The function x which extracts the type tag from the name x and the element-wise

extension of this function to sets of names are defined in the top part of Figure 4.2.

The set ftagspP q of free type tags, the set itagspP q of input-bound type tags, the set

ntagspP q of ν-bound type tags, and the set tagspP q of all type tags of process P are

defined in Figure 4.2. In contrast to the previous, we define the sets of bound type

tags for processes because we require type tags to be preserved under α-conversion.

4.2 Name Swapping and α-equivalence

Different occurrences of the same bound name under different binders are supposed

to be handled as occurrences of different names. For example, the process “νa.in a.0|

23

Chapter 4. Technical Details on Meta✶

Free names of sequences and messages:

fnpx0 . . . xkq � tx0, . . . , xku fnp0q � ∅ fnpM0.M1q � fnpM0q Y fnpM1q
Free and bound names of elements and forms:

fnpxq � txu bnpxq � ∅
fnp(x1, . . . , xk)q � ∅ bnp(x1, . . . , xk)q � tx1, . . . , xku
fnp<M1, . . . , Mk>q � �k

i�1 fnpMiq bnp<M1, . . . , Mk>q � ∅

fnpE0 . . . Ekq � �k

i�0 fnpEiq bnpE0 . . . Ekq � �k

i�0 bnpEiq
Free names of processes:

fnpF.P q � fnpF q Y pfnpP qzbnpF qq
fnpP | Qq � fnpP q Y fnpQq fnp0q � ∅

fnpνx.P q � fnpP qztxu
fnp!P q � fnpP q

Figure 4.1: Free and bound names of Meta✶ process entities.

Type tags of names and sets of names:

aι � ι for X � Name: X � tx : x P Xu
Input-bound and ν-bound type tags of processes:

itagspF q � bnpF q
itagspF.P q � itagspF q Y itagspP q ntagspF.P q � ntagspP q
itagspνx.P q � itagspP q ntagspνx.P q � txu Y ntagspP q
itagsp0q � ∅ ntagsp0q � ∅
itagspP | Qq � itagspP q Y itagspQq ntagspP | Qq � ntagspP q Y ntagspQq
itagsp!P q � itagspP q ntagsp!P q � ntagspP q

Free and bound type tags of processes:

ftagspP q � fnpP q tagspP q � ftagspP q Y itagspP q Y ntagspP q
Figure 4.2: Free and all type tags of Meta✶ process entities.

νa.out a.0” should behave as the process “νa.in a.0 | νb.out b.0”. Because names

under different binders can interact with each other, we eventually need to rename

bound names to avoid name conflicts. Renaming of bound names is commonly

referred to as α-conversion and two processes which differ only by renaming of

bound names are called α-convertible or α-equivalent. We now define α-conversion

for Meta✶ processes using the name swapping operation.

Definition 4.2.1. Let px ò yqP be the process P with all occurrences (free, bound,

or binding) of x and y swapped.

The α-equivalence relation P � Q is the smallest binary relation on Meta✶

processes which satisfies the rules from Figure 4.3. In other words, it is the smallest

equivalence relation congruent with Meta✶ process constructors which satisfies rule

24

Chapter 4. Technical Details on Meta✶

P � P
(ARef)

P � Q

Q � P
(ASym)

P � Q Q � R

P � R
(ATra)

P � Q

P | R � Q | R
(APar)

P � Q

F.P � F.Q
(AFrm)

P � Q

!P � !Q
(ARep)

P � Q

νx.P � νx.Q
(ANu)

aι R fnpP q bι R fnpP q
P � paι ò bιqP (ASwap)

Figure 4.3: The α-equivalence relation.

ASwap. Processes P and Q are called α-convertible when P � Q. Henceforth α-

convertible processes are identified, that is, considered equal.

Without α-equivalence being defined as congruent with process constructors the

following could not be proved:pνaι.0 | νaι.0q � pνaι.0 | νbι.0q
Because free names and type tags are preserved under α-equivalence, it is easy

to see that all previously defined functions on processes give equal values for α-

convertible processes and thus these functions are still correctly defined functions

after the identification of α-equivalent processes. Also note that we have α-identified

processes but not forms which is to say that the forms “(aa)” and “(ba)” are different

but the processes “(aa).0” and “(ba).0” are equal. Thus the function bnpF q is still

correctly defined on forms.

4.3 Changes in Well-Formedness

This section describes the differences in handling of α-renaming and well-formedness

between the version of Meta✶ presented here and the Meta✶ version previously

published in the ESOP 2005 paper [MW05] and in the 2004 technical report [MW04a].

The definition of well formed processes is different in the previous version of

Meta✶ [MW05, MW04a]. In the previous Meta✶, names in processes had no

type tags assigned to them and α-equivalent processes were not identified. Instead,

α-renaming of ν-bound names was built into the structural equivalence relation.

Moreover, input-bound names were not α-renamed at all. The need to α-rename

input binders can be avoided in any process calculus where the rewriting rules can

not invent processes with nested input-binders binding the same name. This is the

case of majority of process calculi in the literature with the exception of the Higher-

Order π-calculus (HOπ) [San93] where the following rewritings can happen, starting

25

Chapter 4. Technical Details on Meta✶

with a process where all binders bind different names.

d(Z).pZ | a<Z>q | d<a(Y).b(x).Y> ÑHOπ

a(Y).b(x).Y | a<a(Y).b(x).Y> ÑHOπ

b(x).a(Y).b(x).Y

When we think about input-binders as about λ-abstractions in the λ-calculus then

the λ-calculus does not satisfy the above property either. Let us consider the fol-

lowing reductions.pλz.zzqpλxy.xyq Ñβ pλxy.xyqpλxy.xyq Ñβ λy.pλxy.xyqy Ñβα λyy1.yy1
Note that α-renaming was required in the last reduction step to avoid name capture.

This means that we can not directly instantiate Meta✶ to HOπ and to the (call-

by-value) λ-calculus. We can still, however, work with both HOπ and with the

λ-calculus indirectly, for example, via their encodings in the π-calculus. We could

also directly instantiate Meta✶ to the name passing λ-calculus [Bou97, Table 1].

Thus α-renaming of input-binders can be avoided in a process calculus which

meets the following requirements.

(1) It is possible to require nested input-binders to bind different name.

(2) It is possible to require input-bound names to be disjoint with other names.

(3) The properties required by (1) and (2) are preserved under rewriting.

One still, however, needs to α-rename ν-binders because a single ν-binder can be

replicated and the replicated copy can extend its scope to contain the original binder.

All the above three requirements are met for the most of process calculi found in

the literature including the π-calculus, Mobile Ambient, and their variants. Thus the

need to α-rename input-binders was avoided in the previous Meta✶. Unfortunately,

there was a mistake in the definition of well formed processes which allowed name

captures. This is further discussed in Section 4.5.

4.4 Properties of Well Formed Processes

The following proves that a well formed process has only well formed subprocesses.

This property is essential for proofs that that use structural induction on processes

because we implicitly assume that all processes are well formed. Thus without this

property one would not be able to apply the induction hypothesis because the proof

of the induction hypothesis can make use of this implicit assumption and thus the

induction hypothesis can be valid only for well formed processes.

Lemma 4.4.1. A subprocess of a well formed process is well formed.

26

Chapter 4. Technical Details on Meta✶

Proof. Let Q be a subprocess of a well formed process P . Clearly W2, W3, and

W4 have to be satisfied for Q. Let us check W1 for Q. Let ι0 P itagspQq. Clearly

ι0 P itagspP q. We need to proof that ι0 � ι1 for any ι1 P ftagspQq Y ntagspQq.
When ι1 P ntagspQq then clearly ι1 P ntagspP q and thus ι0 � ι1. On the other hand

ι1 P ftagspQq does not necessarily imply ι1 P ftagspP q because ι1 can be bound by

some binder in P with Q is its scope. So let ι1 P ftagspQq. Now ι1 has to be in

tagspP q. When ι1 P ftagspP q or ι1 P ntagspP q then clearly ι0 � ι1 because otherwise

P would not be well formed as ι0 P itagspP q. Finally, when ι1 P itagspP q then P has

some subprocess F.P0 such that ι1 P itagspF q and P0 has Q as a subprocess. Clearly

ι0 P itagspQq implies ι0 P itagspP0q and thus W2 for P says that ι0 � ι1. Hence Q

is well formed.

4.5 Changes in Substitution Application

This section describes issues regarding the definition of a substitution and well-

formedness of processes in the previous version of Meta✶ [MW05, MW04a].

As mentioned in Section 4.3, in the previous Meta✶ [MW05, MW04a] α-equivalent

processes were not identified and type tags were not used. For every process P , the

set FNpP q of free names of P and the set BNpP q of the input-bound names of P

were defined in the previous Meta✶. Hence ν-bound names of P were neither in

FNpP q nor in BNpP q. Then the definition of a well formed process1 in the previous

Meta✶ [MW05, Section 2.2] was as follows.

The process term P is well scoped iff it contains no nested binding of

the same name and none of its free names also appear bound in the

term. Formally, it is required that (1) BNpP q and FNpP q are disjoint,

(2) whenever P contains F.Q, BNpF q and BNpQq are disjoint, and (3)

whenever P contains νx.Q, x R BNpQq.
Unfortunately this definition accidentally labels the process “(x).νx.x.0” as well

scoped because, as stated above, ν-bound names are not in the set BNpP q of bound

names. Moreover, application of substitution S to process P , which was written SPP

in the previous Meta✶, did not guard against name capture which was justified as

follows [MW05, Section 2.3].

The definitions in Figure 3 do not worry about name capture. In general,

therefore, SPP is only intuitively correct if BNpP q is disjoint from the

names mentioned in S. In practice, this will always follow from the

assumption that all terms are well scoped.

1Actually the phrasing “well scoped process” is used in the previous Meta✶.

27

Chapter 4. Technical Details on Meta✶

As a result the following name capture occurred when we had applied S � tx ÞÑ au
to the afore mentioned process “(x).νx.x.0”.

SPp(x).νx.x.0q � νx.a.0

This is a problem because the instantiation of the previous Meta✶ to some process

calculus did not behave as the original calculus. For example, in the instantiation

of the previous Meta✶ to Mobile Ambients one obtained that “(x).νx.x.0 | <a>.0”

rewrites to “νx.a.0” which does not happen in Mobile Ambients. This issue can,

however, be solved by fixing the definition of well-scopedness2.

Another related issue is that the definition of well scoped processes in the previous

Meta✶ did not ruled out invalid forms like “(x, x)” which can lead to formation of

an invalid substitution. The last issue is that special names mentioned in rewriting

rules were not prevented from being bound. This breaks the subject reduction of the

extension of Poly✶ from the 2004 technical report which handles name restriction

[MW04a, Section 5.3]. This is further discussed in Remark 8.7.2.

4.6 Properties of Substitutions

Here we prove some trivial properties of substitution applications which will be used

later. The following defines the set fnpSq of free names of S.

Definition 4.6.1. Let fnpSq be the names in messages in the range of S. Formally

fnpSq � tx P fnpMq : M P rngpSqu.

The following lemma says that a substitution application does not change bound

type tags in a process, that is, it can neither introduce a new type tag nor discard

an existing one.

Lemma 4.6.2. All of the following hold for any F , P , and S.

(1) bnpS̄F q � bnpF q
(2) itagspS̄P q � itagspP q
(3) ntagspS̄P q � ntagspP q

Proof. By induction on the structure of F or P using (1) to prove (2).

In contrast, a substitution application can introduce a new free name. However,

any newly introduced name is either from the range of the substitution or it is
 in

the case of a syntactic error.

2Then one has to also restrict α-renaming of ν-binders so that a ν-bound name is not renamed
to some name which is input-bound elsewhere. This fix has actually never been done.

28

Chapter 4. Technical Details on Meta✶

Lemma 4.6.3. All of the following hold for any F , P , and S.

(1) fnpS̄F q � fnpF q Y fnpSq Y t
u
(2) fnpS̄P q � fnpP q Y fnpSq Y t
u

Proof. By induction on the structure of F or P using (1) to prove (2).

4.7 Properties of Structural Equivalence

Basic properties of structural equivalence are proved in this section. The following

lemma states that structurally equivalent processes have the same bound tags and

free names.

Lemma 4.7.1. When P � Q then all the following hold.

(1) itagspP q � itagspQq
(2) ntagspP q � ntagspQq
(3) fnpP q � fnpQq

Proof. Proof by induction on the derivation of P � Q. The only two cases which

are not absolutely trivial are the following two cases of (3).

SNuFrm: Here P � F.νx.P0 and Q � νx.F.P0 for some x, F , and P0. Moreover

we have the following sets of free names

fnpP q � fnpF q Y �pfnpP0qztxuqzbnpF q�
fnpQq � �

fnpF q Y pfnpP0qzbnpF qq�ztxu
which are equal because x R fnpF q.

SNuPar: Here P � P0 | νx.Q0 and Q � νx.pP0 | Q0q for some x, P0, and Q0.

Moreover we have the following sets of free names

fnpP q � fnpP0q Y pfnpQ0qztxuq
fnpQq � pfnpP0q Y fnpQ0qqztxu

which are equal because x R fnpP0q.

The following lemma says that structural equivalence preserves well-formedness

of processes.

Lemma 4.7.2. Let P � Q. Then P is well formed iff Q is well formed.

29

Chapter 4. Technical Details on Meta✶

Proof. Let P � Q and let P be well formed. We implicitly assume that all pro-

cesses are well formed and thus Lemma 4.7.1 is valid only for well formed processes.

But by an inspection of its proof it is easy to check the lemma does not make use

of this implicit assumption and thus it is valid even for non-well formed processes.

Thus clearly W1 and W4 are satisfied for Q by Lemma 4.7.1. Also W3 is satisfied

for Q because structural equivalence does not introduce new forms. Finally, W2 is

satisfied for Q because structural equivalence neither changes nesting of input-binders

nor it can introduce a new input-binder.

30

Chapter 5

Instantiations of Meta✶

Semantics of many process calculi is given by a rewriting system which defines

a binary rewriting relation on processes. Different calculi usually contain similar

structural rewriting rules and main differences are found in the rewriting axioms.

These axioms specify the semantics of action and other prefixes which we encode

in Meta✶ using forms. Thus instead of fixing the semantics of forms, Meta✶

provides syntax for specifying rewriting rules that give meaning to forms and also

defines how these rules yield a rewriting relation on processes.

The only thing necessary to instantiate Meta✶ to a working process calculus is

to provide a straightforward description R of its rewriting axioms. This instantiates

Meta✶ to the calculus CR with the rewriting relation
RãÝÑ. The same R is the only

thing required to instantiate Poly✶ to the type system SR for CR. Thus one obtains

for free a type system for any calculus whose rewriting rules can be described in the

Meta✶ syntax. This section describes this syntax of rule descriptions R and how

the process calculus CR is obtained.

5.1 Templates and Rewriting Rule Descriptions

Figure 5.1 presents the syntax used to describe rewriting rules. Process templates are

used to describe both left and right-hand sides of rewriting rules. Template syntax

resembles the syntax of processes except that leaves of syntax trees can be variables

in addition to names. Name, message, and process variables are used in rules at

positions of metavariables which range over arbitrary names, messages and processes

respectively. Element templates describe elements of a specific shape. Similarly form

templates describe forms, and process templates describe processes. In element

templates, name variables describe positions in an element where an arbitrary name

can occur. In contrast, a specific Meta✶ name in an element template requires the

exactly same name to appear in an element at the specified position. For example,

the form template “in å” describes all 2-length forms whose first element is name in

31

Chapter 5. Instantiations of Meta✶

x̊, ẙ P NameVar ::� å | b̊ | c̊ | � � �
m̊ P MessageVar ::� M̊ | N̊ | � � �
p̊ P ProcessVar ::� P̊ | Q̊ | R̊ | � � �
s̊ P Substitute ::� x̊ | m̊
E̊ P ElementTpl ::� x | x̊ | (x̊1, . . . , x̊k) | <m̊1, . . . , m̊k>

F̊ P FormTpl ::� E̊0 . . . E̊k

P̊ , Q̊ P ProcessTpl ::� 0 | p̊ | F̊ .P̊ | pP̊ | Q̊q | {x̊0 := s̊0, . . . , x̊k := s̊k} p̊

L̊ P Rule ::� rewrite{ P̊ ãÑ Q̊ } | active{ p̊ in P̊ }

R P RuleSet � powerfinpRuleq
Figure 5.1: Syntax of Meta✶ templates and rule descriptions.

and whose second element is an arbitrary name.

Let metavariable z̊ range over template variables, that is, name, message, and

process variables. Let metavariable Z̊ range over all template entities, that is, over

all the entities defined in Figure 5.2 except rules and rule sets. In templates, we use

the same abbreviation for ambient syntax as in processes, that is, “E̊[P̊]” stands

for “E̊[].P̊”.

Variables in templates are replaced during rule instantiation by values of ap-

propriate sorts, that is, name variables by names, message variables by messages,

and processes variables by processes. A substitution application template “{x̊0 :=

s̊0, . . . , x̊k := s̊k} p̊” describes a substitution to be applied on the right-hand side of

some rule. A single process variable template P̊ � p̊ could be as well implemented

as “P̊ � {} p̊” which would reduce the number of different grammatical cases in the

definition of process templates. However, we find it useful to separate the two cases

in order to clarify the presentation. The rewrite rules specify ordinary rewriting

rules while active rules describe rewriting contexts, that is, positions in processes

other than at top-level where rewriting rules are to be applied. For example, in Mo-

bile Ambients rewriting rules can be applied inside any ambient which is expressed

by the rule “active{ P̊ in å[̊P] }”. In contrast, the rule “active{ P̊ in a[̊P] }” where

name variable å is changed to an ordinary name a, would allow rewriting rules to

be applied only in the specific ambient with name a.

Process instantiations fills in values for variables in templates and thus they turn

process templates into processes.

Definition 5.1.1. A process instantiation P is a finite function which maps

NameVar to Namezt
u, MessageVar to Message, and ProcessVar to Process.

Application of P to P̊ , written P[P̊ ℄, instantiates template P̊ to make a process by

filling in values for variables in P̊ as assigned by P. We forbid the name “
” as

the value of some name variable to prevent distinct earlier error results from being

32

Chapter 5. Instantiations of Meta✶

rewrite{ P̊ ãÑ Q̊ } P R

P[P̊ ℄ RãÝÑ P[Q̊℄ (RRw)
active{ p̊ in P̊ } P R P

RãÝÑQpPrp̊ ÞÑ P sq[P̊ ℄ RãÝÑ pPrp̊ ÞÑ Qsq[P̊ ℄ (RAct)

P
RãÝÑQ

P | R
RãÝÑQ | R

(RPar)
P

RãÝÑQ

νx.P
RãÝÑ νx.Q

(RNu)
P 1 � P P

RãÝÑQ Q � Q1
P 1 RãÝÑQ1 (RStr)

Figure 5.2: Meta✶ rewriting relation generated by R.

treated as the same name. An instantiation P applies to templates component-

wise. The only non-trivial case is when P fills in a substitution application template

“{x̊0 := s̊0, . . . , x̊k := s̊k} p̊”. It is defined as follows.

P[{x̊0 := s̊0, . . . , x̊k := s̊k} p̊℄ � S̄pP[p̊℄q
where S � tPp̊x0q ÞÑ Pp̊s0q, . . . , Pp̊xkq ÞÑ Pp̊skqu

We suppose that P[P̊ ℄ is not defined when some variable from P̊ is not in dompPq or

when the instantiation of a substitution application construction yields an invalid

substitution which is not a function. The full definition of P[P̊ ℄ can be found in

Figure 6.2 in Section 6.3. Additional notions concerning process templates, like the

scope of a bound variable, are defined in Section 6.1.

5.2 Meta✶ Rewriting Relation

Given a rewriting rule set R, Figure 5.2 defines the rewriting relation
RãÝÑ. Rules

RPar and RNu are standard structural rules for “|” and “ν”. Another standard

rule RStr incorporates structural equivalence into the rewriting relation. Rule RRw

instantiates process templates inside a rule into processes using an arbitrary process

instantiation P. Example instances of RRw are given below in Section 5.3. We

implicitly suppose that rule RRw is used only when both processes in the rule

conclusion are properly defined. To see how RAct works let us consider the ambient

active rule “active{ P̊ in å[̊P] }” mentioned above. In this case rule RAct becomes

P
RãÝÑQpPp̊aqq[P]
RãÝÑ pPp̊aqq[Q]

for an arbitrary P which in turn becomes equivalent to the standard Mobile Ambients

rule (where x �
)
P

RãÝÑQ

x[P]
RãÝÑ x[Q]

33

Chapter 5. Instantiations of Meta✶

Additional requirements which apply to rules inside R together with reasons for

them are described in Section 6.2. Rewriting rules which satisfy the additional

conditions from Section 6.2 are called well formed rewriting rules. These conditions

are naturally satisfied by all process calculi found in the literature. Well formed

rewriting rules also preserves well-formedness of processes. All the correctness results

from this thesis are valid only for well formed rewriting rules. Basic properties of

the rewriting relation
RãÝÑ are described in Section 6.4.

5.3 Example Instantiations

Now we explain Meta✶ instantiations on examples. The following set Psync with

one rule

Psync �
rewrite{ c̊<̊M>.̊P | c̊(̊x).̊Q ãÑ P̊ | {̊x := M̊}̊Q }

(
instantiates Meta✶ to the monadic synchronous π-calculus. Monadic means that

only single names (that is, not tuples of names) are objects of communication and

synchronous means that an output action can be followed by an arbitrary continu-

ation process. A brief introduction to the π-calculus can be found in Chapter 14 of

this thesis. With this only rule from Psync, rule RRw becomes the following.

x0 �
 x1 �
 y �

x0<y>.P | x0(x).Q

PsyncãÝÝÑ P | tx ÞÑ yupQq (RRw)

In the asynchronous π-calculus, output communication actions are not allowed to

have any continuations at all. This can be expressed in Meta✶ by allowing only

the null process to be the continuation of an output action as follows.

Pasync �
rewrite{ c̊<̊M>.0 | c̊(̊x).̊Q ãÑ {̊x := M̊}̊Q }

(
The following set Amon instantiates Meta✶ to monadic synchronous Mobile

Ambients. A brief introduction to Mobile Ambients can be found in Chapter 16 of

this thesis.

Amon �
active{ P̊ in å[̊P] },

rewrite{ å[in b̊.̊P | Q̊] | b̊[̊R] ãÑ b̊[̊a[̊P | Q̊] | R̊] },

rewrite{ å[̊b[out å.̊P | Q̊] | R̊] ãÑ å[̊R] | b̊[̊P | Q̊] },

rewrite{ open å.̊P | å[̊R] ãÑ P̊ | R̊ },

rewrite{ <̊M>.̊P | (̊x).̊Q ãÑ P̊ | {̊x := M̊} Q̊ }
(

The active rule from this set was already described in the previous section. Also

note that a message variable can be instantiated to
 which reflects the fact that

even the meaningless capabilities like “in pout aq” can be communicated in standard

34

Chapter 5. Instantiations of Meta✶

Mobile Ambients.

35

Chapter 6

Technical Details on Instantiations

This chapter contains technical details related to the previous chapter. It can be

skipped for the first reading and looked up later, either the whole chapter or just

some particular part.

6.1 Scope of Variables in Templates

Here we introduce the notion of free and bound template variables and the notion of

the scope of bound variables. These are used in next Section 6.2 to specify additional

requirements on templates used in rule descriptions.

Definition 6.1.1. When F̊ contains an element template “(x̊1, . . . , x̊k)” then all

occurrences of name variables x̊1, . . ., x̊k in “F̊ .P̊” are said to be bound. Also

name variables x̊0, . . ., x̊k are said to be bound in “{x̊0 := s̊0, . . . , x̊k := s̊k} p̊”.

Only a name variable can be bound. The set fvpZ̊q of free variables, the set

bvpZ̊q of bound variables and the set fnpZ̊q of free names of a template entity Z̊ are

defined in Figure 6.1. For example, given the process template

P̊ � do(̊y).̊a[].pout b̊.̊P | {̊x := M̊} Q̊q
we have

fvpP̊ q � t̊a, b̊, M̊, P̊, Q̊u bvpP̊ q � t̊x, ẙu fnpP̊ q � tdo, [], outu
The sets of variables, free names, and type tags of process templates and rule

descriptions are defined as follows.

Definition 6.1.2. The set fvpP̊ qYbvpP̊ q of all variables of P̊ is denoted varpP̊ q.
The set fnpRq of free names of a rule set R is defined as follows.

fnpRq � tx : x P fnpP̊ q Y fnpQ̊q & rewrite{ P̊ ãÑ Q̊ } P RuYtx : x P fnpP̊ q & active{ p̊ in P̊ } P Ru
36

Chapter 6. Technical Details on Instantiations

Z̊ fvpZ̊q bvpZ̊q fnpZ̊q
x ∅ ∅ txu
x̊ tx̊u ∅ ∅
(x̊1, . . . , x̊k) ∅ tx̊1, . . . , x̊ku ∅
<m̊1, . . . , m̊k> tm̊1, . . . , m̊ku ∅ ∅

E̊0 . . . E̊k

�k

i�0 fvpE̊iq �k

i�0 bvpE̊iq �k

i�0 fnpE̊iq
0 ∅ ∅ ∅
p̊ tp̊u ∅ ∅

F̊ .P̊ fvpF̊ q Y pfvpP̊ qzbvpF̊ qq bvpF̊ q Y bvpP̊ q fnpF̊ q Y fnpP̊ q
P̊ | Q̊ fvpP̊ q Y fvpQ̊q bvpP̊ q Y bvpQ̊q fnpP̊ q Y fnpQ̊q
{x̊0 := s̊0, . . . , x̊k := s̊k} p̊ t̊s1, . . . , s̊k, p̊u tx̊1, . . . , x̊ku ∅

Figure 6.1: Free names and free/bound variables of Meta✶ template entities.

Let tagspP̊ q � fnpP̊ q and tagspRq � fnpRq.

The following definition defines the notion of the scope of a bound name variable

and some useful relations.

Definition 6.1.3. We say that an occurrence of z̊ in P̊ is under the scope of x̊

when P̊ contains either

(U1) F̊ .Q̊ with x̊ P bvpF̊ q and with the given occurrence of z̊ in Q̊, or

(U2) {. . . x̊ := s̊ . . .} p̊ with p̊ � z̊ being the given occurrence of z̊.

Write P̊ $D x̊ Í z̊ when there is an occurrence of z̊ in P̊ under the scope of x̊.

Write P̊ $� x̊ Í z̊ when all occurrences of z̊ in P̊ are under the scope of x̊.

Note that z̊ can be a bound variable and thus, for example, “(̊x).(̊y).0 $D x̊ Í ẙ”.

6.2 Additional Requirements on Rewriting Rules

It is desirable to forbid rules and inferences that would cause a name capture, release

of a bound name, unleash a nested input-binders, or that would introduce a nesting

of previously not nested input-binders. To ensure that the aboves do not happen

we need additional syntactic restrictions on rewriting rules. This section describes

these conditions and their purpose. In the previous Meta✶ [MW05, MW04a] these

conditions were stated only informally which was not found satisfactory to carry out

the proofs presented in this thesis. There were also some inadequacies, for example,

the rule “rewrite{ (̊x).0 ãÑ x̊.0 }” that can produce a non-well formed (scoped)

process was accidentally allowed.

The following defines additional restrictions that apply to the left-hand side

template in a rewriting rule. The purpose of these conditions is explained in the

consequent Remark 6.2.2

37

Chapter 6. Technical Details on Instantiations

Definition 6.2.1. We say that P̊ is a well formed lhs-template when P̊ satis-

fies the following properties.

(L1) tagspP̊ q � SpecialTag

(L2) fvpP̊ q X bvpP̊ q � ∅

(L3) any message and process variable occurs at most once in P̊

(L4) every x̊ P bvpP̊ q occurs exactly once in P̊

(L5) when P̊ $D x̊ Í z̊ then P̊ $� x̊ Í z̊

(L6) P̊ does not contain {x̊0 := s̊0, . . . , x̊k := s̊k} p̊

Remark 6.2.2. Condition L1 allows only type tags from SpecialTag to be used as

tags of free names specifically mentioned in P̊ . The reason for this was explained

in Section 3.2 and it is further discussed in Remark 6.2.4 below. Condition L2

prevents mixing of free and bound name variables. A process template that does

not satisfy L2 would not instantiate to a well formed process. Condition L3 says that

a reduction rule can not depend on the fact that two entire messages or processes are

identical. On the other hand, a reduction rule can depend on the fact that the same

single name occurs in a different positions in a process. There are several reasons

for condition L3. Mainly, comparing of whole messages or processes is not necessary

for describing rewriting rules of process calculi found in the literature. Moreover

implementation of this comparison would be time expansive. Condition L4 firstly

disallows form templates like “(̊x, x̊)” which would not instantiate to a well formed

process. Secondly, it forbids templates like “(̊x).̊P | (̊x).̊Q” on the left-hand side

of a rule because the right-hand side would then be able to construct a process

like “(̊x).p̊P | Q̊q” thus causing a scope mixture. Condition L5 says that whenever

some variable z̊ occurs under the scope of some x̊ then all other occurrences of z̊

have to be found under the scope of the same x̊ as well. For example, the template

“(̊x).̊a.0 | (̊y).̊a.0” is banned in order to avoid possible name captures. Note that

P̊ $� x̊ Í z̊ holds when z̊ does not occur in P̊ at all and thus the opposite implication

of L5 is not required. Finally, condition L6 forbids the use of the substitution

application construction on the left-hand side of a rule. This construction is intended

to be part of the right-hand side of a rule only. Implementation of rules with

substitution on the left-hand side would be complicated and it is not necessary for

our intentions.

Similarly the following restrictions apply to the right-hand side template in a

rewriting rule. The well-formedness of the right-hand side template depends on the

corresponding left-hand side from the rewriting rule. This is because we need , for

example, to ensure that the right-hand side of some rule does not invent a variable

that is not mentioned by the rule left hand side.

38

Chapter 6. Technical Details on Instantiations

Definition 6.2.3. We say that Q̊ is a well formed rhs-template w.r.t. a well

formed lhs-template P̊ when Q̊ satisfies the following properties.

(R1) tagspQ̊q � SpecialTag

(R2) fvpQ̊q � fvpP̊ q
(R3) bvpQ̊q � bvpP̊ q
(R4) every x̊ P bvpQ̊q occurs exactly once in Q̊

(R5) when Q̊ $D x̊ Í z̊ then Q̊ $� x̊ Í z̊

(R6) for z̊ P varpQ̊q and any x̊ holds that P̊ $� x̊ Í z̊ iff Q̊ $� x̊ Í z̊

(R7) when tx̊, ẙu � bvpF̊1q for F̊1 in Q̊ then tx̊, ẙu � bvpF̊0q for some F̊0 in P̊

Remark 6.2.4. Condition R1 ensures that the right-hand side of some rule does

not invent a name with some type tag that is not in SpecialTag. Consider two names

a and b which are not in SpecialTag and the following non-well formed rule.

R � trewrite{ a.0 ãÑ b.0 }u
Using R we can prove “a.0

RãÝÑb.0”. From this we prove inference with a name capture,

like “νb.a.0
RãÝÑ νb.b.0”, or with a name release, like “νa.a.0

RãÝÑ νa.b.0”. That is why

the above rule has to be forbidden as long as a and b are not in SpecialTag. When a

and b are in SpecialTag then condition W4 ensures that the processes participating

in the above problematic inferences are not well formed.

Conditions R2 and R3 ensures that the right-hand side does not contain a vari-

able that is not mentioned on the left-hand side and that it does not mix free and

bound variables. Mixing of free and bound variables might cause name capture or

name release. Note that R1, R2, and L2 implies that fvpQ̊qXbvpQ̊q � ∅. Condition

R4 forbids creation of a non-well formed process using form templates like “(̊x, x̊)”.

It also forbids rewriting rules like

rewrite{ (̊y).̊y.(̊x).̊P ãÑ (̊y).{̊x := ẙ}̊P }

where the bound variable ẙ is used to form a substitution which is applied under the

binder of ẙ. Rewriting rules like this could probably be allowed but here we prefer

a more restrictive condition to simplify proofs because rules like the above are not

required to describe process calculi from the literature. Condition R4 also forbids

rules with right-hand sides like “(̊x).̊P| (̊x).̊P” which can again probably be allowed

(with an appropriate left-hand side) but we do not find it necessary.

Condition R5 ensures that every variable occurs under the scope of the same

binders thus preventing name captures and name releases. For example “̊P | (̊x).̊P”

is not a well formed rhs-template for any lhs-template because there is not guarantee

39

Chapter 6. Technical Details on Instantiations

that (the instantiation of) P̊ does not contain a free occurrence of (the instantiation

of) x̊. Condition R6 is the main condition that prevents name captures and name

releases. It says that every variable has to occur under the same scopes on both

sides of a rule. For example, the following rules are banned

rewrite{ (̊x).̊P ãÑ P̊ }

rewrite{ P̊ | (̊x).̊Q ãÑ (̊x).̊P }

rewrite{ (̊x).̊P | (̊y).̊Q ãÑ (̊x, ẙ).p̊P | Q̊q }
because they could cause name capture or name release, or they could produce a

non-well formed process. The equivalence in condition R6 is required to hold only

when z̊ P varpQ̊q because the right-hand side is allowed to forget some variable z̊

that is mentioned by the left-hand side and then Q̊ $� x̊ Í z̊ would trivially hold

for any x̊. To simplify proofs, condition R6 is again little bit more restrictive than

necessary and thus, for example, the following rules are forbidden but they could

probably be allowed.

rewrite{ (̊x, ẙ).̊P ãÑ (̊x).(̊y).̊Pq }
rewrite{ (̊x).(̊y).̊P ãÑ (̊x, ẙ).̊P }

Note that condition R6 does not forbid the rule

rewrite{ (̊x).0 | (̊y).0 ãÑ (̊x, ẙ).0 }

which can produce a non-well scoped process and thus has to be forbidden. The

problem here is that there is no variable under the scope of binders which would

allow us to apply R6. Condition R7 is introduced specifically to solve this problem.

It says that bound names on the right-hand side which are inside a single form

template have to come from a single form template on the left-hand side. The only

purpose of condition R7 is that a non-well formed process which would violate W3

is not constructed.

The following defines well formed rewriting rule sets.

Definition 6.2.5. The rule rewrite{ P̊ ãÑ Q̊ } is said to be well formed when P̊

is a well formed lhs-template and Q̊ is a well formed rhs-template w.r.t. P̊ . The rule

active{ p̊ in P̊ } is said to be well formed when P̊ is a well formed lhs-template

and p̊ P varpP̊ q. The rule set R is called a well formed rule set, when all its rules

are well formed.

The following defines well lhs-formed element and form templates which are

templates that can legally occur as a part of some well formed lhs-template. Note

that, for example, an element template “<̊M, M̊>” can never occur as a part of a well

40

Chapter 6. Technical Details on Instantiations

P[x℄ � x P[(x̊1, . . . , x̊k)℄ � (Pp̊x1q, . . . , Pp̊xkq)
P[̊x℄ � Pp̊xq P[<m̊1, . . . , m̊k>℄ � <Ppm̊1q, . . . , Ppm̊kq>
P[m̊℄ � Ppm̊q P[E̊0 . . . E̊k℄ � P[E̊0℄ . . . P[E̊k℄
P[0℄ � 0 P[F̊ .P̊ ℄ � P[F̊ ℄.P[P̊ ℄
P[p̊℄ � Ppp̊q P[P̊ | Q̊℄ � P[P̊ ℄ | P[Q̊℄
P[{x̊0 := s̊0, . . . , x̊k := s̊k} p̊℄ � S̄pP[p̊℄q where S � tpPp̊xiq ÞÑ Pp̊siqq : i P t0, . . . , kuu

Figure 6.2: Instantiation of Meta✶ templates.

form lhs-template because it violates L3. It can, however, legally occur on the right

side of some rule. These two notions are used later in the proofs in Chapter 12.

Definition 6.2.6. An element template E̊ (resp. form template F̊) is well lhs-

formed when E̊.0 (resp. F̊ .0) is a well formed lhs-template.

6.3 Properties of Process Instantiations

The full definition of application P[Z̊℄ of a process instantiation P to various Meta✶

process entities Z̊ is defined Figure 6.2. Next, we prove some properties of well

formed templates and some properties of template instantiations which are to be

used later by various proofs.

The following lemma says that, in well formed rewriting rules, all the variables

bound by a substitution application construction on the right-hand side of a rule

have to come from a single form template on the left-hand side.

Lemma 6.3.1. Let rewrite{ P̊ ãÑ Q̊ } be well formed. When Q̊ contains {x̊0 :=

s̊0, . . . , x̊k := s̊k} then there is F̊ in P̊ such that tx̊0, . . . , x̊ku � bvpF̊ q.
Proof. Let Q̊ contains {x̊0 := s̊0, . . . , x̊k := s̊k} p̊. By R2 and R3 we obtain that

p̊ P fvpP̊ q and tx̊0, . . . , x̊ku � bvpP̊ q. We see that Q̊ $D x̊i Í p̊ for all i P t0, . . . , ku.
Thus by R5 and R6 and by above we obtain P̊ $D x̊i Í p̊ for all i P t0, . . . , ku. Now

when some x̊i and x̊j does not occur in the same form template then we have either

P̊ $D x̊i Í x̊j or P̊ $D x̊j Í x̊i because p̊ occurs in P̊ under the scope of both x̊i and

x̊j. But this leads to a contradiction because neither Q̊ $� x̊i Í x̊j nor Q̊ $� x̊j Í x̊i

which are required by L5 and R6 holds. Hence x̊i and x̊j has to occur in the same

form template.

Let us suppose that “P̊ $D x̊ Í p̊”, that is, that p̊ occurs in P̊ under the scope

of some bound variable x̊. The following lemma says that when x̊ is instantiated to

some name aι then type tag ι can not be input-bound in (the instantiation of) p̊ as

long as P̊ is (instantiated to) a well formed process.

41

Chapter 6. Technical Details on Instantiations

Lemma 6.3.2. Let P̊ be a well formed lhs-template such that P̊ $D x̊ Í p̊. Let P[P̊ ℄
be defined and well formed. Then P[̊x℄ R itagspP[p̊℄q.
Proof. Let x � P[̊x℄ and P � P[P̊ ℄ and P0 � P[p̊℄. Now, because P̊ $D x̊ Í p̊

and P is defined, there is F with x P itagspF q and there is P1 such that P has a

subprocess F.P1 and P1 has a subprocess P0. Thus x P itagspF.P1q. Now F.P1 is

well formed because P is well formed. Thus x R itagspP1q by W2 for F.P1. Hence

the claim because itagspP0q � itagspP1q.

The following remark and lemma describes a property of process instantiations

closely related to the one described by the previous lemma.

Remark 6.3.3. Consider again the situation from the previous lemma when a well

formed lhs-template contains a process variable p̊ under the scope of some input

bound variable x̊ (P̊ $D x̊ Í p̊) which is instantiated to some name x with type tag

ι. The following lemma says that when (the instantiation of) p̊ contains a free name

y with type tag ι then it has to hold that x � y. An instantiation without this

property would not instantiate the template to a well formed process. To clarify

this issue let us consider the following template instantiation P which instantiates

P̊ to a non-well formed process.

P̊ � (̊x).̊P P � t̊x ÞÑ aa, P̊ ÞÑ <za>.0u
We see that “P[P̊ ℄ � (aa).<za>.0” violates W1. Suppose that we have the above P̊

and some P
1 such that P

1p̊xq � aι. Then the following lemma says that, when P
1[P̊ ℄

is well formed then the only free name with type tag ι in P
1p̊Pq is aι. This property

will be important later for the subject reduction property and it is further discussed

Remark 8.2.1 and Remark 8.7.1.

Lemma 6.3.4. Let P̊ be a well formed lhs-template such that P̊ $D x̊ Í p̊. Let P[P̊ ℄
be defined and well formed and let y P fnpP[p̊℄q. Then P[̊x℄ � y implies P[̊x℄ � y.

Proof. Let x � P[̊x℄ and P � P[P̊ ℄ and P0 � P[p̊℄. Now, because P̊ $D x̊ Í p̊ and

P is defined, there is F with x P bvpF q and there is P1 such that P has a subprocess

F.P1 and P1 has a subprocess P0. Thus x P itagspF.P1q. Take y P fnpP0q such that

x � y. To prove the lemma we need to show x � y. Now F.P1 is well formed

because P is well formed. Thus y R ftagspF.P0q as well as y R ntagspF.P0q because

tags of free and ν-bound names do not overlap with tags of input-bound names by

W1 for F.P0. Thus y is input-bound in F.P0. Moreover by W2 for F.P0 we see

that y R itagspP0q. Thus the only possibility is that y P fnpP0q because y P ntagspP0q
would imply y P ntagspF.P0q. But now it has to be y P bvpF q because y P itagspF.P0q.
Thus x � y by W3 for F and F.P0.

42

Chapter 6. Technical Details on Instantiations

6.4 Properties of Meta✶ Rewriting Relation

In this section we prove some basic properties of Meta✶ rewriting relation, mainly

that
RãÝÑ preserves well-formedness provided R is well formed. Although this property

is not necessarily required for subject reduction it is a desirable property, for exam-

ple, because it makes the system more intuitive and its behavior more expectable.

Without this property we might, for example, expect different behavior of processes

which differ only by renaming of names

The following lemma is the first step to prove that the rewriting relation preserves

well-formedness of processes. It states that the rewriting relation can not invent

new bound tags and that it can introduce only names from fnpRq or
. The proof

is technical and it mainly uses conditions L1-6 and R1-7. Below we do not suppose

that Q is well formed because we want to use this lemma to prove its well-formedness.

Lemma 6.4.1. Let P and R be well formed. Then P
RãÝÑQ implies

(1) itagspQq � itagspP q,
(2) ntagspQq � ntagspP q, and

(3) fnpQq � fnpP q Y fnpRq Y t
u.
Proof. By induction on the derivation of P

RãÝÑQ. Let P
RãÝÑQ be derived by

(RRw): There is some rewrite{ P̊ ãÑ Q̊ } P R and there is some P such that P �
P[P̊ ℄ and Q � P[Q̊℄. Let us prove the three claims separately.

(1) Let ι P itagspQq. At least one of the following cases applies.

(a) The input-binder of ι in Q comes from some leaf of template Q̊ which

is a standalone process variable p̊ (that is, not a substitution opera-

tor). Thus we have p̊ P fvpQ̊q and ι P itagspPpp̊qq. By R3 we obtain

x̊ P fvpP̊ q. Hence ι P itagspP q.
(b) The input-binder of ι in Q comes from some leaf of template Q̊

which is a substitution operator {x̊0 := s̊0, . . . , x̊k := s̊k} p̊. In this

case we have ι P itagspP[{x̊0 := s̊0, . . . , x̊k := s̊k} p̊℄q and p̊ P fvpQ̊q.
Let S � tP[̊x0℄ ÞÑ P[̊s0℄, . . . P[̊xk℄ ÞÑ P[̊sk℄u. Hence we have ι P
itagspS̄pPpp̊qqq. Thus we obtain ι P itagspPpp̊qq by Lemma 4.6.2.

From p̊ P fvpQ̊q we obtain p̊ P fvpP̊ q by R2. Hence ι P itagspP q.
(c) The input-binder of ι in Q comes from some form template in tem-

plate Q̊. Thus there is some x̊ P bvpQ̊q such that Pp̊xq � ι. By R3

we obtain x̊ P bvpP̊ q. Hence ι P itagspP q.
(2) Let ι P ntagspQq. At least one of the following cases applies.

(a) The ν-binder of ι in Q comes from some leaf of template Q̊ which is a

standalone process variable p̊ (that is not a substitution operator). In

43

Chapter 6. Technical Details on Instantiations

this case we have ι P ntagspPpp̊qq and p̊ P fvpQ̊q. We obtain p̊ P fvpP̊ q
by R2. Hence ι P ntagspP q.

(b) The ν-binder of ι in Q comes from some leaf of template Q̊ which is a

substitution operator {x̊0:=s̊0, . . . , x̊k:=s̊k} p̊. In this case we have ι P
ntagspP[{x̊0 := s̊0, . . . , x̊k := s̊k} p̊℄q and p̊ P fvpQ̊q. Let S � tP[̊x0℄ ÞÑ
P[̊s0℄, . . . P[̊xk℄ ÞÑ P[̊sk℄u. Hence we have ι P ntagspS̄pPpp̊qqq. Thus

we obtain ι P ntagspPpp̊qq by Lemma 4.6.2. From p̊ P fvpQ̊q we obtain

p̊ P fvpP̊ q by R2. Hence ι P ntagspP q.
(3) Let x P fnpQq. At least one of the following cases applies.

(a) It is x P fnpQ̊q. Thus clearly x P fnpRq and the claim holds.

(b) The occurrence of x that contributes to fnpQq comes from the value

of some variable z̊ in template P̊ which is not under the substitution

operator. Clearly it has to be z̊ P fvpQ̊q (because R2, R3, and L2).

We have x P fnpPp̊zqq We can prove that Q̊ $D ẙ Í z̊ implies Pp̊yq � x

for any ẙ because the occurrence of x in Pp̊zq contributes to fnpQq and

thus can not occur under a binder which bind x. Rule R5 ensures

that this property is satisfied for all occurrences of z̊ in P̊ . Using R6

we prove that P̊ $D ẙ Í z̊ implies Pp̊yq � x for any ẙ as well. Thus

x P fnpPp̊zqq implies x P fnpP q. Hence the claim.

(c) The occurrence of x that contributes to fnpQq comes from some leaf

of template Q̊ which is a substitution operator {x̊0 := s̊0, . . . , x̊k :=

s̊k} p̊. In this case we have x P fnpP[{x̊0 := s̊0, . . . , x̊k := s̊k} p̊℄q and

p̊ P fvpQ̊q. Let S � tP[̊x0℄ ÞÑ P[̊s0℄, . . . P[̊xk℄ ÞÑ P[̊sk℄u. Hence we

have x P fnpS̄pPpp̊qqq. Thus we obtain x P fnpPpp̊qq Y fnpSq Y t
u by

Lemma 4.6.2.

i. Let x P fnpPpp̊qq. We shall prove that the (only) occurrence of

p̊ in P̊ is not under the scope of any binder which binds x. Let

P̊ $D ẙ Í p̊. Thus Q̊ $� ẙ Í p̊ by L5 and R6. We need to

prove that P[̊y℄ � x. There are two possibilities. Firstly, when

ẙ � x̊i for some i P t0, . . . , ku. We know that x P fnpS̄pPpp̊qqq
and thus it has to be x R dompSq. Hence Pp̊yq � Pp̊xiq � x.

Secondly, when ẙ � x̊i for any i P t0, . . . , ku. Then the whole

substitution operator {x̊0 := s̊0, . . . , x̊k := s̊k} p̊ in Q̊ is under the

scope of ẙ and thus clearly Pp̊yq � x because the occurrence of x

in P[{x̊0 := s̊0, . . . , x̊k := s̊k} p̊℄ contributes to fnpQq. Hence x P
fnpP q.

ii. Let x P fnpSq. Hence there is some i P t0, . . . , ku such that

x P fnpPp̊siqq. Rule R4 implies that s̊i P fvpQ̊q (because if s̊i

was bound in Q̊ then there would have to be a second occurrence

of s̊i in Q̊ inside some binder which is forbidden by R4). Now

44

Chapter 6. Technical Details on Instantiations

when P̊ $D ẙ Í s̊i then we have Q̊ $� ẙ Í s̊i by L5 and R6.

But then Pp̊yq � x because we know that an occurrence of x

in P[{x̊0 := s̊0, . . . , x̊k := s̊k} p̊℄ contributes to fnpQq and thus can

occur under a binder that binds x. Thus we have proved that

any occurrence of s̊i in P̊ is not under a binder that binds (after

instantiation) x. Thus x P fnpP q. Hence the claim.

iii. Let x �
. Then the claim x P fnpP qY fnpRq Y t
u clearly holds.

(RAct): There is some active{ p̊ in P̊ } P R and there are some P0, Q0, and P

such that P � pPrp̊ ÞÑ P0sq[P̊ ℄ and Q � pPrp̊ ÞÑ Q0sq[P̊ ℄ and P0
RãÝÑ Q0. Let

P
P � Prp̊ ÞÑ P0s and P

Q � Prp̊ ÞÑ Q0s. That is, we have P � P
P [P̊ ℄ and

Q � P
Q[P̊ ℄. Let us prove the three claims separately.

(1) Let ι P itagspQq. At least one of the following two cases applies.

(a) The input-binder of ι in Q comes from some leaf of template P̊ which

has to be a process variable p̊0 by L6. Thus ι P itagspPQpp̊0qq and

p̊0 P fvpP̊ q. Now it is easy to prove ι P itagspPP pp̊0qq using the

induction hypothesis when p̊ � p̊0. Hence the claim ι P itagspP q
because p̊0 P fvpP̊ q.

(b) The input-binder of ι in Q comes from some form template in P̊ . In

this case there is some name variable x̊ P bvpP̊ q such that Pp̊xq � ι.

Clearly P
Qp̊xq � Pp̊xq � P

P p̊xq. Hence the claim ι P itagspP q because

x̊ P bvpP̊ q.
(2) When ι P ntagspQq then it has to be the case that ι P ntagspPQpp̊0qq for

some p̊0 P fvpP̊ q because a form template can not introduce a ν-binder.

Now it is easy to prove ι P ntagspPP pp̊0qq using the induction hypothesis

when p̊ � p̊0. Hence the claim because p̊0 P fvpP̊ q.
(3) Let x P fnpQq. When x P fnpP̊ q then x P fnpRq and thus the claim

clearly holds. Let us suppose x R fnpP̊ q. Thus the occurrence of x in Q

which contributes to fnpQq comes from the value of some variable z̊ in

template P̊ . Clearly z̊ has to be a free variable, that is, z̊ P fvpP̊ q, and

we also know by L6 that z̊ is not a process variable under a substitution

operator ({x̊0 := s̊0, . . . , x̊k := s̊k}). The variable z̊ can, however, be a

standalone process variable. Thus we know x P fnpPQp̊zqq. Now it is easy

to prove that x P fnpPP p̊zqq Y fnpRq Y t
u using the induction hypothesis

when z̊ � p̊. We can prove that P̊ $D ẙ Í z̊ implies P
Qp̊yq � x for

any ẙ because the occurrence of x in P
Qp̊zq contributes to fnpQq and thus

can not occur under a binder which bind x. Rule L5 ensures that this

property is satisfied for all occurrences of z̊ in P̊ . Clearly P̊ $D ẙ Í z̊

implies P
P p̊yq � x for any ẙ as well because P

P and P
Q agree on values

of name variables. Thus x P fnpPP p̊zqq implies x P fnpP q. Above we

45

Chapter 6. Technical Details on Instantiations

have proved x P fnpPP p̊zqq Y fnpRq Y t
u which thus implies the claim

x P fnpP q Y fnpRq Y t
u.
(RPar): All the three claims follow directly from the induction hypothesis.

(RNu): There are x, P0, and Q0 such that P � νx.P0 and Q � νx.Q0 and P0
RãÝÑQ0.

Let us prove the three claims separately.

(1) Clearly itagspP q � itagspP0q and itagspQq � itagspQ0q. By the induction

hypothesis we obtain that itagspP0q � itagspQ0q. Hence the claim.

(2) Let ι � x. Clearly ntagspP q � ntagspP0qYtιu and ntagspQq � ntagspQ0qYtιu. By the induction hypothesis we obtain that itagspP0q � itagspQ0q.
Hence the claim.

(3) We see that fnpP q � fnpP0qztxu and fnpQq � fnpQ0qztxu. Thus fnpQq �
fnpQ0q. By the induction hypothesis we obtain that fnpQ0q � fnpP0q Y
fnpRq Y t
u. Now whenever y P fnpQq then y � x and y P fnpQ0q. Thus

y P fnpP0q Y fnpRq Y t
u. Hence y P fnpP q Y fnpRq Y t
u because y � x.

(RStr): All the three claims follow directly from the induction hypothesis applying

Lemma 4.7.1.

The following proves that with a well formed rule set a well formed process can

rewrite only to a well formed process. In this proposition we, of course, do not

implicitly suppose that Q is well formed because it is the claim to be proved.

Proposition 6.4.2 (Well-formedness preservation). Let P and R be well

formed and let P
RãÝÑQ. Then Q is well formed.

Proof. Let P and R be well formed and let P
RãÝÑ Q. Firstly, by Lemma 6.4.1 we

obtain the following.

itagspQq � itagspP q ntagspQq � ntagspP q ftagspQq � ftagspP q Y tagspRq Y t
u
Thus clearly W4 is satisfied for Q. Let us prove W1 for Q, that is, that itagspQq
and ntagspQq Y ftagspQq are disjoint. By W1 for P we know that itagspP q and

ntagspP q Y ftagspP q are disjoint. Thus it is enough to prove that tagspRq Y t
u is

disjoint with itagspP q. But it is easy to see because fnpRq Y t
u � SpecialTag by

well-formedness of R and SpecialTag is disjoint with itagspP q by W4 for P . Hence

W1 holds for Q.

Now let us prove W2 and W3 for Q by induction on the derivation of P
RãÝÑQ.

Let P
RãÝÑQ be derived by

RRw: There is some rewrite{ P̊ ãÑQ̊ } P R and there is some P such that P � P[P̊ ℄
and Q � P[Q̊℄. Firstly, it is easy to see that W3 for Q follows from R7 for Q̊

46

Chapter 6. Technical Details on Instantiations

and W3 for P . Let us prove W2 for Q. Suppose that Q contains two nested

input-binders such that the outer input-binder binds type tag ι0 and the inner

input-binder bounds ι1. To prove that W3 holds for Q it is enough to prove

that ι0 � ι1. We distinguish the following two possibilities.

(1) The outer binder is introduced by a form template from Q̊. Thus there is

some x̊ P bvpQ̊q such that Pp̊xq � ι0. Moreover there is some z̊ P varpQ̊q
such that ι1 P itagspPp̊zqq. This covers the following three cases when (a)

z̊ is a bound name variable, (b) z̊ is a standalone process variable, or (c)

z̊ is a process variable under substitution (because substitution application

does not change input-binders by Lemma 4.6.2). In all the cases we have

that Q̊ $D x̊ Í z̊. Thus by R5 and R6 we obtain that P̊ $� x̊ Í z̊. Both

x̊ and z̊ have to occur in P̊ by R2 and R3 and thus we have P̊ $D x̊ Í z̊.

Hence the same two binders which bind ι0 and ι1 are nested in P as well

and thus ι0 � ι1.

(2) Both input binders come from value of P for some process variable p̊ in P̊ .

This covers both cases when p̊ is a standalone process variable or when p̊

is under substitution application (as above we use Lemma 4.6.2 to prove

that substitution application does not change input-binders). Hence the

nested input binders occur in Ppp̊q for some p̊ P fvpQ̊q. By R2 we obtain

p̊ P fvpP̊ q and thus Ppp̊q is a subprocess of P and hence well formed by

Lemma 4.4.1. Thus clearly ι0 � ι1.

RAct: There is some active{ p̊ in P̊ } P R and there are some P0, Q0, and P such

that P � pPrp̊ ÞÑ P0sq[P̊ ℄ and Q � pPrp̊ ÞÑ Q0sq[P̊ ℄ and P0
RãÝÑ Q0. Now P

is well formed and thus P0 is well formed by Lemma 4.4.1. By the induction

hypothesis we have that Q0 is well formed. Now W2 for Q is implied by W2

for Q0 and by W2 for P together with itagspQ0q � itagspP0q proved above.

Finally, W3 for Q follows from W3 for Q0 and P because Q does not contain

any additional forms not contained in Q0 and P .

RPar: Thus P � P0 | R0 and Q � Q0 | R0 for some P0, Q0, and R0 such that

P0
RãÝÑQ0. Now P0 is well scoped by Lemma 4.4.1 and thus Q0 is well scoped by

the induction hypothesis. Thus W2 and W3 for Q follows from W2 and W3

for Q0 and R0 because parallel composition can introduce neither additional

nesting of input-binders nor any additional form (“additional” means “not

present in Q0 and R0”).

RNu: Follows directly from the induction hypothesis using Lemma 4.4.1.

RStr: Follows directly from the induction hypothesis using Lemma 4.7.2.

47

Chapter 7

The Generic Type System Poly✶

Poly✶ provides a generic notion of shape predicates which are rooted oriented

graphs that represent sets of Meta✶ processes. A shape predicate Π describes

possible shapes of process syntax trees. The set of processes described by Π is

called the meaning of Π. All instantiations of Poly✶ use the same syntax of shape

predicates and thus the meaning of a shape predicate is not necessarily closed under

rewriting. In Section 7.6, we shall define shape R-types for every rule description R

to be a subset of shape predicates which is closed under rewritings with R.

Many interesting properties of processes can be expressed as properties of shape

R-types. How to use shape types to reason about specific properties of processes

in specific process calculi is demonstrated in Part III of this thesis which contains

many examples.

7.1 Types of Basic Meta✶ Entities

For all kinds of basic (non-process) Meta✶ entities (sequences, messages, elements,

and forms) we define corresponding types (sequence types, message types, element

types, and form types). Each type represents a set of entities of the appropriate

kind, for example, a message type represents a set of messages. Let ζ range over the

above type entities. When ζ represents Z then we say that Z matches ζ or that Z

has type ζ .

Type tags can be seen as types of names, ι represents all names of the shape

aι. The syntax and semantics of other basic type entities is presented in the top

part of Figure 7.1. The meaning of type entities is defined using the binary relation$ Z : ζ which expresses that Z has type ζ . The sequence type “ι0 . . . ιk” describes

any Meta✶ sequence of the length k whose i-th name has the type tag ιi.

Sequence type sets and message types are both types of Meta✶ messages. The

difference is that message types allow us to recognize single name messages and

composed messages directly from their types. For example, we can see $ xx : txu
48

Chapter 7. The Generic Type System Poly✶

Syntax of Poly✶ basic type entities:

σ P SequenceType ::� ι0 . . . ιk
Σ P SequenceTypeSet � powerfinpSequenceTypeq
µ P MessageType ::� Σ* | ι
ε P ElementType ::� ι | (ι1, . . . , ιk) | <µ1, . . . , µk>

ϕ P FormType ::� ε0 . . . εk

Matching of basic Meta✶ entities against type entities:$ aι : ι
(TName)

�i ¤ k $ xi : ιi$ x0 . . . xk : ι0 . . . ιk
(TSeq)

$ s : σ σ P Σ$ s : Σ
(TSet)$ 0 : Σ

(TEmp)
$ M0 : Σ $ M1 : Σ$ M0.M1 : Σ

(TCmp)
$ M : Σ M R Name$ M : Σ*

(TStar)�i : 0 i ¤ k $ xi : ιi$ (x1, . . . , xk) : (ι1, . . . , ιk)
(TIn)

�i : 0 i ¤ k $ Mi : µi$ <M1, . . . , Mk> : <µ1, . . . , µk>
(TOut)�i ¤ k $ Ei : εi$ E0 . . . Ek : ε0 . . . εk

(TEls)

Figure 7.1: Syntax of Poly✶ shape predicates.

but & xx : txu*, and thus whenever $ M : Σ* then M must be a composed message.

This allows us to predict behavior of substitution application only from types of

messages in its range. For example, a substitution which contain only single names

in its range can not produce a syntactic error “
”. A sequence type set Σ describes

all messages whose sequence parts are described by some sequence type from Σ

(allowing repetitions). For example, we have $ pin a.in baq.x:tin a, xu and$ x:tin a, xu
and also $ outx.inx:tin a, xu. On the other hand we obtain& x:tin a, xu* as mentioned

above and thus the only message type that describes xx is x.

Element and form types simply resemble the syntax of elements and forms. All

input- and output-element types and form types describe only entities of the same

length as the type. Note that rule TSeq is a special case of rule TEls and thus

TSeq could be omitted.

Let itagspϕq be the set of all input-bound type tags of ϕ, that is, those type tags

that occur inside some input-element type (ι1, . . . , ιk). Let vζw be the meaning of

ζ , that is, the set of all Meta✶ entities that match ζ . Formal definitions of these

two notions and description of their basic properties can be found in Section 8.1.

49

Chapter 7. The Generic Type System Poly✶

Application of a type substitution to sequence types::�pι0 . . . ιkq � #
Σ if k � 0 & �pι0q � Σ*tp�̄ι0 . . . �̄ιkqu otherwise

Application of a type substitution to message types:9�ι � #�pιq if ι P domp�q
ι otherwise

9�ptσ1, . . . , σku*q � p:�σ1 Y � � � Y :�σkq*
Application of a type substitution to element types and form types:�̄ι � $'&'%�pιq if �pιq P TypeTag

ι if ι R domp�q
 otherwise

�̄<µ1, . . . , µk> � < 9�µ1, . . . , 9�µk>�̄(ι1, . . . , ιk) � (ι1, . . . , ιk)�̄pε0 . . . εkq � p�̄ε0q . . . p�̄εkq
Figure 7.2: Application of a type substitution to Poly✶ entities.

7.2 Type Substitutions

In this section we introduce type substitutions which are similar to ordinary Meta✶

substitutions but they apply to type entities. Type substitutions can be seen as

types of Meta✶ substitutions, each type substitution representing a set of Meta✶

substitutions. Type substitutions are used in shape predicates as labels of flow edges

which are in turn used to select shape types out of shape predicates. Flow edges are

described below in Section 7.4.

Definition 7.2.1. A type substitution, denoted �, is a finite function from type

tags to message types.

Application of � to various type entities, defined in Figure 7.2, is designed to cor-

respond to applications of Meta✶ substitutions described by �. Application of �
to a sequence type σ is written :�σ. It maps sequence types to sequence type sets.

Application of � to a message type µ is written 9�µ. It maps message types to mes-

sage types. Finally, application of � to an element or form type ζ is written �̄ζ . It

maps element types and form types in turn to element types and form types. The

result of �̄ι is always a type tag. Three different substitution application operators:�, 9�, and �̄ are necessary because a type substitution is applied in different ways

to type tags inside sequence types, to single type tag message types, and to single

type tag element types. For example, with � � tx ÞÑ tin au*u we have :�x � tin au
and 9�x � tin au* and �̄x �
. To illustrate this further let us consider the following

form type “x<x, tx, in xu*>” which contains x at four different positions. Application

of the above � to this form type is as follows.�̄px<x, tx, in xu*>q �
<tin au*, 9�ptx, in xu*q> �
<tin au*, tin a, in
u*>
50

Chapter 7. The Generic Type System Poly✶

Finally, note that names inside input-element types are left intact, as in the case

Meta✶ substitutions, and thus �̄p(x)q � (x).

The following defines Meta✶ substitutions described by a type substitution �,

that is, the meaning of �.

Definition 7.2.2. Write $ S : � when

(1) there is a bijection from dompSq to domp�q that maps aι to ι, and

(2) for any aι P dompSq it holds that $ Spaιq : �pιq.

Point (1) can equivalently be stated as

(1’) dompSq � domp�q and different names from dompSq have different type tags.

Thus, for example, neither S0 � txx ÞÑ aa, yx ÞÑ bbu nor S1 � txx ÞÑ aa, yx ÞÑ bau
has the type � � tx ÞÑ au even though S1 becomes � when we forget basic name

parts of names. In fact both S0 and S1 have no type at all because xx and xy are

different names but have the same type tag. Hence for $ S : � to hold there has

to be for every ι P domp�q exactly one aι P dompSq (for some a). This gives us

an unambiguous correspondence between assignments (pairs) in S and �. Point (2)

says that messages in the range of S match the corresponding message types in the

range of �.

Application of a type substitution to different type entities might seem compli-

cated but it is carefully designed to reach the following property. When � describes

S ($ S : �) and ϕ describes F ($ F : ϕ) then the application of � to ϕ describes the

application of S to F ($ S̄F : �̄ϕ). We call this property type substitution correctness

and its proof and further discussions are found in Section 8.2

7.3 Poly✶ Shape Predicates

A shape predicate is a rooted finite oriented graph with edges labeled by form types.

The formal syntax of shape predicates is presented in the top part of Figure 7.3.

A shape predicate 〈Γ, χ〉 is the shape graph Γ together with the root χ. A shape

graph can contain loops and cycles. A shape predicate describes a set of process

syntax trees. A process P matches a shape predicate Π when P ’s syntax tree is

a “subgraph” of Π. Shape predicates look alike processes drawn as graphs where

parallel composition (“|”) corresponds to branching and prefixing (“.”) correspond

to sequencing of edges. For example, the shape predicate Π � 〈Γ, R〉 where

R

Γ � A B

C

op
en

a in b

out b

51

Chapter 7. The Generic Type System Poly✶

Syntax of Poly✶ shape predicates:

χ P Node ::� X | Y | Z | � � �
η P Edge ::� χ0

ϕÝÑ χ1 | χ0 χ1
�

Γ P ShapeGraph � powerfinpEdgeq
Π P ShapePredicate ::� 〈Γ, χ〉

Matching Meta✶ processes against shape predicates:$ 0 : Π
(TNul)

$ F : ϕ pχ ϕÝÑ χ0q P Γ $ P0 : 〈Γ, χ0〉$ F.P0 : 〈Γ, χ〉
(TFrm)$ P : Π $ Q : Π$ P | Q : Π

(TPar)
$ P : Π$ νx.P : Π

(TNu)
$ P : Π$!P : Π

(TRep)

Figure 7.3: Syntax and Semantics of Poly✶ shape predicates.

represents the process

open a.0 | in b.out b.0

Names of nodes are just opaque identifiers and the meaning of a shape predicate is

given by edge labels. The same edge in a shape graph can be used repeatedly or not

at all when matching parallel processes and thus all the following processes match

Π.

open a.0 popen a.0 | open a.0q in b.pout b.0 | out b.0q
On the other hand “in b.in b.0” does not match Π because the possibility to reuse

edges applies only to parallel composition. When matching processes against shape

predicates we ignore replication (“!”), name restriction (“ν”), and basic name parts

of names. Thus the following processes are also represented by the above Π.

!open xa.0 νa.popen a.0 | !open a.0q in xb.pout yb.0 | out zb.0q
From the above we can see that when some P matches Π then also “P|P” matches Π.

Thus it is reasonable to ignore replication because a replicated process “!P” behaves

as finitely many copies of P in parallel. Name restriction can be ignored because type

tags act as handles of bound names and are preserved under α-conversion. Because

type entities are build only from type tags, different ν-bound names with the same

type tag are handled as the same name by the type analysis. This can cause some

over-approximation in types but it does not influence analysis correctness. Handling

of name restriction in shape types is further discussed in Section 9.1.

The syntax of shape predicates in Figure 7.3 also defines a second kind of edges

labeled by type substitution which are called flow edges. Edges labeled by form

types are called form edges. Flow edges do not influence the meaning of a shape

predicate and they are described in Section 7.4.

52

Chapter 7. The Generic Type System Poly✶

The typing relation $ P : Π is the smallest relation that satisfies the rules from

the bottom part of Figure 7.3. The null process 0 matches any shape predicate.

Rule TFrm says that in order to match F.P0 with 〈Γ, χ〉 we need to find some edgepχ ϕÝÑ χ0q P Γ outgoing from χ such that F matches ϕ and then we need to match

P0 with 〈Γ, χ0〉. Other typing rules are straightforward. The meaning of shape

predicates and the subtyping relation are defined as follows.

Definition 7.3.1. The meaning vΠw of Π is defined as vΠw � tP : p$ P : Πqu.
Write Π0 ¤ Π1 when vΠ0w � vΠ1w.

Shape graphs can contain loops and cycles and thus a single shape predicate,

which is a finite object, can describe processes of an arbitrary depth. Consider the

shape predicate Π1 � 〈Γ1, R〉 where Γ1 is the following graph.

R

Γ1 � A C

B

in x

a[
]

open
a

(x)

a[]

It can describe an arbitrarily deep nesting of the ambient a like “a[a[a[� � �]]]”.

The meaning of a shape predicate does not necessarily be closed under rewriting with

rules R. For an example, let us consider the rewriting rule set Amon from Section 5.3

which instantiates Meta✶ to monadic Mobile Ambients. Then the above Π1 is not

closed under rewriting with Amon because we have

a[(x).0] | open a.0
AmonãÝÝÑ (x).0

It is easy to see that the left-hand side process matches Π1 (recall that x[P] stand

for x[].P) but the right-hand side “(x).0” does not. Section 7.6 describes how to

recognize shape predicates closed under rewriting with R.

7.4 Flow Edges and Flow Closed Graphs

A shape graph also contains flow edges of the shape χ0 χ1
�

which are used in the

type inference algorithm and in recognizing shape predicates closed under rewriting.

Flow edges are labeled by type substitutions and their presence in a shape graphs

does not affect the meaning of a shape predicate. The intended meaning of a flow

edge pχ0 χ1
� q P Γ is to describe possible movements of processes that involve

substitution application as follows. Let pχ0 χ1
� q P Γ. Then we want $ S : �

and $ P : 〈Γ, χ0〉 to imply $ S̄P : 〈Γ, χ1〉. This intended meaning is of course not

satisfied for an arbitrary flow edge added to an arbitrary shape graph. The flow

53

Chapter 7. The Generic Type System Poly✶

edge pχ0 χ1
� q P Γ can be seen as a request to copy the content of the node χ0 (that

is, the subgraph containing all the edges reachable from χ0 by an oriented path)

to node χ1 and apply the substitution � to the copied content. In this section we

define the class of flow-closed shape predicates which satisfy the intended meaning

of flow edges.

We could define flow-closed shape predicates simply to be the predicates which

satisfy the above intended meaning of flow edges. But instead, we provide a con-

structive and easier to verify definition and we prove it to imply the above intended

meaning.

Definition 7.4.1. A shape graph Γ is said to be flow-closed iff whenever it con-

tains χ
ϕÝÑ χ0 and χ χ1�

such that itagspϕq X domp�q � ∅ then it holds that

(F1) if ϕ � ι for some ι and �pιq � Σ* then tχ1 σÝÑ χ1 : σ P Σu Y tχ0 χ1� u � Γ,

(F2) otherwise there is χ1
0 such that tχ0 χ1

0
�

, χ1 �̄ϕÝÑ χ1
0u � Γ.

The shape predicate 〈Γ, χ〉 is flow-closed iff Γ is.

Conditions F1 and F2 can be visualized by the following diagrams where the blue

edges are those whose existence is required by the corresponding condition. Let Σ

from case F1 be Σ � tσ1, . . . , σku.
χ χ1
χ0

�
ι � σk

...

σ1

(F1)

χ χ1
χ0 χ1

0

�
ϕ �̄ϕ�

(F2)

To explain these conditions let us consider some Γ with pχ ϕÝÑ χ0q P Γ and pχ χ1� q P
Γ such that itagspϕq X domp�q � ∅ as in the definition. Rule F1 applies when ϕ is

some type tag ι and �pιq � Σ* for some Σ. How F1 works will be described shortly.

Rule F2 applies when either (a) ϕ � ε1 . . . εk with k ¡ 1, or (b) k � 1 and ε1 is some

type tag ι such that and �pιq is not a starred message type (of the shape Σ1*). Case

(b) covers two possibilities, (b1) that �pιq is a type tag and (b2) that ι R domp�q.
Thus case (b) simply describes the situation when �̄ι �
.

Let us describe rule F2 first on the following example.

Example 7.4.2. Let “ϕ � in x” and � � tx ÞÑ au. Let Γ be the graph from the

diagram for F2 above, that is, the following graph.

Γ � tχ in xÝÝÑ χ0, χ χ1�
, χ1 in aÝÝÑ χ1

0, χ0 χ1
0

� u
54

Chapter 7. The Generic Type System Poly✶

Now it is clear that, for example, the process “ P � in x.0” matches 〈Γ, χ〉. Moreover

let us take S � txx ÞÑ aau so that we have $ S : �. The intended meaning of the

flow edge pχ χ1� q P Γ says that “ S̄P � in a” has to match 〈Γ, χ1〉. That is why the

existence of the first blue edge pχ1 �̄ϕÝÑ χ1
0q P Γ for some χ1

0 is required in case F2. In

this example the required edge is pχ1 in aÝÝÑ χ1
0q P Γ which ensures that “ S̄P � in a” is

in the meaning of 〈Γ, χ1〉. The second blue edge pχ0 χ1
0

� q P Γ in case F2 is required

to propagate the request for new edges throughout the graph so that the intended

meaning of pχ χ1� q P Γ is satisfied for all processes. �
Now let us demonstrate F1 on a simple example.

Example 7.4.3. Let ϕ � x and � � tx ÞÑ tin a, out au*u. Let Γ be the graph from

the diagram for F1 above, that is, the following graph.

Γ � tχ xÝÑ χ0, χ χ1�
, χ1 in aÝÝÑ χ1, χ1 out aÝÝÝÑ χ1, χ0 χ1� u

Now P � xx.0 matches 〈Γ, χ〉. Let us take S � txx ÞÑ in a.out a.in au so that

we have $ S : �. The intended meaning of the flow edge pχ χ1� q P Γ says that

“ S̄pxx.0q � Spxxq�0 � in a.out a.in a.0” has to match 〈Γ, χ1〉. It is easy to check that

it is true because the loops χ1 in aÝÝÑ χ1 and χ1 out aÝÝÝÑ χ1 are present in Γ. Recall that the

message type tin a, out au* describes any message with arbitrary many repetitions

of the sequence “ in a” and that is why the required form edges in case F1 are loops.

The second flow edge pχ0 χ1� q P Γ is again required to propagate the request for

new edges so that the intended meaning of pχ χ1� q P Γ is satisfied also for processes

of the shape ax.P0 with a non-null continuation P0. �
An important special case of flow edges is when � � ∅. The intended meaning ofpχ χ1∅ q P Γ then says that when $ P : 〈Γ, χ〉 then it has to hold that $ P : 〈Γ, χ1〉.

In order words, it says that 〈Γ, χ〉 ¤ 〈Γ, χ1〉. We therefore speak of χ χ1∅
as a

subtyping edge and we write simply χ χ1.
Finally, note that Definition 7.4.1 is constructive in the sense that it provides

the algorithm to check whether or not a shape predicate is flow-closed. It does not,

however, give us an algorithm to compute the edges necessary to make an arbitrary

graph flow-closed. Mere adding of edges which are requested by the definition would

not give us a terminating algorithm which is further discussed in Section 11.4 and

Section 11.5.

Further discussion of flow closure including some alternative implementation

choices can be found in Section 8.4. The property that the intended meaning of flow

edges is satisfied in flow-closed graphs is formulated and proved in Section 8.5.

55

Chapter 7. The Generic Type System Poly✶

7.5 Closed Shape Predicates

The meaning of a shape predicate is not necessarily closed under rewriting with

arbitrary rewriting rules. Thus in order to use shape predicates as process types, it

is desirable to find a decidable and efficient procedure to recognize shape predicates

closed under rewriting. In this section we demonstrate the complexity of this task.

We call a shape predicate R-closed when its meaning is closed under rewriting

with R. In the next section we shall define shape R-types to be a subclass of all

R-closed shape predicates which can be recognized by a simple closure test.

Definition 7.5.1. Let R be a rule set. A shape predicate Π is called R-closed,

written R (closed Π, iff $ P : Π and P
RãÝÑQ imply $ Q : Π.

It is not always easy to recognize R-closed shape predicates as demonstrated by

the following example. Those shape predicates that can not be proved R-closed by

the simple closure test from the next section will not be considered R-types. That

is to say that not every R-closed shape predicate is necessarily an R-type.

Example 7.5.2. Let us consider the shape predicate Π � 〈Γ, R〉 where Γ is the

following graph.

R

C1 C0 B0 B1 B2 B3 B4

A

<tin au*>in a

in a

out b

(x)

x in a x out b

Note that the following holds.$ in a.in a.in a.out b.0 : Π but & in a.in a.out b.0 : Π

We can see that a process of the shape “ in a. � � � .in a.out b.0” matches Π iff “in a”

is repeated odd number of times. When we consider the monadic Mobile Ambi-

ents rewriting rules Amon from Section 5.3 we can verify that Π is actually Amon-

closed. Only the Mobile Ambients communication rule can apply to a process P in

the meaning of Π because no ambient boundaries are mentioned in Π. Now it is easy

to see that whenever the communication rule introduces some process of the shape

“ in a. � � � .in a.out b.0” then “ in a” has to be repeated odd number of times because

there are two occurrences of “ x” on the path from B0 to B4. It is not trivial, however,

to find an efficient algorithmic way to recognize that Π and all examples of this kind

are Amon-closed. Later (see also the last paragraph of Section 10.4) we will see that

Π is Amon-closed but not an Amon-type. �
56

Chapter 7. The Generic Type System Poly✶

Instantitating basic templates to types:�(aι) � ι �((x̊1, . . . , x̊k)) � (�p̊x1q, . . . , �p̊xkq)�(̊x) � �p̊xq �(<m̊1, . . . , m̊k>) � <�pm̊1q, . . . , �pm̊kq>�(m̊) � �pm̊q �(E̊0 . . . E̊k) � �(E̊0) . . . �(E̊k)
Relating templates and shape graphs (s ranges over tL, Ru):�pp̊q � χ� (L p̊ : 〈Γ, χ〉

(CVar)
p�pp̊q χ

∅ q P Γ� (R p̊ : 〈Γ, χ〉
(CFlow)p�pp̊q χ

t...,�p̊xiqÞÑ�p̊siq,...u q P Γ� (R {. . . , x̊i := s̊i, . . .} p̊ : 〈Γ, χ〉
(CSub) � (s 0 : Π

(CNul)� (s P̊0 : Π � (s P̊1 : Π� (s P̊0 | P̊1 : Π
(CPar)

pχ �(F̊)ÝÝÑ χ0q P Γ � (s P̊0 : 〈Γ, χ0〉� (s F̊ .P̊0 : 〈Γ, χ〉
(CFrm)

Figure 7.4: Instantiating templates to shape graphs.

7.6 Shape Types and Closure Test

In the previous section we have demonstrated that it is not always easy to recognize

that a shape predicate is R-closed. However, it is desirable that types can be

effectively recognized. That is why in this section we define the class of R-types to

be an easier to recognize subclass of all R-closed shape predicates.

We introduce a simple closure test which determines R-types. The closure test

can be briefly described as follows. Apply the rewriting rules R directly to all active

positions in a shape graph and check whether all the edges required by rules R are

already present in the graph. In the rest of this section we describe how rules are

applied to a graph, what are active positions in a graph, and what are the edges

required by the application of a rule to a graph.

In order to apply rewriting rules directly to graphs we need to establish a connec-

tion between process templates and shape graphs. For this purpose we define type

instantiations � (the symbol � is a black board bold π) which connect templates with

shape predicates just like process instantiations P connect templates with processes.

Definition 7.6.1. A type instantiation � is a finite function mapping NameVar

to TypeTagzt
u, MessageVar to MessageType, and ProcessVar to Node.

Application of a template instantiation � to element and form templates, written�(Z̊), is defined in the top part of Figure 7.4. It fills in values of corresponding

kinds for variables just like process instantiations do. Thus � instantiates element

templates to element types and form templates to form types. Note that application

of � to templates forgets the basic name part of names contained in templates

57

Chapter 7. The Generic Type System Poly✶

(�(aι) � ι). As a result only the type tags of special names mentioned in rewriting

rules are relevant for the type analysis.

In the case of processes, we know that a process instantiation P and a process

template P̊ uniquely determine the process P[P̊ ℄. Note that a type instantiation �
maps process variables to nodes but no graph to which these nodes belong has been

mentioned yet. Instead of extending � so that � and P̊ uniquely determine a shape

predicate we define the relation � (L P̊ : Π which we read as “P̊ can be instantiated

by � to Π”. One � can instantiate the same P̊ to different shape predicates. The

nodes which are values of � for process variables are supposed to be nodes of Π.

The following defines a straightforward relationship between process and type

instantiations. A process instantiation P respects a type instantiation � when both

are defined on the same variables and the values of P have appropriate types given

by �.
Definition 7.6.2. A process instantiation P respects a type instantiation � on Γ,

written Γ $ P : �, iff all the following hold.

(1) dompPq � domp�q
(2) $ Pp̊xq : �p̊xq for all x̊ P dompPq
(3) $ Ppm̊q : �pm̊q for all m̊ P dompPq
(4) $ Ppp̊q : 〈Γ, �pp̊q〉 for all p̊ P dompPq

The relation � (L P̊ : Π, which is used for rule left-hand sides, is defined to be

the smallest relation which satisfies the rules in the second part of Figure 7.4. The

same figure defines also a similar relation � (R P̊ : Π which is used for rule right-

hand sides and will be described shortly. The relation � (L P̊ : Π means there is a

process instantiation P which respects � on the graph of Π such that P[P̊ ℄ matches

Π. In other words, � (L P̊ : Π means that P̊ can be instantiated to some process P

that matches Π. Let us demonstrate this on the following example.

Example 7.6.3. Let us consider the left-hand side “P̊ � c̊<̊a>.0 | c̊(̊x).̊Q” of the

communication rule from the asynchronous π-calculus

Pasync �
rewrite{ c̊<̊a>.0 | c̊(̊x).̊Q ãÑ {̊x := å} Q̊ }

(
from Section 5.3. We can see that

P � t̊c ÞÑ c, å ÞÑ c, x̊ ÞÑ x, Q̊ ÞÑ x(y).y<x>.0u
instantiates P̊ to “P � c<c>.0|c(x).x(y).y<x>.0” which matches the shape predicate

58

Chapter 7. The Generic Type System Poly✶

Π0 � 〈Γ0, R〉 with the following shape graph.

R

Γ0 � X0 Y0

Y1

Y2

c<c> c(x)

x(y)

y<x>

Now it is easy to check that � (L P̊ : Π0 where� � t̊c ÞÑ c, å ÞÑ c, x̊ ÞÑ x, Q̊ ÞÑ Y0u
We can also directly see that � (L P̊ : Π0 holds just by comparing the syntax tree of

P̊ with the shape graph Π0 starting at the root node. Thus the relation � (L P̊ : Π

allows us to recognize that P̊ can be instantiated to some process P of the type Π

without constructing P . �
When P̊ is a left-hand side of some rewriting rule then � (L P̊ : Π implies that

the rewriting rule can be applied to at least one process matching Π. The relation� (L P̊ : Π does not hold for templates which contain the substitution application

template {x̊0 := s̊0, . . . , x̊k := s̊k} because the relation is supposed to be used only

with left-hand sides of well formed rules.

The relation � (R Q̊ : Π is similar to � (L P̊ : Π. Briefly, the design goal of

the relation � (R Q̊ : Π is that when P respects � on the shape graph of Π then

the instantiation P[Q̊℄ of Q̊ has the type Π. This property holds provided that

Π is flow-closed. The relation � (R Q̊ : Π holds also for templates which contain

the substitution application template {x̊0 := s̊0, . . . , x̊k := s̊k} and it is used with

right-hand sides of rules. This will be described shortly.

Technically, the difference between � (L P̊ : Π and � (R Q̊ : Π is in the handling

of process variables p̊. In the case of the first relation, rule CVar says that � (L

p̊ : 〈Γ, χ〉 simply holds only when �pp̊q � χ. On the other hand, from rule CFlow

we see that for � (R p̊ : 〈Γ, χ〉 to hold there has to be a subtyping edge from�pp̊q to χ. It suggests that some process originally matching Γ at node �pp̊q was

moved by a rewriting rule to the new position corresponding to χ. Rule CSub is a

generalized form of CFlow and it describes process movements which additionally

involve substitution application.

The following example demonstrates the use of the relation � (R Q̊ : Π.

Example 7.6.4. Let us take the right-hand side of the Pasync communication rule

“Q̊ � {̊x := å} Q̊”. Let the type instantiation “ � � t̊c ÞÑ c, å ÞÑ c, x̊ ÞÑ x, Q̊ ÞÑ Y0u”
59

Chapter 7. The Generic Type System Poly✶

and graph Γ0 be as in Example 7.6.3. We can see that � *R Q̊ : 〈Γ0, R〉 because there

is no flow edge from Y0 to R. Let us construct the shape predicate Π1 � 〈Γ1, R〉 with

the required edge added, where Γ1 is as follows.

R

Γ1 � X0 Y0

Y1

Y2

c<c> c(x)tx ÞÑ
cu

x(y)

y<x>

Now � (R Q̊ : Π1 holds. The new flow edge describes that the communication can

apply a substitution of type � � tx ÞÑ cu to some process that matches 〈Γ1, Y0〉 and

move the resulting process to the root position R. The design goal of � (R Q̊ : Π1,

that the process P[Q̊℄ matches Π1 when P respects � on Γ1, is not satisfied because

Π1 is not flow-closed. With the process instantiation “ P � t̊c ÞÑ c, å ÞÑ c, x̊ ÞÑ
x, Q̊ ÞÑ x(y).y<x>.0u” from Example 7.6.3 we can indeed see that P[Q̊℄ � c(y).y<c>.0

does not match Π1. We will conclude this example below in Example 7.6.10. �
The relations � (L P̊ : χ and � (R Q̊ : χ are used to apply a rewriting rule

rewrite{ P̊ ãÑ Q̊ } P R directly to a shape graph Γ at node χ as follows. Firstly,

we find all possible type instantiations � such that � (L P̊ : 〈Γ, χ〉. There are only

finitely many �’s like that with domp�q � varpP̊ q (see Section 11.4.1 for an effective

algorithm). Secondly, we check that � (R Q̊ : 〈Γ, χ〉. We have seen above that for� (R Q̊ : 〈Γ, χ〉 to hold an existence of some additional edges which are not in Γ

might be required. In this way application of a rule to a shape graph can insist on

existence of new edges. We call a shape graph Γ locally R-closed at χ when the

edges required by application of any rewriting rule from R to 〈Γ, χ〉 are already

present in 〈Γ, χ〉.

Some formal properties of type instantiations are formulated and proved in Sec-

tion 8.6.

Definition 7.6.5. The shape graph Γ is called locally R-closed at χ iff for any

rewrite{ P̊ ãÑ Q̊ } P R it holds that � (L P̊ : 〈Γ, χ〉 implies � (R Q̊ : 〈Γ, χ〉.

We will shortly define R-types to be flow-closed shape predicates which are

locally R-closed at every node where rewriting rules can be applied. What remains

is to determine this set of active nodes where rewriting rules need to be applied. This

set is given by the active rules from R. For the rule sets without any active rule,

like for example Pasync above, there is only one active position in a shape predicate,

60

Chapter 7. The Generic Type System Poly✶

that is, the root node. For every node χ and Γ we define the set ActiveSuccRpΓ, χq
of active successors of χ in Γ with respect to the active rules in R as follows.

Definition 7.6.6. The set ActiveSuccRpΓ, χq of active successors of χ in Γ

w.r.t. R is defined to be

ActiveSuccRpΓ, χq � t�pp̊q : active{ p̊ in P̊ } P R & � (L P̊ : 〈Γ, χ〉u.
Using the above definition it is easy to determine the set of nodes of a shape

predicate Π where rewriting rules R need to be applied. It is the least node set that

contains the root of Π and that is closed for active successors.

Definition 7.6.7. Let Π � 〈Γ, χ〉. The set ActiveNodeRpΠq of active nodes of

Π w.r.t. R is the least node set Ξ such that

(1) χ P Ξ, and

(2) for every χ0 P Ξ it holds that ActiveSuccRpΓ, χ0q � Ξ.

The following example demonstrates the definition of active nodes.

Example 7.6.8. Let us consider the monadic Mobile Ambients rules Amon from

Section 5.3 and the shape predicate Π � 〈Γ, R〉 where Γ is the following graph.

R

Γ � A B0 C0

B1 C1

BX BY BZ

a[]
b[]

c[]

a[]in b

a[]
b[]

c[]

The only rule important for this example is active{ P̊ in å[̊P] } P Amon. It is easy

to compute the set ActiveNodeAmon
pΠq � tR, A, B0, C0, C1u. Note that it does not

contain BX, BY, and BZ because node B1 is not active. On the other hand we can see

that ActiveNodeAmon
p〈Γ, B1〉q � tB1, BX, BY, BZu. �

Now we can finally define R-types to be flow-closed shape predicates locally

R-closed at all active nodes.

Definition 7.6.9 (R-type). A shape predicate Π � 〈Γ, χ〉 is an R-type, written

R (type Π, iff Γ is flow-closed and also locally R-closed at every χ P ActiveNodeRpΠq.
When R (type Π and $ P : Π we say that Π is an R-type of P .

Now we can conclude the π-calculus examples 7.6.3 and 7.6.4 which demonstrated

local closure.

61

Chapter 7. The Generic Type System Poly✶

Example 7.6.10. Let us consider the shape predicate Π2 � 〈Γ, R〉 where Γ2 is below.

R

Γ2 � X0 Y0

Z0 Y1

Z1 Y2

c<c> c(x)tx ÞÑ
cu

x(y)

y<x>

c(y)
ty ÞÑcu

y<c>

tx ÞÑcutx ÞÑcuty ÞÑ
cu

The shape predicate Π2 is obtained from Π1 (from Example 7.6.4) by adding the

blue edges. We can see that Π2 is an Pasync-type. It can be constructed from Π1 as

follows. At first we need to make Π1 flow-closed and this can be done by adding four

new edges R
c(y)ÝÝÑ Z0, Z0

y<c>ÝÝÑ Z1, Y1 Z0
tx ÞÑcu

, and Y2 Z1
tx ÞÑcu

. This makes Π1

flow-closed but it is no longer locally Pasync-closed at R because the new edge labeled

with “c(y)” can interact with the one labeled with “c<c>”. Hence the remaining

edges are added to make the shape predicate an Pasync-type. We can, for example,

see that the meaning of Π2 contains all the following processes.

!c<c>.0 | c(x).x(y).y<x>.0
PasyncãÝÝÝÑ !c<c>.0 | c(y).y<c>.0

PasyncãÝÝÝÑ !c<c>.0

The above definition gives us the algorithm to verify whether a given shape

predicate is an R-type. It does not give us, however, an algorithm to complete an

arbitrary shape predicate to an R-type. Chapter 11 describes the type inference

algorithm which computes an R-type of P for any R and P .

Subject reduction says that the meaning of an R-type is closed under rewriting

with R, that is, that an R-type is R-closed. The proof is found in Section 8.7.

Theorem 7.6.11 (Subject reduction). Every R-type is R-closed.

7.7 Spatial Polymorphism

In this section we describe spatial polymorphism which was briefly mentioned in

Section 1.5. Spatial polymorphism, first described in the PolyA system, can be

encountered in analysis systems for process calculi which place processes in a spatial

structure like for example the ambient hierarchy in Mobile Ambients. Type systems

for Mobile Ambients usually restrict the possible content that an ambient can hold,

for example, they restrict communication actions or capabilities that can be executed

inside the ambient. Sometimes it is reasonable to allow the same ambient to hold

different content when it is found on different positions in the spatial hierarchy.

Spatial polymorphism is the ability of an analysis system to describe this behavior.

62

Chapter 7. The Generic Type System Poly✶

MA R MB

A PA P0 PB B

P1

<a, c> <b, tin cu*>
a[]

open p|
(x) |
out x |
<c> |
out c |
in a |
a[]

�1a
p[]

p[
]

in a|
<c>

∅

(d, m)

�a �b

p[]

in d|
<m>

�a �b

p[]

in b|
<tin cu*> ∅

b[]

open p |
(x) |
x |
<tin cu*>|
in c |
in b |
b[]

�1
b

p[]

�a � td ÞÑ a, m ÞÑ cu �b � td ÞÑ b, m ÞÑ <tin cu*>u�1a � tx ÞÑ cu �1b � tx ÞÑ <tin cu*>u
Figure 7.5: Spatial polymorphism on the example of a messenger ambient.

A typical example in Mobile Ambients is a messenger ambient which delivers

a message to a given destination ambient. Let us consider the following Mobile

Ambients process.

(d, m).p[in d.<m>.0]

This process receives the name d of a destination ambient and a message m to be

delivered, and creates the packet ambient p which will deliver and transmit the

message. As the message is re-transmitted inside the ambient p the destination

ambient d is expected to open it using “open p”. Now the content allowed inside

ambient p depends on its destination d. The delivered message m should have the

type that is expected by the destination d and thus we can not possibly restrict the

content of ambient p before we know the destination d.

The following example shows the above messenger process in action. The mes-

senger process delivers the message c to ambient a and also the message “in c” to

ambient b.
!(d, m).p[in d.<m>.0] |

<a, c>.0 | a[open p.(x).out x.0] |

<b, in c>.0 | b[open p.(x).x.0]

An Amon-type of the above process is shown in Figure 7.5. Edges with the same

source and destination are shown as one edge with a label that joins the labels of

individual edges using “|”. Some flow edges which are not crucial are omitted in the

graph in order to improve readability. We can see that the type proves, for example,

63

Chapter 7. The Generic Type System Poly✶

that the ambient p can never transmit the message <c> when p is inside b but it

can transmit this message when p is inside a. Thus we can use the type to prove

that the delivered messages have the right type, that is, the type expected by the

destination ambient (the ambient a expects a name while the ambient b expects a

capability sequence).

7.8 The in{open Anomaly

By the name “in{open anomaly” we refer to an over-approximation that happens

in shape types for Mobile Ambients and similar systems which contain the in and

open capabilities. The problem can be simply described on the process “a[in a.0]”

considered together with Amon Mobile Ambients rules. This process is inert in

Mobile Ambients and we would like to describe it simply by the shape predicate

“Π0 � 〈tR a[]ÝÝÑ A0, A0
in aÝÝÑ A1u, R〉”. Unfortunately it turns out that Π0 is not

an Amon-type because Π0 has to also describe the process “!a[!in a.0]” because

replication is described implicitly in shape types. This replicated process is, however,

no longer inert and it can evolve to a process with arbitrarily many nested copies of

a like “a[a[a[� � �]]]”. Thus any shape type of “a[in a.0]” has to contain the loop

or cycle of edges labeled with “a[]”. One possible Amon-type of the above process

is the following (with the root R).

R

A0

A1

a[]

a[]

in a

The same kind of over-approximation is encountered in a very common situation

where an ambient a enters ambient b and in the next step b opens a. For example,

the best shape Amon-type for the process1“a[in b.0] | b[open a.0]” looks as follows

(unimportant flow edges are omitted).

R

A0 B0

A1 B1 B2

a[] b[]

a[]

in bin b open a

b[]

Basically, no shape Amon-type of “a[in b.0] | b[open a.0]” can avoid the over-

approximation caused by the loop B0
b[]ÝÝÑ B0 from the same reason as above. That

1This example process motivates the name of the “in/open” anomaly.

64

Chapter 7. The Generic Type System Poly✶

is, because the type has to describe also the process “!a[!in b.0] | !b[open a.0]”.

The “in/open” anomaly was firstly described by Amtoft and Wells [AW02] in

the system which motivates Poly✶. One possible solution to deal with the anomaly

would be to equip edges in shape graphs with natural numbers (extended with ω

for infinity) which would determine how many times a single edge in a type can

be used when matching a process. Although this counting would eliminate over-

approximation in the case of the above process “a[in a.0]”, it would not completely

eliminate over-approximation in the case of “a[in b.0] | b[open a.0]”. To demon-

strate this let us consider even a simpler process “a[in b.0] | b[0]”. Let us equip

edges in shape graphs with natural number superscripts with the meaning described

above and let us try to close the shape predicate with root R and the following shape

graph. tpR a[]ÝÝÑ A1q1, pA1 in bÝÝÑ A2q1, pR b[]ÝÝÑ B1q1u
The above is the smallest shape predicate that matches “a[in b.0]|b[0]”. Now the

in rule can be applied and it moves ambient a into b. The shape graph changes to

the following. tpR a[]ÝÝÑ A1q1, pA1 in bÝÝÑ A2q1, pR b[]ÝÝÑ B1q1, pB1 a[]ÝÝÑ B2q1u
At this point counting helped us to recognize that the “in b” capability has been

consumed by the rule application and thus there is no edge labeled by “in b” out-

going from B2. However there is no indication in the shape graph that the in rule

has already been applied. The new shape predicate can also match the process

“a[in b.0] | b[a[0]]” and thus we need to apply the in rule again which increases

the index of pB1 a[]ÝÝÑ B2q to 2. The situation repeats again and finally we end up

with the shape predicate with root R and the following shape graph.tpR a[]ÝÝÑ A1q1, pA1 in bÝÝÑ A2q1, pR b[]ÝÝÑ B1q1, pB1 a[]ÝÝÑ B2qωu
This shape predicate is the best shape type of “a[in b.0] | b[0]” and thus we see

that even counting has not eliminated the over-approximation because of the lack

of temporal information in shape graphs.

65

Chapter 8

Technical Details on Poly✶ and

Subject Reduction

This chapter contains technical details related to the previous chapter. It can be

skipped for the first reading and looked up later,

either the whole chapter or just some particular part.

8.1 Properties of Basic Poly✶ Types

Figure 8.1 defines sets of free and input-bound type tags of Poly✶ type entities.

Next we define meaning of basic Poly✶ type entities. Moreover we define a sub-

typing relation on type entities and we prove its basic properties.

Definition 8.1.1. The meaning v�w of Poly✶ type entities is defined as follows.vιw � tx : p$ x : ιqu vσw � ts : p$ s : σqu vΣw � tM : p$ M : Σquvµw � tM : p$ M : µqu vεw � tE : p$ E : εqu vϕw � tF : p$ F : ϕqu
Definition 8.1.2. The subtyping relation on Poly✶ type entities ζ is defined

as ζ0 ¤ ζ1 iff vζ0w � vζ1w where ζ range over ι, σ, Σ, µ, ε, and ϕ.

The ordering ¤ is well founded for all basic type entities, that is, for any ζ1 there

is only finitely many types ζ0 such that ζ0 ¤ ζ1. This will not be true for subtyping

on shape predicates which is introduced later. For any σ0 and σ1 we can see that

σ0 ¤ σ1 holds if and only if σ0 � σ1. The same holds for any basic type entities that

do not contain any sequence type set Σ (including the empty set).

Now we prove basic properties of the subtyping relation on basic Poly✶ type

entities. Additional properties about the correspondence of the subtyping relation

and type substitutions are formulated and proved in Section 8.3. At first we prove a

close correspondence between subtyping relation on sequence type sets and starred

message types of the shape Σ*.

66

Chapter 8. Technical Details on Poly✶ and Subject Reduction

ftagspι0 . . . ιkq � tι0, . . . , ιku itagspι0 . . . ιkq � ∅

ftagspΣq � �
σPΣ ftagspσq itagspΣq � ∅

ftagspιq � tιu itagspιq � ∅

ftagspΣ*q � �
σPΣ ftagspσq itagspΣ*q � ∅

ftagsp(ι1, . . . , ιk)q � ∅ itagsp(ι1, . . . , ιk)q � tι1, . . . , ιku
ftagsp<µ1, . . . , µk>q � �k

i�1 ftagspµiq itagsp<µ1, . . . , µk>q � ∅

ftagspε0 . . . εkq � �k

i�0 ftagspεiq itagspε0 . . . εkq � �k

i�0 itagspεiq
ftagspχ0

ϕÝÑ χ1q � ftagspϕq itagspχ0
ϕÝÑ χ1q � itagspϕq

ftagspχ0 χ1
� q � domp�q Y�

µPrngp�q ftagspµq itagspχ0 χ1
� q � ∅

ftagspΓq � �
ηPΓ ftagspηq itagspΓq � �

ηPΓ itagspηq
ftagsp〈Γ, χ〉q � ftagspΓq itagsp〈Γ, χ〉q � itagspΓq

Figure 8.1: Free and (input-) bound type tags of Poly✶ type entities.

Lemma 8.1.3. The following holds.

Σ ¤ Σ1 iff Σ* ¤ Σ1* iff Σ � Σ1
Proof. We know that vΣ0*w � pvΣ0wzNameq for any Σ0 and thus it is clear that

Σ ¤ Σ1 implies Σ* ¤ Σ1*. Let us prove the opposite implication. Let Σ* ¤ Σ1* and

let $ M : Σ. We need to prove $ M : Σ1. When M R Name then $ M : Σ* and by

the assumption $ M : Σ1* and thus $ M : Σ1. When M � x P Name we know that$ x.x : Σ and thus $ x.x : Σ1* and $ x.x : Σ1 as above. But this implies the claim$ x : Σ1.
Now it is enough to prove that Σ ¤ Σ1 iff Σ � Σ1. Let us prove the “ñ”

implication. Let Σ ¤ Σ1 and let σ P Σ. There is s such that $ s :σ and thus $ s : Σ.

By the assumption we obtain $ s : Σ1 which implies that there is some σ1 such that$ s : σ1 and σ1 P Σ1. It is easy to see that $ s : σ and $ s : σ1 imply that σ � σ1 and

thus σ P Σ1. To prove the opposite “ð” implication let Σ � Σ1 and $ M : Σ. By an

easy induction on the structure of M we prove $ M : Σ1. Hence the claim.

The following lemma expresses the property that when one of the message types

in µ ¤ µ1 is a type tag then the second message type is the very same type tag.

Lemma 8.1.4. Let µ ¤ µ1. Then

(1) µ P TypeTag iff µ1 P TypeTag, and

(2) when µ � ι P TypeTag then µ1 � ι � µ.

Proof. Let µ ¤ µ1. Firstly let us prove the “ñ” direction of (1) and (2). Let

µ � ι P TypeTag. We know $ aι : ι and thus $ aι : µ1. Clearly µ1 can not have the

67

Chapter 8. Technical Details on Poly✶ and Subject Reduction

shape Σ* because a single name can not have a Σ* type. Thus µ1 has to be a type

tag hence it has to be ι.

Secondly let us prove the “ð” direction of (1). Let µ1 � ι P TypeTag. We know

that there is some M such that $ M :µ because vµw � ∅. Thus $ M :µ1 which implies

that M � aι for some a because µ1 � ι. Thus $ aι : µ and hence µ � ι P TypeTag

because a single name can not have a Σ* type.

Similar lemma as the previous one holds also for form types.

Lemma 8.1.5. Let ϕ ¤ ϕ1. Then

(1) ϕ P TypeTag iff ϕ1 P TypeTag, and

(2) when ϕ � ι P TypeTag then ϕ1 � ι � ϕ.

Proof. Let ϕ ¤ ϕ1. Firstly let us prove the “ñ” direction of (1) and (2). Let

ϕ � ι P TypeTag. We know $ aι : ι and thus $ aι : ϕ1. Thus ϕ1 has to be a single

element type and hence it has to be ι.

Secondly let us prove the “ð” direction of (2). Let ϕ1 � ι P TypeTag. We know

that there is some F such that $ F :ϕ because vϕw � ∅. Thus $ F :ϕ1 which implies

that F � aι for some a. Thus $ aι : ϕ and hence ϕ � ι P TypeTag.

The following lemma says that only form types with the same sets of input-bound

tags are related by the subtyping relation.

Lemma 8.1.6. When ϕ ¤ ϕ1 then itagspϕq � itagspϕ1q.
Proof. It is easy to see that $ E : ε implies itagspEq � itagspεq for any E and ε.

Thus $ F0 : ϕ0 implies itagspF0q � itagspϕ0q for any F0 and ϕ0. Let ϕ ¤ ϕ1. We

know that vϕw � ∅ and thus there is some F such that $ F : ϕ. The assumption

implies that $ F : ϕ1. Thus itagspϕq � itagspF q � itagspϕ1q.

8.2 Type Substitution Correctness

As stated above we want to prove the property that $ S : � and $ F : ϕ implies$ S̄F : �̄ϕ. The following remark discusses additional conditions required for this

to hold and that these conditions will always be satisfied when we work with well

formed entities only.

Remark 8.2.1. Let $ S : � and $ F : ϕ. To demonstrate the additional conditions

required for $ S̄F : �̄ϕ to hold let us take S � txx ÞÑ aau and � � tx ÞÑ au. We see$ S : � and we also know that $ yx : x. But now S̄yx � yx and �̄x � a and thus we

obtain & S̄yx : �̄x. The problem here is that yx which is not contained in dompSq has

68

Chapter 8. Technical Details on Poly✶ and Subject Reduction

type tag x which is contained in domp�q. From this we can formulate a necessary

condition for $ S̄F : �̄ϕ to hold to be

for any x P dompSq and y P fnpF q : x � y implies x � y.

For any aι P dompSq, it ensures that aι is the only name with type tag ι that can

occur free in F . In practice this condition will be implied by well-formedness of

processes for all substitution applications executed by rewriting rules. The only

situation in Meta✶ that results in the application of a substitution is when the

right-hand side Q̊ of some rewriting rule rewrite{ P̊ ãÑ Q̊ } contains a substitution

application template, for example “{x̊:=s̊} p̊”. Then we see that it holds Q̊ $D x̊ Í p̊

and thus in well formed rules it has to hold that P̊ $D x̊ Í p̊. The substitution at

the right-hand side of some rule is applied only to (the instantiation of) p̊. Thus the

required condition for any F from (the instantiation of) p̊ is implied by Lemma 6.3.4

which was discussed in Remark 6.3.3. This issue is important for subject reduction

and it is further discussed in Remark 8.5.2

Now we are ready to prove the following lemma which proves the property

discussed above that applications of type substitutions to type entities faithfully

describes applications of Meta✶ substitutions to process entities. We call this

property “type substitution correctness” because it proves that application of type

substitutions to various type entities is defined as expected.

Proposition 8.2.2 (Type Substitution Correctness). Let $ S : �. Let Z

range over tx, M, E, F u and let for any x0 P fnpZq and y0 P dompSq, x0 � y0 imply

x0 � y0. Then all the following hold.

(1) $ x : ι implies $ S̄x : �̄ι

(2) $ x : ι implies $ 9Sx : :�ι

(3) $ M : µ implies $ 9SM : 9�µ

(4) $ E : ε implies $ S̄E : �̄ε

(5) $ F : ϕ implies $ S̄F : �̄ϕ

Proof. Let $ S :�. Let for any x0 P fnpZq and y0 P dompSq, x0 � y0 imply x0 � y0

where Z is x in cases (1) & (2) below, Z is M in case (3), Z is E in case (4), and

Z is F in case (5).

(1) Let $ x : ι. Thus x � ι. Distinguish the following three cases. When

Spxq P Name: Then S̄x � Spxq. Now ι P domp�q because $ S : � and x P
dompSq. Moreover �pιq P TypeTag because $ Spxq : �pιq. Thus �̄ι � �pιq.
Hence the claim $ S̄x : �̄ι.

69

Chapter 8. Technical Details on Poly✶ and Subject Reduction

x R dompSq: Let us prove ι R domp�q by contradiction. When ι P domp�q then

there is some y � aι P dompSq (because $ S : �). Hence x � y and thus

x � y by the assumption. But then x P dompSq and hence contradiction.

Thus it has to hold ι R domp�q. Then S̄x � x and �̄ι � ι. Hence the

claim.

otherwise: We know that x P dompSq but Spxq R Name. Thus also ι P domp�q
and obviously �pιq R TypeTag because we know that $ Spxq : �pιq holds.

Thus S̄x �
 (more precisely S̄x �

) and �̄ι �
. Hence the claim.

(2) Let $ x : ι. Thus x � ι. Distinguish the following three cases. Let�pιq P TypeTag: Thus ι P domp�q. There is some y � aι P dompSq (because$ S :� and ι P domp�q). Now x � y and thus x � y by the assumption of

this lemma. Hence x P dompSq. Thus 9Sx � Spxq and :�ι � t�̄ιu � t�pιqu.
We know that $ Spxq : �pιq and thus the claim is derived by the message

typing rule with the premise �pιq P t�pιqu.
ι P domp�q & �pιq R TypeTag: There is some Σ such that �pιq � Σ*. We also

know that x P dompSq. Thus 9Sx � Spxq. But now :�ι � Σ. We know that$ Spxq : Σ* and thus $ Spxq : Σ. Hence the claim.

ι R domp�q: Thus x R dompSq. Here we have that 9Sx � x and :�ι � tιu. Thus

the claim is derived by the typing rule with the premise ι P tιu.
(3) Let $ M : µ. Prove the claim by induction on the structure of M .

M � 0: Thus 9SM � 0. Because $ 0 : µ we know that µ � Σ* for some Σ.

Obviously $ 0 : 9�pΣ*q as well because 9�pΣ*q is a starred message type.

M � s: Here s � x0 . . . xk. Let

k � 0: Thus s � x. It means that µ � ι for some ι and we have $ x : ι

which means x � ι. When x R dompSq then ι R domp�q as well

(proved as in the subcase of (1) where x R dompSq). Thus x R dompSq
implies 9Sx � x and 9�ι � ι which implies the claim. Now suppose

that x P dompSq. Hence ι P domp�q. Thus 9Sx � Spxq and 9�ι � �pιq.
Hence the claim because $ Spxq : �pιq by $ S : �.

k ¡ 0: Here we know that µ � Σ* for some Σ � tσ1, . . . , σlu. Moreover

there is some σ P Σ such that $ s :σ. We also know that s � x0 . . . xk

and thus we can see that σ � ι1 . . . ιk where $ xi : ιi and thus ιi � xi

for i P t0, . . . , ku. Now we can see9SM � 9Spx0 . . . xkq � S̄px0 . . . xkq � pS̄x0q . . . pS̄xkq9�µ � 9�ptσ1, . . . , σlu*q � p:�σ1 Y � � � Y :�σlq*
For the above σ � ι0 . . . ιk P Σ we have that :�σ � tp�̄ι0 . . . �̄ιkqu which

is a singleton set. By the already proved point (1) of this lemma we

70

Chapter 8. Technical Details on Poly✶ and Subject Reduction

have that $ S̄xi : �̄ιi for all i P t0, . . . , ku (because $ xi : ιi). Thus$ S̄x0 . . . S̄xk : �̄ι0 . . . �̄ιk which gives us $ 9SM : 9�µ as required because�̄ι0 . . . �̄ιk P 9�µ. Hence the claim.

M � M0.M1: Here we know that µ � Σ* for some Σ � tσ1, . . . , σku and

also $ M : Σ. From the typing rules we know that it has to hold both$ M0 : Σ and $ M1 : Σ. We have that 9�µ � p:�σ1 Y � � � Y :�σkq*. Let

Σ1 � p:�σ1 Y � � � Y :�σkq. Let us prove that $ 9SM0 : Σ1.
When M0 R Name then $ M0 : µ and thus by induction hypothesis we

obtain $ 9SM0 : 9�µ which proves that $ 9SM0 : Σ1. So now suppose that

M0 P Name and note that we can not use the induction hypothesis in this

case. Let x � M0 and ι � x. Thus we have $ x : ι. Now because $ x :Σ it

has to hold that ι P Σ. But now we can see that :�ι � Σ1 because :�ι � :�σi

for some i. Moreover from $ x : ι we obtain by the already proved point

(2) of this lemma that $ 9Sx::�ι. And thus it has to hold also that $ 9Sx:Σ1
which we wanted to prove.

Thus we have $ 9SM0 : Σ1. Analogously we prove that $ 9SM1 : Σ1. Thus$ 9SM0. 9SM1 : Σ1 and $ 9SpM0.M1q : Σ1*. Hence the claim.

(4) Let $ E : ε. Distinguish the following case by the structure of E. Let

E � x: We know that $ x : ε and ε � x. Thus the claim holds by the already

proved point (1) of this lemma.

E � (x1, . . . , xk): Hence ε � (ι1, . . . , ιk) where we have ιi � xi for all i Pt1, . . . , ku. Now we see S̄E � E and �̄ε � ε. Hence the claim.

E � <M1, . . . , Mk>: Here we have ε � <µ1, . . . , µk> and $ Mi : µi for all i Pt1, . . . , ku. By the already proved point (2) of this lemma we have that$ 9SMi : 9�µi for the related i’s. Also we see that S̄M � < 9SM1, . . . , 9SMk>

and �̄µ � < 9�µ1, . . . , 9�µk>. Hence the claim $ S̄M : �̄µ.

(5) Let $ F : ϕ. We have that F � E0 . . . Ek. Thus because $ F : ϕ it has to

hold that ϕ � ε0 . . . εk and $ Ei : εi for all i P t0, . . . , ku. Thus the previously

proved point (4) of this lemma proves the claim.

8.3 Preservation of Subtyping Relation

In this section we prove another important property of type substitutions, namely

that application of a type substitution (to Poly✶ type entities) preserves subtyp-

ing. This property will be necessary to prove existence of principal typings and

correctness of the type inference algorithm. Firstly, we define subtyping on type

substitutions.

71

Chapter 8. Technical Details on Poly✶ and Subject Reduction

Definition 8.3.1. Write � ¤ �1 when

(1) domp�q � domp�1q, and

(2) �pιq ¤ �1pιq for all ι P domp�q.

Now we prove that application of type substitutions � and �1 such that � ¤ �1

preserves subtyping of various type entities.

Lemma 8.3.2. Let � ¤ �1. Then all the following hold.

(1) �̄ι � �̄1ι for any ι

(2) :�σ � :�1σ for any σ

(3) µ ¤ µ1 implies 9�µ ¤ 9�1µ1
(4) ε ¤ ε1 implies �̄ε ¤ �̄1ε1
(5) ϕ ¤ ϕ1 implies �̄ϕ ¤ �̄1ϕ1

Proof. Let � ¤ �1.
(1) We distinguish the following three cases.

ι R domp�q: Then ι R domp�1q and thus �̄ι � ι � �̄1ι.
ι P domp�q and �pιq � ι1 P TypeTag: Then also ι P domp�1q. We know that�pιq ¤ �1pιq and thus by Lemma 8.1.4 we obtain that �1pιq P TypeTag

and �1pιq � �pιq � ι1. Thus �̄ι � ι1 � �̄1ι.
ι P domp�q but �pιq R TypeTag: Then also ι P domp�1q. By Lemma 8.1.4 as

above we obtain �1pιq R TypeTag. Thus �̄ι �
 � �̄1ι.
(2) Let σ � ι0 . . . ιk. Let us distinguish the following cases.

k � 0 and �̄ι0 � Σ*: Then :�σ � Σ. We have ι0 P domp�q and ι0 P domp�1q.
Let µ1 � �1pι0q. We know that Σ* ¤ µ1 and thus by Lemma 8.1.4 we

obtain that µ1 can not be a type tag and thus µ1 � Σ1* for some Σ1. From

Σ* ¤ Σ1* we obtain Σ � Σ1 by Lemma 8.1.3. Moreover we see that�̄1σ � :�1ι0 � Σ1. Hence :�σ � :�1σ.

otherwise: That is k ¡ 0 or �̄ι0 P TypeTag. Then �̄σ � tp�̄ι0 . . . �̄ιkqu.
Using Lemma 8.1.3 in the case when k � 0 we see that also :�1σ �tp�̄1ι0 . . . �̄1ιkqu. The already proved case (1) of this lemma says that�̄ιi � �̄1ιi for all i P t0, . . . , ku. Hence :�σ � :�1σ.

(3) Let µ ¤ µ1. We distinguish the following two cases.

µ � ι for some ι: Lemma 8.1.3 gives us that µ1 � ι. When ι P domp�q then

ι P domp�1q and we see that 9�µ � �pιq and 9�1µ1 � �1pιq and the claim 9�µ ¤9�1µ1 follows from the assumption. When ι R domp�q then ι R domp�1q and

we see that 9�µ � ι � 9�1µ1 hence 9�µ ¤ 9�1µ1.
72

Chapter 8. Technical Details on Poly✶ and Subject Reduction

µ � Σ* for some Σ: By Lemma 8.1.3 we obtain that µ1 � Σ1* for some Σ1
and Lemma 8.1.3 gives us that Σ � Σ1. Let

Σ0 � ¤
σPΣ :�σ and Σ1

0 � ¤
σPΣ1 :�1σ

We see that �̄µ � pΣ0q* and �̄1µ1 � pΣ1
0q*. From Σ � Σ1 using the already

proved point (2) we obtain that Σ0 � Σ1
0. By Lemma 8.1.3 we obtain the

claim 9�µ ¤ 9�1µ1.
(4) Let ε ¤ ε1. Let us distinguish the following cases by the structure of ε.

ε � ι: Clearly $ aι : ι and thus $ aι : ε1 and thus ε1 � ι. Thus �̄ε � �̄ι and�̄1ε1 � �̄1ι and the claim follows from the already proved point (1) of this

lemma.

ε � (ι1, . . . , ιk): It is easy to see that vεw � ∅ and thus ε1 � (ι1, . . . , ιk).

Clearly �̄ε � (ι1, . . . , ιk) � �̄1ε1 and hence the claim.

ε � <µ1, . . . , µk>: It is easy to see that vµw � ∅ and thus ε1 � <µ11, . . . , µ1k> for

some µ11, . . ., µ1k. Let us prove that µi ¤ µ1i for all i P t1, . . . , ku. Let

us fix i and let $ Mi : µi. We need to prove that $ Mi : µ1i. We know

that there are some M1, . . ., Mi�1, Mi�1, . . ., Mk such that $ Mj : µj

for all j P t1, 2, . . . , i� 1, i� 1, . . . , k � 1, ku. Hence $ <M1, . . . , Mk> : µ

and thus $ <M1, . . . , Mk> : µ1. Clearly $ Mi : µ1i and thus µi ¤ µ1i. By

the already proved point (3) of this lemma we obtain that 9�µi ¤ 9�1µ1i
for all i P t1, . . . , ku. Now we see that �̄ε � < 9�µ1, . . . , 9�µk> and �̄1ε1 �
< 9�1µ11, . . . , 9�1µ1k>. Hence the claim �̄ε ¤ �̄1ε1.

(5) Let ϕ ¤ ϕ1. Let ϕ � ε0 . . . εk. Now vϕw � ∅ and thus there is some F such

that both $ F : ϕ and $ F : ϕ1. It implies that ϕ1 � ε10 . . . ε1k for some ε10, . . .,

ε1k (that is, ϕ and ϕ1 have the same length). We want to prove that εi ¤ ε1i for

all i P t1, . . . , ku. Let us fix i and let $ Ei : εi. Now for any other εj where

j � i there always exists Ej such that $ Ej : εj. Thus we have $ ε0 . . . εk : ε

and hence $ ε0 . . . εk : ε1 and thus $ Ei : ε1i. Thus εi ¤ ε1i for all i P t1, . . . , ku
and the already proved point (4) of this lemma gives us that �̄εi ¤ �̄1ε1i for all

i P t1, . . . , ku. Now we see that �̄ϕ � p�̄ε0q . . . p�̄εkq and �̄1ϕ1 � p�̄1ε11q . . . p�̄1ε1kq.
Hence the claim �̄ϕ ¤ �̄1ϕ1.

8.4 Details on Flow Closure

The example from Section 7.4 also shows why in the case of F1 the required blue

edges have to be loops and not, for example, a sequence of edges. The reason is

73

Chapter 8. Technical Details on Poly✶ and Subject Reduction

that the starred message type Σ* can match arbitrarily depth messages where a

single sequence can repeat several times. Thus we can not construct all possible

sequences of edges that would match all possible sequences paths Spxιq�0 because

there is no limit on the number of different paths. These loops result in some over-

approximation in types which can be illustrated on the example from the previous

paragraph as follows. Suppose that some other edge χ1 open aÝÝÝÝÑ χ1 was present in

Γ before the addition of the two blue loops and that the existence of this edge is

not connected with the intended meaning of pχ χ1� q P Γ (perhaps it is required

by some other flow edge). When we add the two blue loops then also the process

“in a.open a.0” is added to the meaning of 〈Γ, χ1〉. But it is clear that the process

“in a.open a.0” does not need to be added to the meaning of 〈Γ, χ1〉 at this step

because no application of any substitution S such that $ S : � to aι.0 can result in

“in a.open a.0”.

Over-approximation in types can not be totally eliminated but we can make a

modification F1’ of rule F1 which reduces over-approximation and thus improves

expressiveness of types as follows. To further illustrate this we also show alternative

version F2’ of F2 which adds a loop instead of an ordinary edge.

χ χ1
χ0 χ1

0

�
ι ��

σk

. . .
σ1

σk

. . .
σ1

(F1’)

χ χ1
χ0

�
ϕ � �̄ϕ

(F2’)

We can see that the over-approximation described in the previous paragraph

does not happen with the modified F1’. On the other hand this modification would

make all flow-closed shape predicates approximately two times bigger because of

the increased number of the new edges added. That is why we prefer F1 over F1’.

Note that it is still necessary to add the flow edge χ0 χ1�
because �pιq � Σ* can

match the empty message 0. The alternative rule F2’ would cause unnecessary over-

approximation. Note that the number of new edges required by F2’ is the same as

in the case F2 and thus F2 does not result in bigger shape graphs. That is why we

prefer rule F2. Here we just state that the intuitive meaning of flow edges would be

implied when the definition of flow-closed graphs used the alternative rules F1’ or

F2’.

The condition from Definition 7.4.1 that itagspϕq X domp�q � ∅ says that some

edges can be excluded from the flow closure test. The presence of χ χ1�
in a shape

graph Γ describes a possibility that some substitution S of the type � can be applied

74

Chapter 8. Technical Details on Poly✶ and Subject Reduction

to some process P of the type 〈Γ, χ〉. Now when some edge pχ ϕÝÑ χ0q P Γ is actually

used to match P against 〈Γ, χ〉 then it has to hold that itagspϕq � itagspP q. For

example when ϕ � (x) then we can deduce that P has the shape “(ax).P0” for some

a and P0 and thus clearly x P itagspP q. When itagspϕqXdomp�q � ∅ then the above

S of type � also have some name bx in its domain dompSq. Thus the above possibility

described by the presence of χ χ1�
, that is, that S of the type � is applied to P of

the type 〈Γ, χ〉, can not actually happen when well formed rules are applied to well

formed processes. This is for the same reason as discussed in Remark 8.2.1, that

is, that this situation could occur only after application of some rewriting rule to a

process of the shape like “(bx). � � � .(ax).P0” which is not well formed.

To further illustrate this issue let us consider the following two shape graphs

which are both flow closed. Note that the condition discussed in the previous para-

graph applies in the case of the right shape graph.

R

A B

A1 B1

A2 B2

a[
] b[]

in x

<x>

in a

<a>

tx ÞÑ autx ÞÑ autx ÞÑ au
R

A B

A1

A2

a[
] b[]

(x)

<x>

tx ÞÑ au
8.5 Flow Closure Correctness

By “flow closure correctness” we mean that the intended meaning of the flow edges is

satisfied in flow closed shape graphs. This is expressed by the following proposition

Proposition 8.5.1. We prove that the intended meaning meaning is valid only for

processes P with itagspP q X domp�q � ∅. This condition is related to the similar

condition from the definition of flow-closed graphs discussed above. This condition

will be implied by well-formedness in all applications of Proposition 8.5.1. Another

condition (5) below, which will be satisfied in all required applications as well, is

further discussed in Remark 8.5.2.

Proposition 8.5.1 (Flow Closure Correctness). Let the following hold.

(1) Γ is a flow closed shape graph

(2) pχ χ1� q P Γ

(3) $ S : �
(4) itagspP q X domp�q � ∅

75

Chapter 8. Technical Details on Poly✶ and Subject Reduction

(5) for all x P fnpP q and y P dompSq, x � y implies x � y

Then $ P : 〈Γ, χ〉 implies $ S̄P : 〈Γ, χ1〉.
Proof. By induction on the structure of P . The only non-trivial case is when

P � F.P0. Then let $ P : 〈Γ, χ〉. Thus there are some ϕ and χ0 such that $ F : ϕ,

and pχ ϕÝÑ χ0q P Γ, and $ P0 : 〈Γ, χ0〉. We distinguish the following two cases which

correspond to the rules F1 and F2 from Definition 7.4.1. When

ϕ � ι & �pιq � tσ1, . . . , σku*: Thus $ F : ι and there has to be some x such that

F � x and x � ι. Obviously itagspϕqXdomp�q � ∅ and because Γ is flow-closed

we know that condition F1 is satisfied for pχ ϕÝÑ χ0q P Γ and pχ χ1� q P Γ.

It implies that there is pχ0 χ1� q P Γ. Clearly condition (5) is satisfied for P0

because fnpP q � fnpP0q Y txu. Thus we can use the induction hypothesis for

P0 and pχ0 χ1� q P Γ by which we obtain that $ S̄P0 : 〈Γ, χ1〉.
Now we also know that $ S : � and thus it has to hold that x P dompSq and$ Spxq : tσ1, . . . , σku*. The later implies that Spxq is not a single name. Thus

S̄px.P0q � Spxq�S̄P0. Now it is easy to see that there is some l and some forms

s1, . . ., sl such that S̄px.P0q � s1. � � � .sl.S̄P0. Moreover for every sj there is

some i P t1, . . . , ku such that $ sj : σi. We have already showed that condition

F1 is satisfied and thus there is the edge pχ1 σiÝÑ χ1q P Γ for every i P t1, . . . , ku.
Previously we have obtained $ S̄P0 : 〈Γ, χ1〉 by the induction hypothesis. Hence

the claim $ S̄F.P0 : 〈Γ, χ1〉 is proved by l applications of rule TFrm.

otherwise: It holds that itagspϕq X domp�q � ∅ because itagspP q X domp�q � ∅

and thus condition F2 is satisfied for pχ ϕÝÑ χ0q P Γ and pχ χ1S q P Γ because

Γ is flow-closed. Thus there are some χ1
0 and edges pχ1 �̄ϕÝÑ χ1

0q P Γ andpχ0 χ1
0

S q P Γ. Obviously itagspP0q X domp�q � ∅ and thus the assumptions

of the induction step for pχ0 χ1
0

S q P Γ and $ P0 : 〈Γ, χ0〉 are satisfied. To

use the induction hypothesis we need to verify assumption (5) for P0. Let

x0 P fnpP0q. When x0 P fnpP q then the condition is already satisfied. When

x0 P fnpP0qzfnpP q then x0 P bnpF q and thus x0 P itagspP q. It means that

x0 R domp�q by (4). Now for any y0 P dompSq we have y0 P domp�q and thus

x0 � y0. Thus we can use the induction hypothesis for P0 and pχ0 χ1� q P Γ

by which we obtain that $ S̄P0 : 〈Γ, χ1〉.
From $ F : ϕ we obtain $ S̄F : �̄ϕ by Proposition 8.2.2 case (5). Thus$ S̄F.S̄P0 : 〈Γ, χ1〉 because pχ1 �̄ϕÝÑ χ1

0q P Γ. By the definition we have that

S̄P � S̄F.S̄P0 if F R dompSq. Now when F P dompSq, that is F � x for

some x, we have that ι P domp�q for ι � x. We see that ϕ � ι and thus�pιq P TypeTag because starred message types are covered by the previous

case. But it means that Spxq P Name. Thus Spxq � S̄x � S̄F and thus

S̄P � Spxq�S̄P0 � S̄F.S̄P0 as well. Hence the claim is proved.

76

Chapter 8. Technical Details on Poly✶ and Subject Reduction

Remark 8.5.2. The condition (5) from Proposition 8.5.1 is closely related the sim-

ilar condition from Proposition 8.2.2 previously discussed in Remark 6.3.3 and Re-

mark 8.2.1. This condition will be implied by well-formedness in all possible appli-

cations of Proposition 8.5.1. To illustrate this let us consider the following shape

graph where � � tx ÞÑ au as in Remark 8.2.1.

R

Γ � A X Y1

Y

<a>
(x)� a

x �
This shape graph is flow-closed. Let us take S � txx ÞÑ aau so that we have$ S : �. Now let us consider the process P � yx.0 which does not satisfy (5) with S.

We see that $ P :〈Γ, X〉 but & S̄P :〈Γ, R〉 even though there is a flow edge pX R
� q P Γ

and $ S : �. It means that the intended meaning of pX R
� q P Γ is not satisfied for

P and S̄P . This is, however, not a problem because we have already discussed in

Remark 8.2.1 that application of well formed rules to well formed processes can

never lead to application of S to P in this particular example.

We have mentioned above that pX R
� q P Γ describes a possibility that a sub-

stitution S
1 of the type � is applied to some process P of the type 〈Γ, X〉. As an

example how this can happen let us consider the following Mobile Ambients process.

Q � <a>.0 | (yx).yx.0 � <a>.0 | (yx).P

It is easy to check that$ Q:〈Γ, R〉 and$ P :〈Γ, X〉. Application of the monadic Mobile

Ambients rewriting rules Amon from Section 5.3 gives us the following rewriting.

<a>.0 | (yx).yx.0
AmonãÝÝÑ a.0 � S̄

1P where S
1 � tyx ÞÑ au

Here a substitution S
1 of type � was applied to process P of type 〈Γ, X〉. We can

see that the names from the domain of S
1 are always constructed from some input-

binder above P . Thus the well-formedness rules W1 and W2 ensure that (5) is

always satisfied. The discussion of this issue will be concluded in Remark 8.7.1.

8.6 Properties of Type Instantiations

Here we prove some properties of type instantiations. Firstly we prove weaken-

ing and strengthening lemmas which allow us to add or remove variables from the

domain of � while preserving the (s relations.

77

Chapter 8. Technical Details on Poly✶ and Subject Reduction

Lemma 8.6.1 (Type Instantiation Weakening). Let type instantiations � and�0 such that �0 � � be given. Then �0 (s P̊ : Π implies � (s P̊ : Π where s P tL, Ru.
Proof. By induction of the structure of P̊ prove that for any Π1, �0 (s P̊ : Π1
implies � (s P̊ : Π1.

Lemma 8.6.2 (Type Instantiation Strengthening). Let type instantiations� and �0 such that �0 � � and domp�0q � varpP̊ q be given. Then � (s P̊ : Π implies�0 (s P̊ : Π where s P tL, Ru.
Proof. By induction of the structure of P̊ prove that for any Π1, �0 (s P̊ : Π1
implies � (s P̊ : Π1.

The following lemma is similar to the type instantiation weakening Lemma 8.6.1

above but it extends the shape graph rather then the type instantiation.

Lemma 8.6.3. � (s P̊ : 〈Γ, χ〉 implies � (s P̊ : 〈ΓY Γ1, χ〉 where s P tL, Ru.
Proof. By induction of the structure of P̊ prove that for any χ1, � (s P̊ : 〈Γ, χ1〉
implies � (s P̊ : 〈ΓY Γ1, χ1〉.

The following is a simple implication of the strengthening lemma. It says that it

is enough to check the local closure condition Definition 7.6.5 on type instantiations

which mention only variables from the left-hand side of some rule. Thus this lemma

implies that it is enough to check the local closure only for finitely many type

instantiations instead of for all type instantiations (which are infinite in number).

Lemma 8.6.4. Let rewrite{ P̊ ãÑ Q̊ } P R and let χ P ActiveNodeRp〈Γ, χr〉q. Let�0 (L P̊ : 〈Γ, χ〉 imply �0 (R Q̊ : 〈Γ, χ〉 for all �0 such that domp�0q � varpP̊ q. Then� (L P̊ : 〈Γ, χ〉 imply � (R Q̊ : 〈Γ, χ〉 for all �.
Proof. Let � be such a type instantiation and let � (L P̊ : 〈Γ, χ〉. Take �0 �
varpP̊ q ⊳ �. It holds that domp�0q � varpP̊ q (because � (L P̊ : 〈Γ, χ〉 is defined).

We have �0 (L P̊ : 〈Γ, χ〉 by the type instantiation strengthening Lemma 8.6.2.

By the assumption we have �0 (R Q̊ : 〈Γ, χ〉. Thus the claim holds by the type

instantiation weakening Lemma 8.6.1.

The following says that when P has the type � then P instantiates F̊ to the

process P[F̊ ℄ of the type P[F̊ ℄. In this lemma the value of Γ is irrelevant because F̊

contains no process variables.

Lemma 8.6.5. Let Γ $ P : � and varpF̊ q � dompPq. Then $ P[F̊ ℄ : �(F̊).
Proof. Follows directly from Definition 7.6.2

78

Chapter 8. Technical Details on Poly✶ and Subject Reduction

The following is an extension of the previous lemma to process templates. When

P̊ can be instantiated by � to Π then P of the type � instantiates P̊ to a process

matching Π.

Lemma 8.6.6. When � (L P̊ : 〈Γ, χ〉 and Γ $ P : � then $ P[P̊ ℄ : 〈Γ, χ〉.

Proof. By induction on the structure of P̊ using Lemma 8.6.5 for P̊ � F̊ .P̊0.

The following lemma says that when we have the process instantiation P which

instantiates E̊ to a element of type ε then we can construct a type instantiation �
which is a type of P and which instantiates E̊ to ε directly. The value of Γ is again

irrelevant in this case.

Lemma 8.6.7. Let E̊ be a well lhs-formed element template. When $ P[E̊℄ : ε and

dompPq � varpE̊q then there is a type instantiation � such that for any Γ it holds

that Γ $ P : � and �(E̊) � ε.

Proof. Let us distinguish the following cases by the structure of E̊. Let

E̊ � x: Take � � P � ∅ to prove the claim.

E̊ � x̊: Let x � Pp̊xq. Clearly P[E̊℄ � x and ε � x. Take � � tx̊ ÞÑ xu. Hence the

claim.

E̊ � (x̊1, . . . , x̊k): Let xi � Pp̊xiq for i P t1, . . . , ku. Clearly P[E̊℄ � (x1, . . . , xk)

and ε � (x1, . . . , xk). Take � � tx̊1 ÞÑ x1, . . . , x̊k ÞÑ xku. Hence the claim.

E̊ � <m̊1, . . . , m̊k>: Let Mi � Ppm̊iq for i P t1, . . . , ku. We see that there are µ1,

. . ., µk such that ε � <µ1, . . . , µk> and $ Mi : µi for all i P t1, . . . , ku. Now let

us take � � tm̊1 ÞÑ µ1, . . . , m̊k ÞÑ µku. Hence the claim.

The following is the version of the previous lemma which works with form tem-

plates instead of element templates. Once again the value of Γ is irrelevant.

Lemma 8.6.8. Let F̊ be a well lhs-formed element template. When $ P[F̊ ℄ : ϕ and

dompPq � varpF̊ q then there is a type instantiation � such that Γ $ P : � (for any

Γ) and �(F̊) � ϕ.

Proof. Let F̊ be a well lhs-formed element template. Let $ P[F̊ ℄ :ϕ and dompPq �
varpF̊ q. We see that there is k such that F̊ � E̊0 . . . E̊k and ϕ � ε0 . . . εk. Let

Pi � varpE̊iq ⊳ � for all i P t0, . . . , ku. Clearly �i[E̊i℄ � εi. Let Γ be arbitrary.

Using Lemma 8.6.7 we obtain that for every i there is �i such that Γ $ Pi : �i and�i(E̊i) � εi. Let us take � � �0 Y � � � Y �k.

First of all we need � proved to be a function. Let z̊ P domp�iq and z̊ P domp�jq
for some i � j. We need to prove that �ip̊zq � �j p̊zq. We see that domp�iq � varpE̊iq
and that each εi is a well lhs-formed element template because ϕ is a well lhs-formed

79

Chapter 8. Technical Details on Poly✶ and Subject Reduction

form template. Hence z̊ has to be name variables, that is, z̊ � x̊ for some x̊. From

Γ $ Pi :�i and Γ $ Pi :�i we obtain that $ Pip̊xq :�ip̊xq and $ Pj p̊xq :�j p̊xq. It is easy

to see that Pip̊xq � Pj p̊xq which thus implies that � is a function. Now Γ $ Pi : �i is

clear. Hence the claim.

Finally the following is the extension of previous two lemmas to process tem-

plates. When P instantiates P̊ to a process of the type Π then we can find a type

instantiation � which is a type of P and which instantiates P̊ to Π directly. This

lemma is used in the proof of subject reduction.

Lemma 8.6.9. Let the shape predicate Π � 〈Γ, χ〉, a well formed lhs-template P̊ ,

and the process instantiation P with dompPq � varpP̊ q be given. When $ P[P̊ ℄ : Π

then there exists some type instantiation � such that Γ $ P : � and � (L P̊ : Π.

Proof. Let the assumptions be satisfied. Let $ P[P̊ ℄ : Π. Prove the claim by

induction of the structure of P̊ . Let

P̊ � 0: Take � � ∅. Obviously dompPq � varpP̊ q � ∅ and thus Γ $ P : �. Moreover� (L 0 : Π holds as well.

P̊ � p̊: Take � � tp̊ ÞÑ χu where χ is the root of Π. Obviously dompPq � varpP̊ q �tp̊u. We see that 〈Γ, �pp̊q〉 � Π and thus Γ $ P : �. Moreover � (L p̊ : Π holds

as well.

P̊ � F̊ .P̊0: We know that $ P[F̊ ℄.P[P̊0℄ : 〈Γ, χ〉. Thus there are some F and χ0

such that $ P[F̊ ℄ : ϕ, and pχ ϕÝÑ χ0q P Γ, and $ P[P̊0℄ : 〈Γ, χ0〉. Let us take

P
1 � varpF̊ q ⊳ P and P0 � varpP̊0q ⊳ P. By 8.6.8 we obtain �1 such that with

Γ $ P
1 : �1 and �1(F̊) � ϕ. Moreover by the induction hypothesis for 〈Γ, χ0〉,

P̊0, and P0 we obtain �0 such that Γ $ P0 : �0 and �0 (L P̊0 : 〈Γ, χ0〉.

Let us take � � �1 Y �0 and prove that � is a type instantiation, that is, that

values of �1 and �0 for variables in both domp�1q and domp�0q do not differ.

We know that P̊ is a well formed lhs-template and thus by L3 we obtain that

any variable which is in both domp�1q and domp�0q has to be a name variable.

Thus, let us take x̊ P domp�1q X domp�0q. By the definition of P
1 and P0

we know that P
1p̊xq � Pp̊xq � P0p̊xq. From Γ $ P

1 : �1 and Γ $ P0 : �0 we

also know that $ P
1[̊x℄ : �1(̊x) and $ P0[̊x℄ : �0(̊x) hold. But this means that�1p̊xq � P1p̊xq � P0p̊xq � �0p̊xq. Thus � is a function and we directly obtain

that Γ $ P : �.
By Lemma 8.6.1 and �0 (L P̊0 : 〈Γ, χ0〉 we obtain that � (L P̊0 : 〈Γ, χ0〉. Now�(F̊) � ϕ and thus pχ �(F̊)ÝÝÑ χ0q P Γ. Hence the claim � (L P̊ : 〈Γ, χ〉 holds.

P̊ � P̊0 | P̊1: We have that P[P̊ ℄ � P[P̊0℄|P[P̊1℄ and thus $ P[P̊0℄:Π and $ P[P̊1℄:Π.

Let us take P0 � varpP̊0q ⊳ P and P1 � varpP̊1q ⊳ P. Thus the assumptions of

the induction step for P̊0 are satisfied. By the induction hypothesis we obtain

80

Chapter 8. Technical Details on Poly✶ and Subject Reduction�0 and �1 such that Γ $ P0 : �0 and �0 (L P̊0 : Π as well as Γ $ P1 : �1 and�1 (L P̊1 : Π.

Let us take � � �0 Y �1. Now � is a function from the same reasons as � from

the previous case for P̊ � F̊ .P̊0. Thus we directly obtain that Γ $ P : �. Now

we obtain � (L P̊0 : Π and � (L P̊1 : Π from above by Lemma 8.6.1. Hence the

claim.

otherwise: Condition L6 ensures that the above cases cover all possibilities.

8.7 Subject Reduction

Here we discuss two issues related to subject reduction and we prove it. The first

issue is the purpose of well-formedness conditions W1 and W2. The second issue

is a problem with subject reduction in the previously published version of Poly✶

[MW04a]. Finally we provide the proof of subject reduction for the Poly✶ system

first time presented in this thesis.

Remark 8.7.1. Now it is easy to conclude the discussion from Remark 8.5.2 about

the purpose of well-formedness conditions W1 & W2 and about their relationship

to subject reduction. Let us again consider the following graph Π0 � 〈Γ0, R〉 from

Remark 8.5.2 together with the monadic Mobile Ambients rewriting rules Amon from

Section 5.3. Let � � tx ÞÑ au as before.

R

Γ0 � A X Y1

Y

<a>
(x)� a

x �
We see that Π0 is an Amon-type. Now let us consider the process

P0 � <a>.0 | (xx).yx.0

which violates W1. Let us for a brief moment ignore the fact that P0 is not well

formed in order to show what goes wrong without W1. All the Meta✶ definitions

work correctly without W1 and thus we can prove the following expected rewriting.

<a>.0 | (xx).yx.0
AmonãÝÝÑ yx.0

But now we see that & yx.0 :Π0 which means that Π0 is not Amon-closed. Hence sub-

ject reduction does not hold without W1. The problem is that the type substitution

81

Chapter 8. Technical Details on Poly✶ and Subject Reduction� � tx ÞÑ au changed x to a in the graph but the corresponding process substitu-

tion S � txx ÞÑ aau left yx in process P0 unchanged. Well-formedness condition W1

ensures that this does not happen.

The above example can be adapted to demonstrate that W2 is required from the

very same reason. However, W2 (which prevents nesting of input-binders binding

the same type tag) has also another purpose which we reveal now. Let us consider

the process

P1 � (xx).(yx).<xx, yx>.0 | <a>..0

which violates W2. However, Meta✶ again works correctly even for processes

violating W2 and we obtain the following expected rewriting.

P1
AmonãÝÝÑ (yx).<a, yx>.0 | .0

AmonãÝÝÑ <a, b>.0

The question of a type of P1 in Poly✶ is, however, more complicated. Let us

consider the following shape predicate which directly corresponds to the syntax tree

of P1.
R

A1 B1

A2 B2

A3

(x)

(x)

<x, x>

<a>

We see that the distinction between xx and yx inside <xx, yx> from P1 is lost in the

form type <x, x> from the shape graph. Hence any type substitution would yield the

same result when applied to arguments of <x, x>. It means that no application of a

type substitution would introduce the form type <a, b> which has to be necessarily

present in any shape predicate that matches P1 and is Amon-closed. Note that all

the form types whose existence is required by closure conditions are constructed by

application of type substitutions to form types already present in the graph. As a

consequence of this we can deduce that the closure conditions can not require the

presence of <a, b>. Hence Amon-types do not need to be Amon-closed without W2.

To further demonstrate this issue let us consider the following Amon-type Π1 �
82

Chapter 8. Technical Details on Poly✶ and Subject Reduction

〈Γ1, R〉 where �a � tx ÞÑ au and �b � tx ÞÑ bu.
R

Γ1 � A1 B1

A2 C1 B2

A3

(x) �a

�b

(x)

<x, x>

<a>

∅

∅

∅

We can see that $ P1 : Π1 but & <a, b>.0 : Π1. In this case this is, however,

mainly because of the condition from the Definition 7.4.1 which allows us not to

propagate edges when domp�q X itagspϕq � ∅. This condition mainly decrease

over-approximation in types. But even the propagation of the unpropagated edgestA1 (x)ÝÝÑ A2
<x,x>ÝÝÝÑ A3u would not give us a shape predicate that matches <a, b>.0.

In order to redefine the flow closure to deal with nested input binders (that is, to

have subject reduction without W2) it would be necessary for every type substitution� to consider both possibilities that � does or does not apply to any type tag ι from

the graph. It would, however, dramatically increase the number edges in the graph

and cause undesired over-approximation.

Now we discuss issues with subject reduction in the previously published version

of Poly✶.

Remark 8.7.2. As already noted at several places the extension of Poly✶ which

handles name restriction from the 2004 technical report [MW04a, Section 5.3] is bro-

ken and has no subject reduction. This is mainly because special names mentioned

in rewriting rules were not prevented from being bound in a process as mentioned in

the last paragraph of Section 4.3. Thus for example, the following rule description

R � trewrite{ a.0 ãÑ b.0 }u
can be used to prove νa.a.0

RãÝÑ νa.b.0. As briefly described later in Section 9.1,

the 2004 extension defines guarded shape predicates to handle name restriction. A

guarded shape predicate Π{X is a pair of a shape predicate Π and a set of names

X. The set X can be seen as a set of names which are ν-bound in the shape graph

of Π. When matching a process against a guarded shape predicate, a ν-bound name

from the process can match any ν-bound name from the graph. To demonstrate let

us take Π � 〈tR cÝÑ Yu, R〉 and let Π{tcu be a guarded shape predicate. Then in the

2004 Poly✶ extension it holds both that $ νa.a.0 :Π{tcu and $ νc.c.0 :Π{tcu. Now

the 2004 extension states that Π{X is a type when Π is a type. Hence Π{X is an

83

Chapter 8. Technical Details on Poly✶ and Subject Reduction

R-type in the 2004 extension. However, we do not have $ νa.b.0 : Π{tcu which is

necessary because of the rewriting proved above and hence we obtain contradiction

with the subject reduction property.

A similar counterexample can be constructed for the instantiation Amon of Poly✶

to a type system for monadic Mobile Ambients. Clearly we can prove that

a[in b.0] | b[0]
AmonãÝÝÑ a[b[0]]

from which can obtain the following

νin.a[in b.0] | b[0]
AmonãÝÝÑ νin.a[b[0]]

and by α-conversion also accidentally

νout.a[out b.0] | b[0]
AmonãÝÝÑ νout.a[b[0]].

Let us take Π � 〈tR a[]ÝÝÑ A0, A0
out bÝÝÝÑ A1, R

b[]ÝÝÑ B0u, R〉 and the guarded shape

predicate Π{toutu. Clearly Π is an Amon-type so Π{toutu is an Amon-type in the

2004 Poly✶ extension. However, we have$ νout.a[out b.0] | b[0] : Π{toutu but & νout.a[b[0]] : Π{toutu
which contradicts subject reduction because of the rewriting proved above.

The following lemma is the first step towards the subject reduction. It says that

structural equivalence preserves types. This lemma holds for all shape predicates

not only for R-types.

Proposition 8.7.3. Let P � Q. Then $ P : Π iff $ Q : Π.

Proof. Proof by induction on the derivation of P � Q.

The following is main part of the subject reduction proof for rule RRw. It is

also closely related to Lemma 8.6.9 from the previous section. Basically the lemma

says that Γ $ P : � and � (R Q̊ : Π imply $ P[Q̊℄ : Π. However, this does not hold

for all right-hand side templates Q̊ but only for those which are well formed w.r.t.

some left-hand side template. Thus the left-hand side template must be involved

in the formulation of the above property. Moreover we prove the lemma for all

subtemplates Q̊1 in order to be able to do the induction step. The proof of the

subject reduction will, however, use this lemma for Q̊1 � Q̊.

Lemma 8.7.4. Let rewrite{ P̊ ãÑ Q̊ } P R, let Γ be flow-closed, and let Γ $ P : �.
Let P[P̊ ℄ be defined and well formed. Then for a subtemplate Q̊1 of Q̊ it holds that� (R Q̊1 : 〈Γ, χ〉 implies $ P[Q̊1℄ : 〈Γ, χ〉.

84

Chapter 8. Technical Details on Poly✶ and Subject Reduction

Proof. Let R, P̊ , Q̊, Γ, P, and � be as in the assumptions. Let Q̊1 be a subtemplate

of Q̊ and let � (R Q̊1 : 〈Γ, χ〉. Prove the claim $ P[Q̊1℄ : 〈Γ, χ〉 by induction on the

structure of Q̊1. Let Π � 〈Γ, χ〉. Let

Q̊1 � 0: Clear.

Q̊1 � p̊: From Γ $ P : � we obtain $ P[p̊℄ : 〈Γ, �pp̊q〉. We know that � (R p̊ : Π and

thus p�pp̊q χ
∅ q P Γ. Thus by Proposition 8.5.1 for S � ∅ we obtain the claim$ P[p̊℄ : Π because domp�q � dompSq � ∅.

Q̊1 � {x̊0 := s̊0, . . . , x̊k := s̊k} p̊: From � (R Q̊1 : 〈Γ, χ〉 we have thatp�pp̊q χ
t...,�p̊xiqÞÑ�p̊siq,...u q P Γ

Thus � � t�(̊x1) ÞÑ �(̊s1), . . . , �(̊xk) ÞÑ �(̊sk)u is a correctly defined type sub-

stitution, that is, �(̊xi) � �(̊xj) whenever i � j and all required values are

defined. From this it follows that also S � tP[̊x1℄ ÞÑ P[̊s1℄, . . . , P[̊xk℄ ÞÑ P[̊sk℄u
is a correctly defined substitution. It is easy to see that $ S : �.

Now p̊ P varpQ̊1q and thus also p̊ P varpQ̊q. By R2 we have that p̊ P varpP̊ q.
Thus p̊ P dompPq because we know that P[P̊ ℄ is defined. Thus from Γ $ P : �
it follows that $ P[p̊℄ : 〈Γ, �pp̊q〉.
We also see that Q̊1 $D x̊i Í p̊ for any 0 ¤ i ¤ k. Thus also Q̊ $D x̊i Í p̊

and by R2-2 and R5-6 we obtain that P̊ $D x̊i Í p̊ holds as well. Thus by

Lemma 6.3.2 we have that P[̊xi℄ R itagspP[p̊℄q. Now because P[̊xi℄ � �(̊xi)
and because i was chosen arbitrarily we obtain that itagspP[p̊℄q X domp�q � ∅

(because every type tag from domp�q is equal to �(̊xi) for some i). This proves

assumption (3) of Proposition 8.5.1. Now let us verify its assumption (4). Let

x P fnpP[p̊℄q and y P dompSq, that is y � P[̊xi℄ for some i. But now x � y

implies x � y by Lemma 6.3.4.

Thus all the assumption of Proposition 8.5.1 (for P � P[p̊℄) are satisfied and

we can use it to obtain $ S̄pP[p̊℄q : Π. Now by the definition of application of

a process instantiation we have that S̄pP[p̊℄q � P[Q̊1℄ and hence the claim.

Q̊1 � F̊ .P̊0: From � (R Q̊1 : 〈Γ, χ〉 we have that there exists some χ0 such that� (R Q̊0 : 〈Γ, χ0〉 and pχ �(F̊)ÝÝÑ χ0q P Γ. Obviously Q̊0 is a subtemplate of Q̊

because Q̊1 is so. Now by the induction hypothesis (for Q̊0 as Q̊1) we have that$ P[Q̊0℄ : 〈Γ, χ0〉. It is clear that �(F̊) is defined and thus varpF̊ q � domp�q.
We know that Γ $ P :� and thus by Lemma 8.6.5 we obtain that $ P[F̊ ℄ :�(F̊).
That is why $ P[F̊ ℄.P[Q̊0℄ : Π. Hence the claim.

Q̊1 � Q̊0 | Q̊1: From � (R Q̊1 : 〈Γ, χ〉 we have � (R Q̊0 : 〈Γ, χ〉. Obviously Q̊0 is a

subtemplate of Q̊ because Q̊1 is so. Now by the induction hypothesis (for Q̊0 as

Q̊1) we have that $ P[Q̊0℄ : Π. Similarly for Q̊1 we obtain $ P[Q̊1℄ : Π. Hence

the claim.

85

Chapter 8. Technical Details on Poly✶ and Subject Reduction

The following proves the subject reduction. We implicitly suppose that R is well

formed.

Theorem (Proof of Theorem 7.6.11). For every Π and R, it holds that R (type

Π implies R (closed Π.

Proof. Let Π be an R-type of P and let P
RãÝÑQ. We need to prove that $ Q : Π.

Prove this claim by induction on the derivation of P
RãÝÑQ. Recall that we implicitly

suppose R to be well formed. Let Π � 〈Γ, χ〉. Let P
RãÝÑQ be derived by

RRw: Then we know that there are some well formed lhs- and rhs-templates P̊ and

Q̊ with rewrite{ P̊ ãÑQ̊ } P R, and that there is a process instantiation P such

that P � P[P̊ ℄ and Q � P[Q̊℄. We can suppose varpP̊ q � dompPq also because

R2 and R3. We know that $ P[P̊ ℄ : Π and thus by Lemma 8.6.9 we obtain

that there is some type instantiation � such that Γ $ P : � and � (L P̊ : Π.

Now Γ is an R-type and thus Γ is locally closed at its root node χ. Thus also� (R Q̊ : Π. Obviously Q̊ is a subtemplate of itself and thus by Lemma 8.7.4

we have that $ P[Q̊℄ : Π holds. Hence the claim.

RAct: Then there are a process variable p̊ and a well formed lhs-template P̊ such

that active{ p̊ in P̊ } P R. Moreover there are a process instantiation P and

processes P0 and Q0 such that P � pPrp̊ ÞÑ P0sq[P̊ ℄ and Q � pPrp̊ ÞÑ Q0sq[P̊ ℄
and also P0

RãÝÑ Q0. When p̊ R varpP̊ q then P � Q and the claim holds.

Otherwise let PP � Prp̊ ÞÑ P0s. We can suppose that varpP̊ q � dompPP q
because P is defined and the values of PP for variables not in P̊ are irrelevant.

Thus by Lemma 8.6.9 we obtain that there is some type instantiation � such

that Γ $ PP : � and � (L P̊ : Π. Let χ0 � �pp̊q and Π0 � 〈Γ, χ0〉. It holds

that $ P0 : Π0 because Γ $ PP : �. Also we know that active{ p̊ in P̊ } P R

and thus χ0 P ActiveNodeRpΠq. That is why Π0 is an R-type. Thus by the

induction hypothesis we obtain that $ Q0 : Π0. Let PQ � Prp̊ ÞÑ Q0s. We see

that Γ $ PQ : � holds. Hence the claim by Lemma 8.6.6.

RPar: Then there are some P0, Q0, and R0 such that P � P0 |R0 and Q � Q0 |R0

and P0
RãÝÑQ0. We see that $ P0 : Π and $ R0 : Π. By the induction hypothesis

we have that $ Q0 : Π. Hence the claim.

RNu: Then there are some name x and processes P0 and Q0 such that P � νx.P0

and Q � νx.Q0 and P0
RãÝÑQ0. We see that $ P0:Π. By the induction hypothesis

we obtain that $ Q0 : Π. Hence the claim.

RStr: Holds by induction hypothesis and Proposition 8.7.3.

86

Chapter 9

Changes and Extensions of Poly✶

9.1 Name Restriction

The main extension of the Poly✶ system in this thesis is the handling of name

restriction. The name restriction handling presented here is based on a recent work

of Jakub̊uv and Wells [JW09, JW10]. However, the presentation style in this thesis

is slightly different and this thesis contains additional details and proofs.

The difficulty with name restriction is that a shape type represents a syntactic

structure of a process, and thus presence of bound names in a process has to be

somehow reflected in a shape type. Because bound names can be α-renamed, Poly✶

needs to establish a connection between positions in a process and a shape type which

is preserved by α-conversion. This connection is provided by type tags which are

the key concept of name restriction handling in this thesis.

Let us suppose that some process P contains the form “a<a>”. Then there has

to be the corresponding form type “a<a>” in any shape type of P . When the name

a in P were ν-bound and α-renamed to some other name then the correspondence

between the form in the process and the form type would be lost. This problem

is solved by building shape types from type tags which are preserved under α-

conversion.

The handling of input-bound names in the previous Poly✶ was reached by

disabling their α-conversion which is possible under the circumstances discussed in

detail in Section 4.3. But α-conversion of ν-bound names can not be avoided and

thus a different solution presented here has been developed. This solution allows us

to handle α-conversion of ν-bound names and input-bound names uniformly which

is much more intuitive than α-conversion in the previous Poly✶. Moreover, bound

names are handled in the same way as free names when matching processes against

shape predicates.

There are several alternative ways to support name restriction in shape types.

We could, for example, allow α-renaming of bound names in types. In order to do

87

Chapter 9. Changes and Extensions of Poly✶

this it would be necessary to introduce the notion of the scope of a bound name

in a shape type. Unfortunately, to introduce scopes into graphs is not straightfor-

ward because graphs can contain cycles which can make scopes of different binders

(possibly binding the same name) overlap.

One possible solution to the above problem was given in an extension of Poly✶

from the 2004 technical report [MW04a, Section 5.3] which was designed to handle

name restriction. In this 2004 extension, type tags are not used and both pro-

cesses and shape types are built from the same atomic names. As noted above

in Section 4.3, α-renaming of input-bound names is not allowed. The 2004 ex-

tension which handles name restriction defines guarded shape predicates (see also

Remark 8.7.2) which are pairs of shape predicates and name sets. The name set

of a guarded shape predicate can be seen as the set of names which are ν-bound

in the shape graph. The scope of these bound names is simply the whole graph.

This simple introduction of scopes into graphs is possible because of the definition

of well formed processes and other restrictions. When matching a process against a

guarded shape predicate, a ν-bound name from the process can match any ν-bound

name from the graph.

Unfortunately, the 2004 Poly✶ extension was found broken as described in Re-

mark 8.7.2. Furthermore, the solution presented in this thesis has other advantages.

It allows us to handle α-renaming of bound names uniformly. More importantly, it

is more expressive in the sense that it allows a simple embedding of type system

with explicit types in Poly✶. We can now, for example, construct the embedding of

explicitly typed Mobile Ambients [CG99] which is presented in Chapter 16. The dif-

ference in expressiveness can be demonstrated on the following simple example. The

2004 Poly✶ extension can not distinguish between the Meta✶ processes “νx.x.0”

and “νy.y.0”. They both have the same types under any circumstances. The dis-

tinction between the above two processes can be made in the Poly✶ from this

thesis as long as x and y have different type tags. The ability to distinguish between

the two processes becomes important when we want to embed a type system with

explicit types in Poly✶. This is briefly described in the next paragraph.

In explicitly typed systems, bound names in processes are annotated with their

types, for example, pνx :ωqP where ω is the type of x in P . When encoding processes

with explicit type annotations as Meta✶ processes, it is desirable to simply drop

these type annotations because they can not be straightforwardly encoded in Meta✶

syntax. A process encoding which drops type annotations gives us a faithful Meta✶

encoding of the original process calculus because the original rewriting relation does

not usually inspect type annotations and it just copies them around. Nevertheless,

a processes which differ only by type annotations can have different types. Let

us consider some explicitly typed system where “pνx : ω0qx.0” has some type ρ

but “pνy : ω1qy.0” has no type. These two processes are translated to the Meta✶

88

Chapter 9. Changes and Extensions of Poly✶

processes “νx.x.0” and “νy.y.0” from the previous paragraph. In order to faithfully

embed the original explicitly typed system in Poly✶ we need Poly✶ to be able

to recognize typability of the original processes on their Meta✶ equivalents. Thus

to construct an embedding of this explicitly typed system, we need Poly✶ to be

able to distinguish the above two processes. The Poly✶ from this thesis allows the

embedding of explicitly typed systems by translating bound names with different

type annotations to Meta✶ names with different type tags.

An alternative solution to embed explicitly type systems in Poly✶ would be

to use some more complicated encoding of processes in Meta✶ which would not

completely forget type annotations. We have thoroughly investigated this possibility

but we have not found any satisfactory encoding. Any encoding of processes which

tries to remember type annotations becomes opaque and hard to comprehend. The

aspiration to simplify these encodings led us to the design of the Poly✶ version

from this thesis which introduces type tags.

9.2 Changes from the Original Poly✶

This section summarizes changes between the previously published Poly✶ system

[MW05, MW04a] and Poly✶ presented in Part I of this thesis.

Name Restriction. The main extension of the version presented in this thesis

name is the support of name restriction. The previous Poly✶ version pre-

sented in the ESOP 2005 paper [MW05] does not support name restriction

at all. There is, however, an extension presented in the 2004 technical re-

port [MW04a, Section 5.3] which supports name restriction. Nevertheless this

extension was found inconsistent. Details related to the support of name re-

striction in Poly✶ were presented in Section 9.1.

Fixes. This thesis fixes some mistakes from previous Poly✶ [MW05, MW04a]. The

mistake in the definition of well formed processes and in application of sub-

stitutions is described in details in Section 4.3 and Section 4.5. This mistake

breaks subject reduction which is discussed in details in Remark 8.7.2. Fur-

thermore, requirements on the rewriting rules defined in the previous Poly✶

[MW04a, Section 5.1] did not ensure preservation of well formedness as de-

scribed in Section 6.2 and Remark 8.7.2. These requirements were previously

stated only informally and several points can be interpreted ambiguously. The

requirements are formalized and described in Section 6.2 of this thesis. Last

but not least least, references to undefined operations (for example “rx :� ys”
in [MW05, Figure 2]) are fixed in this thesis.

Clarifications. Introduction of type tags allows a uniform handling of ν-bound and

input-bound names. Previously, input-bound names were not allowed to be α-

89

Chapter 9. Changes and Extensions of Poly✶

converted (see Section 4.3) and ν-bound names were not part on the set BNpP q
of the bound names of a process (see Section 4.5). This unintuitive behavior

was probably the main cause of the mistake in the definition of well formed

processes mentioned above. Another change is that an implicit definition of

α-equivalence from previous Poly✶ was in this thesis replaced by a formal

definition (Section 4.2). Substitution now guards against name captures which

makes the behavior of Poly✶ more predictable (see Section 4.5). Introduc-

tion of type tags also allows slightly simpler definition of type substitution

application.

Proofs. Previous Poly✶ publications [MW05, MW04a] contain no proofs except

of a very short (1 page) proof sketch of subject reduction. In this thesis we

prove crucial properties of the system including preservation of well-formedness

(Proposition 6.4.2), substitution correctness (Proposition 8.2.2), flow closure

correctness (Proposition 8.5.1), subject reduction (Theorem 7.6.11), and exis-

tence of principal typings (Theorem 12.10.3.

9.3 Possible Extensions and Future Work

In this section we describe some possible extensions of the Poly✶ system. They

include (1) additional process operators which are found in other calculi (recursion

“µ” and the choice “�”), (2) possibilities to increase shape type expressiveness, and

(3) a way to produce smaller shape graphs with the equivalent meaning by the type

inference algorithm.

9.3.1 Recursion and the µ Operator

The current version of Poly✶ provides the replication operator “!” which can be

used to implement recursive behavior of processes. Several other constructions used

to implement recursive behavior are found in the literature [PV05]. These include the

µ operator (also called rec), let expressions, and constant or parametric definitions.

Replication can always be expressed by one of the above recursive constructions.

In general, however, the expressive power of different constructions varies among

different calculi [PV05]. For example in the π-calculus, replication can be used to

encode the µ operator as well as parametric definitions [Par01, Section 3.4]. On

the other hand, the same encoding can not be straightforwardly adapted to work in

Mobile Ambients and other calculi which contain ambient boundaries.

Now we show how the µ operator can be simply emulated in many instantiations

of Meta✶ using additional rewriting rules. The µ operator is of interest because in

many calculi it is more expressive than replication as well as it is more convenient

90

Chapter 9. Changes and Extensions of Poly✶

to express recursive behavior. For example, it is very often used in biologically

inspired calculi. The processes calculi with the µ operator usually defines a set of

process variables. Let X range over process variables. The process syntax is then

defined so that every process variable X and every construction of the shape “µX.P”

are processes. Then a process substitution to substitute a process Q for process

variable X in process P , written P tX ÞÑ Qu, is defined. The process variable X is

(µ-)bound in µX.P and application of a process substitution has to guard against

name and variable captures. The process “µX.P” is supposed to behave as the

process “P tX ÞÑ µX.P u”. A replicated process “!P” can be expressed using the µ

operator as “µX.pP | Xq”.

The semantics of the µ operator can be defined in structural equivalence by the

axiom

µX.P � P tX ÞÑ µX.P u
or in the rewriting relation, either as a separate rewriting step by the axiom

µX.P ÑP tX ÞÑ µX.P u
or incorporated into other rewriting steps by the inference rule

P tX ÞÑ µX.P u | QÑRpµX.P q | QÑR

We can translate Meta✶ processes with the µ operator to standard µ-free

Meta✶ processes as follows. For simplicity, let us suppose that process variables

are taken from the set of names. The translation encoding that removes µ works as

follows. prXsq � call X.0prµX.P sq � νX.pcall X.0 | !rec X.prP sqq
Purely structural cases like prP |Qsq � prP sq| prQsq are omitted. The names “rec” and

“call” are ordinary Meta✶ names (more precisely type tags) and we suppose that

they are in SpecialTag. The basic idea is to store the body P of a recursively defined

process µX.P using the replicated process “!rec X.prP sq”. The process variable X

as a process is encoded by the process “call X.0”. The replacement of the variable

by the process body, that is, the unfolding of the definition, is implemented by the

following rewriting rule which is to be added to the set of rules.

rewrite{ call x̊.0 | rec x̊.̊P ãÑ P̊ }

This translation works without any problems in process calculi without any

91

Chapter 9. Changes and Extensions of Poly✶

active rules like the π-calculus. However, in process calculi with more active posi-

tions it can happen the body “rec X.prP sq” of a definition and the request “call X.0”

to unfold the definition appear at different active positions. For example in Mobile

Ambients, they can be present in different ambients and thus the above rewriting

rule can not be applied to unfold the definition properly. Consider, for example,

“µX.a[X | out a.0]” where the above rule can be used to unfold the definition at

the top-level location but not inside any ambient.

A possible solution of this problem is to make the process “rec X.prP sq” with the

definition body appear inside all active ambients. This can be achieved by adding

the following two rewriting rules which distributes the definition body both in and

out of any ambient.

rewrite{ å[̊P] | rec x̊.̊Q ãÑ å[̊P | rec x̊.̊Q] }

rewrite{ å[̊P | rec x̊.̊Q] ãÑ å[̊P] | rec x̊.̊Q }

In Meta✶ instantiations which use user defined active rules, two rules similar the

above have to be added for every active rule. This can not, however, be done for

an active rule which mentions input-bound variable, like active{ P̊ in (̊x).̊P }. The

reason is that the rule corresponding to this active rule

rewrite{ (̊y).̊P | rec x̊.̊Q ãÑ (̊y).p̊P | rec x̊.̊Qq }
is not allowed by the Meta✶ syntax because it is not well formed (see Section 6.2).

It is not allowed because it can create a nested input-binders which bind the same

type tag which is not allowed by well-formedness condition W2. Nevertheless, we do

not know of any process calculi in the literature that would require active rules with

input-bound names. Thus this encoding of the µ operator seems to be sufficient.

Based on the above discussion we can claim that it would be possible to support

the µ operator in Meta✶ directly as a built-in operator. This might be preferable

in some situations because the above encoding can lead to more complicated shape

types as they need to contain auxiliary edges introduced by the encoding. The µ

operator can be directly supported in Poly✶ under the following circumstances.

The active rules can not contain any input-bound variables. Furthermore, a re-

cursive processes µX.P can be unfolded to P tX ÞÑ µX.P u only when it appears

at active position, that is, only one level a time. The above encoding satisfies this

property which is again necessary to ensure that no nested input-binders created by

the unfolding bind the same type tag.

92

Chapter 9. Changes and Extensions of Poly✶

9.3.2 The Choice Operator

Another process operator that is commonly used by process calculi is the choice

operator “�” also called alternative composition. The process “P � Q” describes

a process which behaves like P or like Q but not both of them. That is, at some

point a decision is made whether the process “P � Q” will behave like the part P

or Q, and the other part is discarded. The choice operator is commonly used in

biologically inspired calculi and in the π-calculus.

In Meta✶ we can simply choose a special name “ch” and use it to encode “P�Q”

as “ch.pP | Qq”. Then we can adapt the rewriting rules to respect this encoding

appropriately. For example, the monadic π-calculus with choice can be expressed

by the following rule description.

Pchoice � trewrite{ ch.p̊C | c̊<̊a>.̊Pq | ch.p̊D | c̊(̊x).̊Qq ãÑ P̊ | {̊x := å}̊Q }u
The choice is associative and we assume that “pP�Qq�R” is encoded as “ch.pP |Q|

Rq” and not as “ch.pch.pP |Qq|Rq”. Also a standalone process with not alternatives

like “c<a>.0” has to be encoded as “ch.c<a>.0”. We can see the encoding of choice

with the special name “ch” results in the presence of additional edges in shape types

and thus it makes shape types more complicated.

Chapter 10 introduces additional restrictions on shape types which are required

for type inference. These restrictions, namely the depth restriction (Section 10.2),

would cause unnecessary over-approximation in shape types. It would be helpful

to change the width restriction so that it handles the name “ch” in a special way.

However, an advanced handling of the choice operator that would not unnecessarily

complicate shape types and that would take the specific behavior of “�” into account

is left for future research.

9.3.3 Other Extensions

There are several possibilities to improve expressiveness of shape types. One of them

is to extend the syntax of Meta✶ sequences and messages (and related Poly✶

types) so that it allows more convenient encoding of calculi which communicate

structural messages like the spi calculus [AG99]. Currently, we could use Meta✶

messages to encode the spi calculus structured messages but the problem is that

the message structure can not be described by Poly✶ message types. For exam-

ple, the message type “ta, bu*” is a type of “pa.bq.pa.bq” as well as of “a.pb.aq.b”.

Thus Poly✶ shape types for processes from calculi which heavily rely on structural

messages would not be very precise. A possible solution would be to extend the

syntax of shape graphs to allow more expressive message types. This solution would

probably require to represent message types themselves by graphs and not just by

93

Chapter 9. Changes and Extensions of Poly✶

linear structures.

An improved version of message types was proposed in the 2004 technical report

[MW04a, Section 5.2] under the name “sequenced message types”. A sequenced

message type has the shape “σ0. � � � .σk” for some sequence types σ0, . . ., σk. The

sequenced message type “σ0. � � � .σk” matches all the messages which have exactly

k�1 non-null sequence parts s0, . . ., sk such that $ si :σi where the parts are sorted

as they occur in the message from left to right. Sequenced message types provide

information about the count and the order of Meta✶ sequences in the message but

not about its spatial “tree” structure. For example, the sequenced message type

“a.b.c” matches both “pa.bq.c” and “a.pb.cq” but not “b.a.c” or “a.b.b.c”. In order

to obtain the principal typing property (see Chapter 10) it is necessary that no

sequenced message type contain two identical sequence types. For example, “a.a”

is banned as a sequenced message type. It would be probably easy to extend the

Poly✶ from this thesis to work with the sequenced message types from the 2004

technical report. The proofs of the subject reduction and the correctness of the type

inference algorithm would need to be extended as well.

Another two extensions of Poly✶ are proposed in the 2004 technical report.

The first one, target borrowing [MW04a, Section 5.5], is and optimization of a type

inference algorithm which reduces the size of shape graphs by sharing edges. Only

edges whose sharing does not change the meaning of the shape predicate are shared.

The second extension [MW04a, Section 5.6], increases the precision of shape

types using atomic labels called marks. Marks are used to recover precision which

is lost by additional restrictions on shape graphs which are necessary to achieve the

principal typing property (see Chapter 10).

Both the two above extensions are briefly described in the 2004 technical report

and implemented in the testing type inference algorithm implementation which be-

longs to the 2004 report. However, the Poly✶ 2004 theory was not extended to

work with these extensions and no correctness results were proved. The integration

of these extensions into the Poly✶ theory and extensions of the proofs from this

thesis is left for the future research.

94

Part II

Type Inference

95

Chapter 10

Principal Typings

10.1 Principal Typings and Types

A principal type of a process P is the type which is some sense the “most general”

among all the types of P . Wells [Wel02] provides a general definition of principal

typings that works for many type systems. Wells distinguishes between types and

typings. A typing is a collection of all the information other than the process (term)

that appear in type statements. Usually it is the process (term) type and the

environment or context which determines types of free names (variables). Shape type

statements $ P :Π do not use any environment or context and thus typings in Poly✶

become equivalent with shape types. Henceforth, we use the notions “principal

types” and “principal typings” interchangeably when they apply to Poly✶.

The general definition of principal typings [Wel02] becomes the following when

specialized to Poly✶.

Definition 10.1.1. Call an R-type Π of P principal (among R-types) when for

any Π1
R (type Π1 & $ P : Π1 implies Π ¤ Π1.

Let Π be a principal R-type of P . The meaning of Π is included in the meaning

of any other R-type of P . In this sense Π provides the most specific information

about P among all other R-types of P . Furthermore, we can say that Π represents

all other R-types of P . In this sense Π is the most general among all other R-types

of P .

The existence of principal typings, which is called the principal typing property,

is a desirable property of type systems for programming languages. It supports

compositional automated type inference and it allows reusability of type inference

results. A principal typing is a natural output of a type inference algorithm for

a type system with the principal typing property. Furthermore, the existence of

principal typings in Poly✶ allows us to use Poly✶ instead of another type system.

96

Chapter 10. Principal Typings

We demonstrate this is Chapter 14 where we prove that Poly✶ shape types can be

used to precisely recognize processes typable in the π-calculus sort discipline [Mil99].

In Poly✶, the existence of principal R-types depends on R. We are not aware

of any procedure to recognize rule descriptions R that instantiate Poly✶ to type

systems with the principal typings property. In Section 10.3, we show that instan-

tiations of Poly✶ with some infinite rule descriptions R do not have the principal

typing property. Nevertheless, the finiteness of R does not ensure the principal

typings property either. Let us consider to following rule description.

R � tactive{ P̊ in a.̊P }, rewrite{ a.middle.a.̊P ãÑ a.a.middle.a.a.̊P }u
Section 10.4 proves there is no principal R-type of the process “a.middle.a.0”.

Principal types in Poly✶ are not unique because for any shape predicate Π there

is infinitely many of shape predicates with the same meaning. For example, renaming

of nodes in Π preserves meaning but there are more complex graph operations which

preserves the meaning as well, for example unification of all terminal nodes. Of

course all the principal types of P have to have the same unique meaning.

We do not know how to compute principal R-types for those rules R for which

principal R-types exist. This is because the set of all R-types is too complex.

However, in the next section we define a subset of restricted shape R-types so that

the existence of principal R-types among restricted types can be proved. At the

same time, restricted shape types maintain to be expressive enough for practical use

as clearly demonstrated in Part III of this thesis.

10.2 Restricted Shape Types

As noted in the previous section, we do not know how to do a type inference which

outputs a principal R-type for an arbitrary R. The set of all R-types is too big

and complex for this task to be easily achieved. Instead of trying to characterize

descriptions R which instantiates Poly✶ to the type system with the principal

typing property and instead of looking for a complete type inference algorithm for

these R we apply the following, much simpler, approach. We define a subset of R-

types, called restricted R-types, by restricting the structure of shape graphs. The

existence of principal types among restricted R-types can be proved for all finite R

and for all infinite R which are of interest. Details about handling of infinite rule

descriptions are found in Section 10.3.

At first we define the similarity relation “�” on form types as follows.

Definition 10.2.1. Form types ϕ0 and ϕ1 are called similar, written ϕ0 � ϕ1, iffvϕ0w X vϕ1w � ∅.

97

Chapter 10. Principal Typings

The � relation is close to being the equality on form types. The only way for

non-identical ϕ’s to be related by � is when one of them contains a starred message

type Σ*. It is relatively safe to image � to be equality (�), at least to the first

approximation. It is necessary to take this relation instead of equality (�) in two

definitions below in order to achieve the principal typing property.

In order to achieve the principal typings property, we restrict the number of

nodes in shape graphs. The width restriction says that two edges outgoing from

the same source which are labeled with similar (that is, related by “�”) form types

have the same destination node. This restriction makes rule TFrm of the type

checking relation “$” (and also rule CFrm of “(s”) deterministic, because when$ F.P0 : 〈Γ, χ〉 then the node χ0 (from TFrm) such that $ P0 : 〈Γ, χ0〉 holds is

uniquely determined.

Definition 10.2.2. We say that a shape graph Γ is width-restricted or that Γ

satisfies the width restriction iff whenever there are two edges pχ ϕÝÑ χ0q P Γ andpχ ϕ1ÝÑ χ1q P Γ with ϕ � ϕ1, then it holds that χ0 � χ1. A shape predicate 〈Γ, χ〉 is

width-restricted when Γ is.

Before we define the second restriction on shape graphs we define a path in shape

predicate quite naturally as follows.

Definition 10.2.3. A path in 〈Γ, χ〉 is a set of linearly connected edgestχ0
ϕ1ÝÑ χ1, χ1

ϕ2ÝÑ χ2, . . . , χk�1
ϕkÝÑ χku � Γ

which we write as tχ0
ϕ1ÝÑ χ1

ϕ2ÝÑ � � � ϕkÝÑ χku. A path is rooted when χ0 � χ.

The depth restriction says that any two edges labeled with similar form types

which lie on the same path have the same destination node. When an upper bound

on form types that can appear in a graph is given, then the depth restriction bounds

the total number of edges that a restricted shape graph can have. This fact will

become the main argument for the termination of the type inference algorithm

presented in Chapter 11.

Definition 10.2.4. We say that a shape graph Γ is depth-restricted or that

Γ satisfies the depth restriction iff whenever Γ contains a path tχ0
ϕ0ÝÑ χ1

ϕ1ÝÑ� � �χk
ϕkÝÑ χk�1u � Γ with ϕ0 � ϕk, then it holds that χ1 � χk�1. A shape predicate

〈Γ, χ〉 is depth-restricted when Γ is.

The width and the depth restrictions do not depend on rule description R.

Restricted R-types are now defined quite naturally as those R-types which are also

restricted.

98

Chapter 10. Principal Typings

Definition 10.2.5. A shape predicate Π is restricted when Π is both width- and

depth-restricted. A shape predicate Π is a restricted R-type, written R (restr Π,

when Π is restricted and R (type Π.

Finally we defined principal restricted R-types by restraining the general defini-

tion of principal typings only to restricted R-types.

Definition 10.2.6. Call an R-type Π of P principal among restricted types

or a principal restricted R-type iff for any Π1
R (restr Π1 & $ P : Π1 implies Π ¤ Π1.

In Chapter 11 we provide an effective type inference algorithm to compute a

principal restricted R-type for an arbitrary P . The proof of correctness (complete-

ness) of this algorithm provides a constructive proof of the existence of principal

types among restricted types.

10.3 Infinite Sets of Rewriting Rules

Infinite sets of rewriting rules are required to handle polyadic communication rules,

that is, communication rules which can send tuples of an arbitrary arity. As an

example we can take the polyadic π-calculus which is described in Meta✶ by the

following infinite set of rewriting rules.

Ppoly �
rewrite{ c̊<̊a1, . . . , ån>.̊P | c̊(̊x1, . . . , x̊n).̊QãÑ

P̊ | {̊x1 := å1, . . . x̊n := ån}̊Q } : n ¥ 0
(

It would be possible to extend the syntax of Meta✶ process templates so that the

above can be described by a single rule. This single rule might look as follows.

rewrite{ c̊<̊a . . .>.̊P | c̊(̊x . . .).̊Q ãÑ P̊ | {̊x . . . := å . . .}̊Q }

The semantic of the above rule would need to decide what should happen for el-

ements “<̊a . . .>” and “(̊x . . .)” with different lengths. Instead of extending the

template syntax, we prefer to use infinite sets of rewriting rules and to keep the

language of templates as simple as possible. Any actual implementation of Poly✶

would need to use some extended rule syntax as the above to handle polyadic com-

munication rules.

We start with the observation that the principal typing property does not hold for

some infinite rule descriptions. Let us consider the following infinite set of rewriting

rules.

R0 � trewrite{ <̊x>.0 ãÑ <̊x, x̊>.0 }, rewrite{ <̊x, x̊>.0 ãÑ <̊x, x̊, x̊>.0 }, . . .u
99

Chapter 10. Principal Typings

It is easy to see that there are processes with no type at all not to say principal

types. In the case of R0 it is, for example, “<a>.0”. We can see that “<a>.0
R0ãÝÑ

<a, a>.0
R0ãÝÑ <a, a, a>.0

R0ãÝÑ � � � ” and thus any R0-type of “<a>.0” has to contain the

edge labeled with the form type “<a, . . . , a>” for any possible arity of the output

element type. It means that any R0-type of “<a>.0” would need to contain infinitely

many number of edges which is not possible because shape graphs are finite.

In order to implement an effective type inference algorithm it is essential that

for any R and P there is only finitely many rules in R that can ever be used when

rewriting P (and its successors). We can see that one of the problems with R0 is

that the right hand side of any rule from R0 generates an element which is longer

than any element mentioned on the rule left-hand side. The first step to handle

infinite rule descriptions is to eliminate “non-monotonic” rules like those from R0.

In order to do that we formally define the length of a Meta✶ entity as follows.

Definition 10.3.1. The length of a Meta✶ entity is defined as follows.

(1) a name “x” has the length 1

(2) a sequence “x0 . . . xk” has the length k � 1

(3) an input element “(x1, . . . , xk)” has the length k

(4) an output element “<M1, . . . , Mk>” has the length k

(5) a form “E0 . . . Ek” has the length k � 1

(6) an input element template “(x̊1, . . . , x̊k)” has the length k

(7) an output element template “<m̊1, . . . , m̊k>” has the length k

(8) a form template “E̊0 . . . E̊k” has the length k � 1

(9) a substitution template “{x̊0 := s̊0, . . . , x̊k := s̊k}” has the length k � 1

(10) any other Meta✶ entity has the length 0

Let maxlenpP q be the maximum of the lengths of all Meta✶ entities in P . Similarly,

let maxlenpRq (maxlenpL̊q, maxlenpP̊ q respectively) be the maximum of the lengths

of all Meta✶ entities in R (L̊, P̊ respectively).

Note that a composed message has the length 0 and thus its depth does not

affect maxlenpP q. For example the longest entity in the process

set <out a.in b.open c.in a>.get (x, y, z).0

is the element “(x, y, z)” with the length 3.

Now we can formally define monotonic rewriting rules.

Definition 10.3.2. Call a rule description R monotonic iff for any rewriting

rule rewrite{ P̊ ãÑ Q̊ } from R it holds that maxlenpQ̊q ¤ maxlenpP̊ q.

100

Chapter 10. Principal Typings

But the monotony of R is still not enough to ensure principal typings. When

SpecialTag is infinite then we can construct the following well formed rule descrip-

tion.

R1 � trewrite{ a.0 ãÑ ι0.0 } : ι P SpecialTagu
We can see that there is no R1-type of “a.0”. The requirement of the finiteness of

SpecialTag is probably enough to ensure the existence of restricted principal types.

However, it still does not ensure that there is only finitely many rewriting rules that

can ever be used when rewriting a given process. Let us consider the following rule

set which contains lot of redundant rules.

R2 � trewrite{ a x̊.0 ãÑ x̊ a.0 } : x̊ P NameVaru
It is clear that R2 contains infinitely many of rules (because NameVar is infinite)

that can apply to the process “a a.0”. To select a finite subset of any R which can

ever be used when rewriting a given P is required to effectively iterate over R in

the type inference algorithm and in the algorithm to recognize R-types.

Now we define a subset of rule descriptions which we call standard. We call them

standard because, to our best knowledge, all the process calculi from the literature

which can be described in Meta✶ syntax are covered in this subset. That is to say,

that this property is “standard” for the rules in the literature.

Definition 10.3.3. A rule description R is standard iff R is monotonic and for

every k natural it holds that tL̊ P R : maxlenpL̊q ¤ ku is finite.

For all standard R, the existence of restricted principal R-types is proved in

Chapter 11. The standard condition on R is sufficient but not necessary to ensure

the existence of restricted principal R-types. There are, for example, rule sets which

are not monotonic and still instantiates Poly✶ to the type system with restricted

principal types. We are not, however, aware of any calculus from the literature

which uses non-standard rewriting rules. Thus the exact characterization of infinite

rule descriptions which instantiate Poly✶ to the type system with the existence of

principal restricted types is left for the future research.

10.4 Non-existence of Principal Types Among Un-

restricted Types

In this section we construct a rewriting rule description R which is finite and well

formed, and which instantiates Poly✶ to a type system without principal types

among all R-types. Principal typings still exist among restricted R-types, however.

From this we can conclude that we really need to work with restricted types to have

principal typings for an arbitrary R.

101

Chapter 10. Principal Typings

Proposition 10.4.1. Let us consider the following rewriting rule set R.

R � tactive{ P̊ in a.̊P }, rewrite{ a.mid.a.̊P ãÑ a.a.mid.a.a.̊P }u
There is no R-type of the process “a.mid.a.0” which is principal (among all R-types).

Proof. Proof by contradiction. Let Π be a principal R-type of “a.mid.a.0”. Let us

define the infinite sequence of processes P ok
1 , P ok

2 , . . ., as follows.

P ok
i � a.a. � � � .aloooomoooon

i times

.mid. a.a. � � � .aloooomoooon
i times

.0

We can see that “P ok
1 � a.mid.a.0” and that the following rewritings can be proved.

P ok
1

RãÝÑ P ok
2

RãÝÑ P ok
3

RãÝÑ � � �
Hence $ P ok

n : Π for any n because Π is an R-type of P ok
1 .

Now let us define the infinite sequence of shape predicates Π0, Π1, . . . as depicted

by the three first members.

R X R A1 X R A1 A2 X

Y B1 Y B1 B2 Y

C1 C1 C2

D2

Π0 Π1 Π2

a

mid

a

a a a

mid mid

a

a

a a a a

mid mid mid

a a

a

a

a

For n ¡ 0, the shape predicate Πn is constructed from Πn�1 by moving the column

with nodes X and Y one place right, and by adding the additional column of nodes

starting with node “An”. The subtyping edges connect nodes in each column to the

corresponding nodes in the next column for the shape predicate to be an R-type. The

subtyping edges from the last but one column all aim to node Y. For example, the

next shape predicate Π3 looks as follows.

102

Chapter 10. Principal Typings

R A1 A2 A3 X

B1 B2 B3 Y

C1 C2 C3

D2 D3

E3

a a a a

mid mid mid mid

a a

a

a

a

a

a

a

For any Πn, we can see that ActiveNodeRpΠnq � tR, A1, A2, . . . , An, Xu. Now it

is easy to check that any Πn is an R-type. For example, let us consider Π3. When

we apply the only rewrite rule from R at the node A1 we can see that the local

R-closure condition requires the presence of the subtyping edge C2 D3. Thus Π3

is locally closed at A1 because this edge is present in the shape graph. Similarly, we

can see that Π3 is locally R-closed at all the active nodes tR, A1, A2, A3, Xu and hence

Π3 is an R-type because it is clearly flow-closed. Finally it is trivial to check that$ P ok
1 :Πn hold for any n and thus by the subject reduction we obtain that $ P ok

i :Πn

for any i and n (¡ 0).

Now let us definite the infinite sequence of processes P ko
1 , P ko

2 , . . . as follows.

P ko
i � a.a. � � � .aloooomoooon

i times

.mid. a.a. � � � .aloooomoooonpi�1q times

.0

Process P ko
i is process P ok

i with one additional a at the end. We can see that the

process P ok
1 can never rewrite to any of the processes P ko

n . The key observation here

is that

for any n ¡ 0 : & P ko
n : Πn.

Now we can finally prove that Π can not be a principal type of P ok
1 . Let j be

the number of edges in Π. Now we shall prove $ P ko
j : Π. We know that $ P ok

j : Π

because Π is an R-type of P ok
1 and P ok

1 can be rewritten to P ok
j . Clearly at least one

edge in Π has to be labeled with mid and thus the number of edges in Π which are

labeled with a is strictly smaller than j. Thus some edge has to be used more than

once when matching the second part of P ok
j after mid against Π because the number

of a’s (� j) is bigger than the number of edges labeled with a (j). Hence these

edges have to form a cycle which can be used to match an arbitrary number of a’s

after the middle mid. More specifically we obtain $ P ko
j : Π.

Hence Π is not a principal R-type of P ok
1 because Πj is an R-type of P ok

1 and we

have that $ P ko
j : Π but & P ko

j : Πj.

103

Chapter 10. Principal Typings

Note that the above proof can not be easily adapted to work with some descrip-

tion of an existing process calculus, for example Amon. The reason is that flow and

local closure conditions already prevent many Amon-closed shape predicates from

being Amon-types. For example, the flow closure condition F1 applied to the graphtB0 xÝÑ B1, B0 R
tx ÞÑtin au*u u insists on the presence of a loop labeled with “in a” at

node R. It explains why the shape predicate from Example 7.5.2 is not an Amon-type.

Furthermore this precludes us from adapting the above proof to work with Amon.

104

Chapter 11

Type Inference

In this chapter we present a formal description of the type inference algorithm. This

implementation is supposed to provide a constructive proof of the existence of prin-

cipal types. Thus at many places we prefer a less effective but simpler algorithm in

order to make correctness proofs easier. On the other hand, this algorithm clearly

depicts a basic idea of type inference and can be turned into an effective implemen-

tation by the use of more sophisticated data structures and common programming

techniques. Our aim in this thesis is, however, to prove the existence of principal

types.

11.1 Overview of the Type Inference Algorithm

The basic informal skeleton of the type inference algorithm is depicted in the fol-

lowing Algorithm 11.1.

Algorithm 11.1: Informal description of the type inference algorithm

input : a process P and a standard rule description R
output: a principal R-type of P

Π :� the initial shape predicate directly corresponding to P ;1

while Π is not an R-type do2

Π :� make Π restricted (by unification of nodes);3

Π :� make Π locally R-closed (by adding edges);4

Π :� make Π flow-closed (by adding edges);5

return Π;6

The input of the type inference algorithm is a process P and a standard rule de-

scription R. The algorithm starts by computing the initial shape predicate ΠP that

directly corresponds to the syntax tree of P . Basically we forget name restrictions

and replications and we translate parallel compositions into branching and sequen-

tial composition into sequencing in the graph. We shall prove later that the initial

shape predicate ΠP is a minimal (w.r.t. ¤) shape predicate such that $ P : ΠP .

105

Chapter 11. Type Inference

The algorithm repeats the main cycle until an R-type is found. The main cycle

takes the currently computed shape predicate Π and makes it restricted by unifying

nodes that need to be unified. Then it adds edges necessary to make the shape

predicate Π locally R-closed and flow-closed. Thus it is clear that the algorithm

returns an R-type iff it terminates.

In Chapter 12 we shall prove that the algorithm terminates for every standard

R. We know that P matches the initial shape predicate ΠP . Thus it is clear that

the shape predicate computed by the algorithm is an R-type of P because neither

unification of nodes nor addition of edges can decrease the meaning of Π. We shall

also prove that the resulting shape predicate is principal among restricted R-types.

This will be implied by the property that we do not unify nodes or add edges unless

absolutely necessary.

The following sections provides a detailed description of the type inference algo-

rithm. Proofs of termination and correctness are given separately in Chapter 12.

11.2 Initial Shape Predicate

We start by description of the algorithm which computes for every process P the

initial shape predicate ΠP which directly corresponds to the syntax tree of P . The

shape predicate ΠP is the smallest shape predicate w.r.t. ¤ such that $ P : ΠP . In

other words it holds that ΠP ¤ Π whenever $ P : Π. This property is proved in

Section 12.6.

In order to compute the smallest shape predicate which corresponds to the syntax

tree of an input process we need to be able to compute the principal form type ϕ

for every form F . This is done by algorithm FormType which uses the subroutines

SequenceTypeSet, MessageType, and ElementType.

Algorithm 11.2: Function SequenceTypeSet(M)

input : a message M

output: the principal sequence type set of M

switch M do1

case 0: return ∅;2

case x0 . . . xk: return tx0 . . . xku;3

case M0.M1:4

Σ0 :� SequenceTypeSet(M0);5

Σ1 :� SequenceTypeSet(M1);6

return Σ0 Y Σ1;7

Algorithm SequenceTypeSet, which computes the principal sequence type set for

every message M , proceeds simply by the structure of M . When M is some sequence

x0 . . . xk then the algorithms simply forgets the basic names in M and returns the

106

Chapter 11. Type Inference

singleton sequence type set tx0 . . . xku. The correctness of SequenceTypeSet is

proved in Section 12.6.

Algorithm MessageType computes the principal message type µ for every mes-

sage M . Its correctness is proved in Section 12.6. It calls SequenceTypeSet when

M is not a single name.

Algorithm 11.3: Function MessageType(M)

input : a message M

output: the principal message type of M

switch M do1

case x: return x;2

otherwise Σ :� SequenceTypeSet(M); return Σ*;3

Algorithm ElementType computes the principal element type ε for every element

E. Its correctness is proved in Section 12.6. When E is an output-element type

then ElementType calls MessageType for every message in E. For other E it simply

forgets basic names in all names in E.

Algorithm 11.4: Function ElementType(E)

input : an element E

output: the principal element type of E

switch E do1

case x: return x;2

case (x1, . . . , xk): return (x1, . . . , xk);3

case <M1, . . . , Mk>:4

for i :� 1 to k do µi :� MessageType(Mi);5

return <µ1 . . . µk>;6

Algorithm FormType computes the principal form type ϕ for every form F . Its

correctness is proved in Section 12.6. The algorithm simply calls ElementType for

every element in F .

Algorithm 11.5: Function FormType(F)

input : a form F

output: the principal form type of F

E0 . . . Ek :� F ;1

for i :� 0 to k do εi :� ElementType(Ei);2

return ε0 . . . εk;3

Algorithm ProcessShape computes for every process P the initial shape predi-

cate ΠP which directly corresponds to the syntax tree of P .

Name restriction and replication are simply ignored. Sequential composition

(“.”) is translated to edge sequencing as follows. The initial shape predicate of F.P0

107

Chapter 11. Type Inference

Algorithm 11.6: Function ProcessShape(P)

input : a process P

output: a shape predicate Π with $ P : Π that directly corresponds to the
syntax tree of P

switch P do1

case 0: return 〈∅, R〉;2

case F.P0:3

〈Γ0, χ0〉 :� ProcessShape(P0);4

χ :� a node fresh for Γ0;5

ϕ :� FormType(F);6

return 〈tχ ϕÝÑ χ0u Y Γ0, χ〉;7

case P0 | P1:8

〈Γ0, χ0〉 :� ProcessShape(P0);9

〈Γ1, χ1〉 :� ProcessShape(P1);10

Γ1
1 :� Γ1 with all nodes except χ1 replaced by nodes fresh for Γ0;11

Γ2
1 :� Γ1

1 with all occurrences of χ1 replaced by χ0;12

return 〈Γ0 Y Γ2
1, χ0〉;13

case νx.P0: return ProcessShape(P0);14

case !P0: return ProcessShape(P0);15

is computed from Π0 � ProcessShape(P0) by creating a fresh root node χ and

connecting χ to the original root of Π0 by an edge labeled with ϕ � FormType(F).

Parallel composition (“|”) is translated to edge branching as follows. The initial

shape predicate of P0 | P1 is computed from Π0 � ProcessShape(P0) and Π1 �
ProcessShape(P1) by making the non-root nodes in Π1 distinct from nodes in Π0

and putting both graphs together. The correctness of ProcessShape is proved in

Section 12.6.

11.3 Restriction Algorithm

Now we describe the algorithm RestrictGraph which unifies nodes in the input

shape predicate so that it becomes restricted. The algorithm RestrictGraph uses

two subprocedures RestrictWidth and RestrictDepth which unify edges in an

input shape predicate to make it width- respectively depth-restricted. It can happen

that a unification of nodes in RestrictDepth can violate the width restriction in a

previously width-restricted graph. Thus the main algorithm RestrictGraph has to

call the two subroutines consequently until the resulting graph is restricted.

Algorithm 11.7 RestrictWidth works as follows. It starts with the graph part of

the input shape predicate Π and it repeats the main cycle until the graph contains

two distinct edges χ
ϕ0ÝÑ χ0 and χ

ϕ1ÝÑ χ1 that violates the width restriction. If

the above two edges are found then χ0 and χ1 are unified by renaming χ0 to χ1

or otherwise. Note that the algorithm preserves the root node, that is, the root

108

Chapter 11. Type Inference

node is never renamed. The resulting shape predicate Π1 � RestrictWidth(Π) is

the “smallest” shape predicate which is width-restricted and that Π ¤ Π1. This is

to say that only those nodes that has to be unified are actually unified, and that

the order in which the nodes are unified does not matter. The exact definition of

what the “smallest” means and proofs of important properties of RestrictWidth

can be found in Section 12.7.1. The main argument of the termination proof of

RestrictWidth is that the number of nodes in Γ is decreased with every iteration

of the while loop.

Algorithm 11.7: Function RestrictWidth(Π)

input : a shape predicate Π
output: a width-restricted Π1 such that Π ¤ Π1
〈Γ, χr〉 :� Π;1

while Dtχ ϕ0ÝÑ χ0, χ
ϕ1ÝÑ χ1u � Γ: χ0 � χ1 & ϕ0 � ϕ1 do2

if χ1 � χr then χ1 :� χ1; else χ1 :� χ0; // keep χr3

Γ :� Γ with all occurences of χ0 and χ1 replaced by χ1;4

return 〈Γ, χr〉;5

Algorithm 11.8 RestrictDepth works similarly as RestrictWidth. It unifies

nodes until no edges violate the depth restriction. Again, it preserves the root node

and the resulting shape predicate is the “smallest” possible. The termination follows

again from the fact that the number of nodes is decreased with every iteration of

the while loop. Main properties of RestrictDepth are proved Section 12.7.2.

Algorithm 11.8: Function RestrictDepth(Π)

input : a shape predicate Π
output: a depth-restricted Π1 such that Π ¤ Π1
〈Γ, χr〉 :� Π;1

while Dtχ0
ϕ0ÝÑ χ1

ϕ1ÝÑ � � �χk
ϕkÝÑ χk�1u � Γ: χ1 � χk�1 & ϕ0 � ϕk do2

if χk�1 � χr then χ1 :� χk�1; else χ1 :� χ1; // keep χr3

Γ :� Γ with all occurences of χ1 and χk�1 replaced by χ1;4

return 〈Γ, χr〉;5

Algorithm 11.9 RestrictGraph calls RestrictWidth and RestrictDepth con-

sequently until the resulting shape graph is restricted. It holds that Π is width-

restricted iff RestrictWidth(Π) � Π and similarly for RestrictDepth. The algo-

rithm inherits the main properties of its subroutines, that is, the resulting shape

predicate is the “smallest” possible and the number of nodes in Π increases with

every iteration of the repeat cycle (except the final iteration). Main properties are

proved in Section 12.7.3.

109

Chapter 11. Type Inference

Algorithm 11.9: Function RestrictGraph(Π)

input : a shape predicate Π
output: a restricted Π1 such that Π ¤ Π1
repeat1

Π0 :� Π; // save the initial value2

Π :� RestrictWidth(Π);3

Π :� RestrictDepth(Π);4

until Π � Π0 ;5

return Π;6

11.4 Local Closure Algorithm

The local closure algorithm is the most complex part of the type inference algorithm.

Basically we need, for a given R and Π, to apply every rewriting rule rewrite{ P̊ ãÑ
Q̊ } P R at every active node in Π and to add all edges required by the application

of this rule.

The edges required by the application of rewrite{ P̊ ãÑ Q̊ } P R at node χ are

computed as follows. Firstly, the algorithm LeftMatches computes all possible �
such that � (L P̊ : 〈Γ, χ〉. For each �, the algorithm RightRequired determines the

minimal set Γ0 of edges such that � (R Q̊ : 〈ΓYΓ0, χ〉 holds. The edges from Γ0 are

added to Γ. The algorithm LocalClosureStep executes the above steps for every

rewriting rule in R and every active node of Π.

The algorithm LocalClosureStep does not necessarily return a locally R-closed

graph. Basically, the above set Γ0 contains the flow edges required by rules CFlow

and CSub but it can also contain form edges required by CFrm. These form

edges can create new opportunities to apply rewriting rules and thus the result

of LocalClosureStep does not yet to be a locally R-closed shape predicate. More-

over, just repeating LocalClosureStep would not give us a terminating algorithm

as demonstrated by the following example. Consider the following R.

R � tactive{ P̊ in a.̊P }, rewrite{ a.0 ãÑ a.a.0 }u
A consecutive application of LocalClosureStep to 〈tR aÝÑ A0u, R〉 would give us the

following infinite sequence of non-locally R-closed shape predicates.

R R R

A0 A0 A0 � � �
A1 A1

A2

a a

a

a

a

a

110

Chapter 11. Type Inference

We will interleave LocalClosureStep with the restriction algorithm RestrictGraph

to ensure termination.

11.4.1 Matching Templates to Shape Graphs

We need an algorithm that for a given P̊ and 〈Γ, χ〉 determines all possible � such

that � (L P̊ : 〈Γ, χ〉. Here we are interested only in those � with varpP̊ q � domp�q
because values of � for variables not in varpP̊ q are irrelevant for � (L P̊ : 〈Γ, χ〉. It

is to say that we are interested only in those type instantiations which are minimal

w.r.t. set inclusion. For every Γ, χ, a P̊ , there is only finitely many of minimal type

instantiations � such that � (L P̊ : 〈Γ, χ〉. These instantiations are computed by

Algorithm 11.12 LeftMatches which uses the following subroutines MatchElement

and MatchForm.

Algorithm 11.10: Function MatchElement(�, E̊ , ε)

input : a type instantiation � to be extended to �1 such that �1(E̊) � ε

output: t�1u such that � � �1 and �1(E̊) � ε, or ∅ iff there is no such �1
switch E̊ do1

case x: if x � ε then return t�u;2

case x̊:3

if ε P TypeTag & p̊x P domp�q ñ �p̊xq � εq then4

return t�r̊x ÞÑ εsu;5

case (x̊1, . . . , x̊k):6

if Dι1, . . . , ιk : ε � (ι1, . . . , ιk) then7

if �j P t1, . . . , ku : x̊j P domp�q ñ �p̊xjq � ιj then8

return t�r̊x1 ÞÑ ι1, . . . , x̊k ÞÑ ιksu;9

case <m̊1, . . . , m̊k>:10

if Dµ1, . . . , µk : ε � <µ1, . . . , µk> then11

return t�rm̊1 ÞÑ µ1, . . . , m̊k ÞÑ µksu;12

return ∅;13

For every E̊ and ε, Algorithm 11.10 MatchElement extends the input type in-

stantiation � to the minimal (w.r.t. �) type instantiation �1 such that �1(E̊) � ε. If

there is such �1 then it is unique and then the algorithm returns t�1u. The algorithm

returns ∅ if there is no �1 � � such that �1(E̊) � ε. The input argument � works as an

accumulator which holds type instantiation computed so far during type inference.

Note that the value of a message variable m̊ in � can be rewritten by MatchElement

but it will not actually happen when E̊ comes from some well formed lhs-template

P̊ . It is because L3 says that there is at most one occurrence of m̊ in a well formed

lhs-template P̊ and thus the accumulator will not contain m̊ when m̊ P varpE̊q.
More details on the correctness and other properties of MatchElement are given in

111

Chapter 11. Type Inference

Section 12.8.1.

Algorithm 11.11: Function MatchForm(�, F̊ , ϕ)

input : a type instantiation � to be extended to �1 such that �1(F̊) � ϕ

output: t�1u such that � � �1 and �1(F̊) � ϕ, or ∅ iff there is no such �1
E̊0 . . . E̊k :� F̊ ;1

ε0 . . . εk1 :� ϕ;2

if k � k1 then return ∅;3 �0 :� �;4

for i :� 0 to k do5

I :� MatchElement(�0, E̊i, εi);6

if D�1 : I � t�1u then �0 :� �1; else return ∅;7

return t�0u;8

Algorithm 11.11 MatchForm is similar to MatchElement but it works with form

templates and form types. That is, for every F̊ and ϕ, it extends the input � to the

minimal (w.r.t. �) type instantiation �1 such that �1(F̊) � ϕ. If there is such �1 then

it is unique and then the algorithm returns t�1u. The algorithm returns ∅ if there is

no �1 � � such that �1(F̊) � ϕ. More details on the correctness and other properties

of MatchForm are given in Section 12.8.2.

Algorithm 11.12: Function LeftMatches(�, P̊ , Γ, χ)

input : a type instantiation � to be extended to �1 such that �1 (L P̊ : 〈Γ, χ〉
where P̊ is a well formed lhs-template

output: the set of all minimal �1 � � such that �1 (L P̊ : 〈Γ, χ〉

I :� ∅;1

switch P̊ do2

case 0: I :� t�u;3

case p̊: I :� t�rp̊ ÞÑ χsu;4

case F̊ .P̊0:5

foreach pχ ϕÝÑ χ0q P Γ do6

foreach �0 P MatchForm(�, F̊ , ϕ) do7

I :� IY LeftMatches(�0, P̊0, Γ, χ0);8

case P̊0 | P̊1:9

foreach �0 P LeftMatches(�, P̊0, Γ, χ) do10

I :� IY LeftMatches(�0, P̊1, Γ, χ);11

return I;12

Finally, Algorithm 11.12 LeftMatches computes for every well formed lhs-template

P̊ and 〈Γ, χ〉 the set of all minimal extensions �1 of � (that is, � � �1) such that�1 (L P̊ : 〈Γ, χ〉. The argument �1 serves again as an accumulator which contains

the fixed values of variables computed so far by the previous run of the algorithm.

112

Chapter 11. Type Inference

We suppose that P̊ is a well formed lhs-template and thus domp�q will not contain

p̊ when P̊ � p̊, that is to say that no value will be replaced at line 4. In the case

P̊ � F̊ .P̊0 the algorithm iterates over all χ
ϕÝÑ χ0 from Γ and it calls FormType to

extend � to �0 such that �0(F̊) � ϕ. Then it calls recursively LeftMatches to com-

pute all extensions of �0 that instantiates P̊0 as required and it collect the results in

the global variable I. The case when P̊ � P̊0 | P̊1 is even simpler. We extend � to�0 that matches P̊0 at χ and then we further extend �0 to all minimal instantiations

which match P̊ and collect the results in I. More details on the correctness and

other properties of LeftMatches are given in Section 12.8.3.

11.4.2 Edges Required by a Rewriting Rule

Consider a rewriting rule rewrite{ P̊ ãÑ Q̊ }. When � (L P̊ : 〈Γ, χ〉 then we need to

compute a minimal set Γ0 � Γ such that � (R Q̊ : 〈Γ0, χ〉 where Γ0 reuses as much

as edges from Γ as possible. Algorithm 11.13 RightRequired serves this purpose,

that is, it computes the set of edges required by the application of the above rule

to Γ at χ. The algorithm assumes varpQ̊q � domp�q and that Q̊ is a well formed

rhs-template w.r.t. some well formed lhs-template.

Algorithm 11.13: Function RightRequired(�, Q̊, Γ, χ)

input : a type instantiation � with varpQ̊q � domp�q for a well formed
rhs-template Q̊ (w.r.t. some P̊)

output: a minimal Γ0 such that � (R Q̊ : 〈Γ0, χ〉

switch Q̊ do1

case 0: return ∅;2

case p̊: return t�pp̊q χ
∅ u;3

case {x̊0 := s̊0, . . . , x̊k := s̊k} p̊: return t�pp̊q χ
t...,�p̊xiqÞÑ�p̊siq,...u u;4

case F̊ .Q̊0:5

ϕ :� �(F̊);6

if Dχ1
0 : pχ ϕÝÑ χ1

0q P Γ then7

χ0 :� χ1
0;8

else9

χ0 :� a node fresh for Γ;10

η :� pχ ϕÝÑ χ0q;11

return ptηu Y RightRequired(�, Q̊0 , ΓY tηu, χ0)q;12

case Q̊0 | Q̊1:13

Γ0 :� RightRequired(�, Q̊0, Γ, χ);14

return Γ0 Y RightRequired(�, Q̊1, ΓY Γ0, χ);15

In the case of a process variable p̊ or a substitution application template {x̊0 :=

s̊0, . . . , x̊k := s̊k}, the algorithm simply returns the required flow edge. Note that the

edges are correctly defined because we suppose that varpQ̊q � domp�q. When Q̊ �
113

Chapter 11. Type Inference

F̊ .Q̊0 then we at first compute ϕ � �(F̊). Rule CFrm requires an edge η � χ
ϕÝÑ χ0

for some χ0 to be present in the shape graph. When there is χ
ϕÝÑ χ0 in Γ then the

algorithm reuses this edge, otherwise a fresh node and a new edge are created. Note

that η is added to the graph when the recursive call at line 12 is made. This ensures

that any fresh node possibly created in the recursive call is distinct from χ0.

The case when Q̊ � Q̊0 |Q̊1 is a simple recursive call. Again, note that the shape

graph in the second recursive call is extended with the result Γ0 of the first recursive

call. As above, it is to prevent node name clashes when creating new fresh nodes.

More details on the correctness and other properties of RightRequired are given in

Section 12.8.4.

11.4.3 Active Node Algorithm

We need to apply the rewriting rules to all active nodes of a given Π and thus we need

an algorithm to compute the set ActiveNodeRpΠq. Algorithm 11.14 ActiveNodes

serves this purpose.

Algorithm 11.14: Function ActiveNodes(Π,R)

input : a finite set of rewriting rules R and a shape predicate Π
output: the set ActiveNodeRpΠq of active nodes of Π

〈Γ, χr〉 :� Π;1

Ξ :� ∅;2

Ξnew :� tχru;3

while Ξnew � ∅ do4

χ0 :� an arbitrary node from Ξnew;5

foreach pactive{ p̊ in P̊ } P Rq do6

foreach � P LeftMatches(∅, P̊ , Γ, χ0) do7

if �pp̊q R Ξ then Ξnew :� Ξnew Y t�pp̊qu8

Ξnew :� Ξnewztχ0u;9

Ξ :� ΞY tχ0u;10

return Ξ;11

ActiveNodes performs a simple walk through the graph starting at the root

node. Variable Ξ stores the active nodes whose active successors have already been

visited. This set becomes the set ActiveNodeRpΠq in the end. Variable Ξnew stores

the active nodes whose active successors are to be visited. Variable Ξnew contains

only the root node at the beginning and the algorithm ends when Ξnew is empty.

The algorithm uses LeftMatches for all active rules from R to compute active

successors of a given node. The algorithm supposes that R is finite. More details

on the correctness and other properties of ActiveNodes are given in Section 12.8.5.

114

Chapter 11. Type Inference

11.4.4 Local Closure in Steps

Algorithm 11.15 LocalClosureStep puts the previous algorithms together. It takes

a finite rewriting rule description R and a shape predicate 〈Γ, χ〉 as input, and

it returns 〈Γ Y Γ0, χ〉 where Γ0 are all the edges required by applications of rules

R to all active nodes in 〈Γ, χ〉. Algorithm LocalClosureStep computes only the

immediately required edges, that is to say that the algorithm does not apply the

rewriting rules to the newly generated edges Γ0. Thus the result 〈Γ Y Γ0, χ〉 does

not need to be locally R-closed.

Algorithm 11.15: Function LocalClosureStep(Π,R)

input : a finite set of rewriting rules R and a shape predicate Π
output: Π extended with edges required by one application of R to Π

〈Γ, χr〉 :� Π;1

Γ0 :� ∅;2

foreach χ P ActiveNodes(Γ, χr,R, ∅) do3

foreach prewrite{ P̊ ãÑ Q̊ } P Rq do4

foreach � P LeftMatches(∅, P̊ , Γ, χ) do5

Γ0 :� Γ0 Y RightRequired(�, Q̊, Γ, χ);6

return 〈ΓY Γ0, χr〉;7

The algorithm simply iterates over all active nodes χ of Π � 〈Γ, χr〉 and over

all rewriting rules rewrite{ P̊ ãÑ Q̊ } from R. Then it uses LeftMatches to com-

pute all minimal (w.r.t. �) type instantiations � such that � (L P̊ : 〈Γ, χ〉. Then

the algorithm collects edges computed by RightRequired. Note that the condi-

tion varpQ̊q � domp�q required by RightRequired is implied by well-formedness

conditions R2 and R3. More details on the correctness and other properties of

LocalClosureStep are given in Section 12.8.6.

11.5 Flow Closure Algorithm

Algorithm 11.16 FlowClosureStep implements one step of a flow closure algorithm.

For a given Π, it computes the edges Γ0 immediately required by conditions F1 and

F2 for (pairs of) edges from Π. It does not, however, compute the edges whose

existence is consequently required by the newly added edges Γ0. Thus the result of

FlowClosureStep does not need to be a flow closed shape predicate, similarly as

the result of LocalClosureStep does not need to be locally R-closed.

Another similarity with LocalClosureStep is in that a mere repeating of flow

closure steps FlowClosureStep would not give us a terminating algorithm to pro-

duce a flow closed shape predicate. To demonstrate this let us consider the follow-

115

Chapter 11. Type Inference

ing sequence of shape graphs which do not satisfy the flow closure conditions. Let� � tx ÞÑ au.
R A0x �

R A0

A1

x

a

�� R A0 � � �
A1

A2

x ��� a

a

In order to flow-close the first shape graph in the sequence we need to add the

node A1 and the edges A0
aÝÑ A1 and R A1

�
. But the newly added R A1

�
together

with R
xÝÑ R insist on the existence of a new node A2 with two new edges pointing

to it. It is easy to see that we will never obtain a flow-closed graph in this way.

The type inference will interleave flow closure steps with the restriction algorithm

RestrictGraph in order to ensure termination.

Algorithm 11.16: Function FlowClosureStep(Π)

input : a shape predicate Π
output: Π extended with edges immediately required by flow closure

conditions F1 and F2 for Π

〈Γ, χr〉 � Π;1

Γ0 :� ∅;2

foreach pχ ϕÝÑ χ0q P Γ and pχ χ1� q P Γ do3

if itagspϕq X domp�q � ∅ then continue ; // skip this pair4

if ϕ � ι P domp�q & �pιq � Σ* then5

Γ0 :� Γ0 Y tχ1 σÝÑ χ1 : σ P Σu Y tχ0 χ1� u;6

else7

if Dχ2
0 : pχ1 �̄ϕÝÑ χ2

0q P Γ then8

χ1
0 :� χ2

0;9

else10

χ1
0 :� a node fresh for ΓY Γ0;11

Γ0 :� Γ0 Y tχ1 �̄ϕÝÑ χ1
0, χ0 χ1

0
� u;12

return 〈ΓY Γ0, χr〉;13

Algorithm FlowClosureStep iterates over all pairs of edges χ
ϕÝÑ χ0 and χ χ1�

with the same source node χ such that itagspϕqXdomp�q � ∅. For each edge pair, it

determines whether the condition F1 or F2 applies and it collects the edges required

by the appropriate condition in the variable Γ0. The algorithm reuses form edges

from the original graph when possible. More details on the correctness and other

properties of FlowClosureStep are given in Section 12.9.

116

Chapter 11. Type Inference

11.6 Type Inference Algorithm

Algorithm Algorithm 11.17 is used as a workaround to handle infinite set of rewriting

rules. It takes, a possibly infinite, set of rules R and a process P and it returns

the finite subset of R which contains all the rules from R that can ever apply to

rewriting of P with R. Of course, this is not always possible for an arbitrary R and

P as discussed in Section 10.3 but it is possible when R is standard.

Algorithm 11.17: Function SelectApplicableRules(R, P)

input : an arbitrary rewriting rule set R and a process P

output: a finite subset of rules in R that can ever be used when rewriting P ;
fails if R is not standard

if R is finite then return R;1

if R is standard then2

return tL̊ P R : maxlenpL̊q ¤ maxlenpP qu;3

fail “R is not standard”;4

The algorithm simply returns R when R is finite and it fails when R is not stan-

dard. When R is standard then the algorithm returns the set Rfin of rules from R

which do not contain any template entity longer then the longest Meta✶ entity in P .

This set Rfin is finite when R is standard (by Definition 10.3.3). The type inference

algorithm PrincipalType would work correctly also for non-standard infinite rewrit-

ing rules R provided that an effective implementation of SelectApplicableRules

specific for R is provided. If this specific implementation correctly computed a finite

set Rfin of all the rules that can ever be used when rewriting P with R then the

type inference algorithm would correctly compute principal types.

Algorithm 11.18 PrincipalType implements type inference. For every standard

R and a process P it computes a principal R-type of P . It fails when R is not

standard.

Algorithm 11.18: Function PrincipalType(P, R)

input : a process P and a standard rewriting rule set R
output: a principal R-type of P

Π :� ProcessShape(P);1

Rfin :� SelectApplicableRules(R, P);2

repeat3

Π0 :� RestrictGraph(Π);4

Π :� LocalClosureStep(Π0,R
fin);5

Π :� FlowClosureStep(Π);6

until Π � Π0 ;7

return Π;8

The algorithm at first calls ProcessShape to compute the initial shape predicate

and it select a finite subset of applicable rules. Then it enters the main repeat loop

117

Chapter 11. Type Inference

where the restriction algorithm RestrictGraph is called to make the initial shape

predicate restricted. This restricted shape predicate is stored in the variable Π0.

Then one step of local R-closure algorithm by LocalClosureStep and one step

of the flow closure algorithm FlowClosureStep are executed. When the shape

predicate is not changed during the execution of the two closure algorithms then

Π0 is both flow-closed and locally R-closed (at all active nodes of Π0). Thus Π0 is

already a restricted type and the algorithm returns Π0 and terminates. Otherwise

the repeat cycle is executed again until a restricted R-type is found.

From the correctness of algorithms RestrictGraph, LocalClosureStep, and

FlowClosureStep it is easy to conclude that PrincipalType returns a restricted

R-type of P when it terminates. In fact it returns an Rfin-type but it is easy to see

that it is also an R-type. The most difficult parts of the correctness proof are the

following two properties. (1) PrincipalType terminates for every standard R and

P . (2) The computed R-type is principal among restricted R-types.

In order to prove the termination (1) we count different edge paths in the shape

predicate stored in variable Π. More specifically, we count different edge paths

where only the last edge label in the path is allowed to repeat one of the previous

labels. Then we prove that there is an upper bound on the count of these paths and

that the number of these paths in Π is increased with every iteration of the repeat

cycle. In order to prove (2), that the resulting type is principal, we at first observe

that for the initial shape predicate ΠP it holds that ΠP ¤ Π1 whenever Π1 is some

restricted R-type of P . Then we observe that this property is preserved by all the

three algorithms executed inside the repeat loop. This is enough to prove that the

resulting R-type is principal among restricted R-types of P . More details on the

correctness and other properties of PrincipalType are given in Section 12.10.

118

Chapter 12

Technical Details on Type

Inference

This chapter contains technical details related to the previous chapter. It can be

skipped for the first reading and looked up later, either the whole chapter or just

some particular part.

12.1 Overview of the Correctness Proof

For every algorithm from the previous chapter and mainly for PrincipalType we

need to prove the following three properties.

Termination. The termination of an algorithm means that the algorithm termi-

nates for all relevant inputs. Termination is discussed in Section 12.1.1.

Correctness. By the correctness of PrincipalType we mean the property that

the algorithm does not fail for all relevant inputs and that the resulting value

Π � PrincipalType(P , R) is actually an R-type of P . The correctness of

any other algorithm from Chapter 11 is its property which is essential for the

correctness of PrincipalType. Correctness is discussed in Section 12.1.2.

Completeness. By the completeness of PrincipalType we mean the property that

the resulting type Π � PrincipalType(P , R) is principal among restricted

R-types. The completeness of any other algorithm from Chapter 11 is its prop-

erty which is essential for the completeness of PrincipalType. Completeness

is discussed in Section 12.1.3.

12.1.1 Termination

In order to prove the termination of PrincipalType we need at first to prove that

all the calls to functions ProcessShape, SelectApplicableRules, RestrictGraph,

LocalClosureStep, and FlowClosureStep terminate. Secondly, we need to prove

119

Chapter 12. Technical Details on Type Inference

that the repeat cycle is executed only finitely many times during the execution of

PrincipalType(P , R), that is, that after finitely many steps the condition Π � Π0

becomes satisfied. We are interested only in well formed P and R. We additionally

assume that R is standard because otherwise a terminating, correct and complete

type inference algorithm does not need to exist.

Variable Π in PrincipalType contains the shape predicate computed so far. We

shall find a numeric property related to Π which (1) is increased with (almost) every

iteration of the repeat cycle and which (2) has an upper bound that can not be

exceeded. This property is the count of almost disjoint edge paths in Π which is

defined as follows.

Definition 12.1.1. Let Π � 〈Γ, χ〉. An edge path in Π is a sequence of form

types pϕ1, . . . , ϕkq such that there are nodes χ1, . . ., χk and tχ ϕ1ÝÑ χ1
ϕ2ÝÑ � � � ϕkÝÑ χku

is a rooted path in Π. The edge path is disjoint iff ϕi � ϕj for all i, j P t1, . . . , ku
such that i � j. The edge path is almost disjoint iff ϕi � ϕj for all i, j P t1, . . . , k�1u
such that i � j.

Let pathspΠq denote the count of different almost disjoint edge paths in Π.

There can be an infinite count of edge paths in a finite Π when Π contains

loops. Thus we need to restrict ourselves to disjoint edge paths to keep the number

pathspΠq finite. The count of disjoint paths is, however, not increased during some

iterations of the repeat cycle and thus we count almost disjoint edge paths. The

last form type on an almost disjoint edge path can repeat one of the preceding form

types on the path. This is closely related to the depth-restriction.

The number pathspΠq never decreases during the execution of PrincipalType.

The number pathspΠq increases with every iteration of the repeat cycle during which

some form edge was added to Π. Some iterations, however, add only flow edges to

Π and thus pathspΠq is not increased in these iterations. We shall prove that only

finitely many flow edges can be added to a shape graph. Thus after finitely many

iterations of the repeat cycle either the algorithm terminates or pathspΠq increases.

The remaining part of the termination argument is that there is an upper bound

on pathspΠq. Clearly only finitely many different form types of a fixed length can

be constructed from a finite set of type tags. Moreover there is only finitely many

tags in the input P and only finitely many rules from R which can be used compute

the type of Π (because R is standard). Thus the number of different type tags in

Π at any time of the execution of PrincipalType(P ,R) is limited (by the number

of different tags in P and R plus one for “
”). Moreover, R is monotonic and

thus maxlenpΠq stays constant during the execution of the algorithm. Thus there

is only a finitely many form types which can appear in Π during the execution of

PrincipalType. Only finitely many almost distinct edge paths can be constructed

from finitely many form types. This gives as an upper bound on pathspΠq which is

120

Chapter 12. Technical Details on Type Inference

more precisely evaluated in Section 12.3.

12.1.2 Correctness

In order to use the correctness of PrincipalType we at first prove that P matches

the initial shape predicate computed by ProcessShape. Thus we obtain $ P : Π

holds after the execution of the first line. Then we observe that $ P : Π is an

invariant which is valid all the time during the execution of PrincipalType. This is

because RestrictGraph can only unify nodes and thus can not reduce the meaning

of Π. The following definition will become useful to prove this observation.

Definition 12.1.2. A node map δ is a finite function from nodes to nodes. A

node map δ is a node renaming of Π when δ is defined for all the nodes of Π.

Application δpΓq of δ to the shape graph Γ is defined as follows.

δpΓq � tδpχ0q ϕÝÑ δpχ1q : pχ0
ϕÝÑ χ1q P Γu

For the shape predicate Π � 〈Γ, χ〉 we set δpΠq � 〈δpΓq, δpχq〉.

We shall prove that when Π0 � RestrictGraph(Π) then there is some node

renaming δ of Π such that δpΠq � Π0. Moreover we shall prove that application of

a node renaming to a shape predicate does not reduce its meaning. Furthermore

we know that LocalClosureStep and FlowClosureStep only add edges to Π and

thus they do not reduce its meaning either. Thus $ P : Π clearly holds even for the

result Π of PrincipalType(P ,R).

In order to prove that the result Π � PrincipalType(P ,R) is actually an R-

type we shall prove a related correctness properties of algorithms RestrictGraph,

LocalClosureStep, and FlowClosureStep. The correctness of RestrictGraph

states that the resulting value is a restricted shape predicate. The correctness of

LocalClosureStep says that when the return value is equal to the first argument

then this argument is a locally R-closed shape predicate (at any node active w.r.t.

R). That is, the correctness says that

LocalClosureStep(Π,R) � Π implies Π is locally R-closed.

Similarly, the correctness of FlowClosureStep states that

FlowClosureStep(Π) � Π implies Π is flow closed.

It is not hard to observe that both the algorithms actually returned the shape

predicate unchanged in the last iteration of the repeat cycle in PrincipalType.

Thus the result Π is a restricted R-type of the input process P . Technically, using

121

Chapter 12. Technical Details on Type Inference

the above argumentation we obtain only that the result an Rfin-type of P where Rfin

is the finite subset of R returned by SelectApplicableRules. However, we use the

results proved in Section 12.2 to extend the validity of the claim to the original rule

description R as long as R is standard.

12.1.3 Completeness

In order to prove the completeness of PrincipalType, that is, that its return value

is a restricted principal type, we define the following notion of nesting of shape

predicates.

Definition 12.1.3. A node map δ is a nesting of 〈Γ, χr〉 in 〈Γ1, χ1
r〉, which we

write as δ6〈Γ, χr〉 E 〈Γ1, χ1
r〉, iff

(1) δpχrq � χ1
r,

(2) for all pχ0
ϕÝÑ χ1q P Γ there is pδpχ0q ϕ1ÝÑ δpχ1qq P Γ1 with ϕ ¤ ϕ1, and

(3) for all pχ0 χ1
� q P Γ there is pδpχ0q δpχ1q�1 q P Γ1 with � ¤ �1.

It is easy to observe that the existence of a nesting of Π in Π1 implies that Π ¤ Π1.
The opposite implication does not necessarily hold. The nesting relation δ6Π E Π1
can be seen as an effective version of the subtyping relation and δ can be seen as

the proof that Π ¤ Π1 actually holds.

Next we define an R-preprincipal shape predicate for P to be a shape predicate

which can be nested in any restricted R-type of P . Clearly when a shape predicate Π

is R-preprincipal for P and also a restricted R-type then Π is a restricted principal

R-type of P .

Definition 12.1.4. A shape predicate Π is R-preprincipal for P iff

(1) $ P : Π and

(2) for any Π1 such that R (restr Π1 and $ P : Π1 there is δ such δ6Π E Π1.

To prove the correctness of PrincipalType(P ,R) we at first prove that the

algorithm ProcessShape returns an R-preprincipal shape predicate for the input

process P . In order to prove this we shall prove correctness of all the algorithms

called from ProcessShape, that is, SequenceTypeSet and so on. Their correctness

states simply that they return the principal type of their argument. The principal

sequence type set of a message, the principal message type of a message, the principal

element type of an element, and the principal form type of a form are defined as

follows. In these four cases, the principal type of any Meta✶ basic entity is unique.

Definition 12.1.5. A type entity ζ is a principal type of Z iff $ Z : ζ and for any

ζ 1 such that $ Z : ζ 1 it holds that ζ ¤ ζ 1.

122

Chapter 12. Technical Details on Type Inference

Once we know that ProcessShape returns a preprincipal shape predicate we

prove that the existence of a nesting of Π in any restricted R-type of P is pre-

served during the execution of PrincipalType. This gives the completeness prop-

erties of the three algorithms called from the repeat cycle. For example, let

Π0 � FlowClosureStep(Π). The completeness of FlowClosureStep says when

there is a nesting δ6Π E Π1 of Π in some restricted R-type Π1 of P then there is

some nesting δ0 6Π0 E Π1 of the result Π0 in the very same Π1.
This gives us that the result Π � PrincipalType(P ,R) is R-preprincipal for P .

Technically, we again obtain that Π is Rfin-preprincipal but it clearly implies that

Π is R-preprincipal for P because every R-type is automatically an Rfin-type. The

correctness of PrincipalType states that Π is a restricted R-type. The completeness

property, that Π is a principal restricted R-type, then follows directly from the

definition of preprincipal shape predicates.

12.2 Infinite Rewriting Rules

The type inference algorithm can handle infinite rule descriptions provided they are

standard as follows. When computing PrincipalType(P ,R) with some infinite but

standard R we use SelectApplicableRules to compute a finite subset Rfin of R

that can ever be used during the type inference. When R is standard then the

following Rfin � tL̊ P R : maxlenpL̊q ¤ lenu is finite. The type inference algorithm

then works solely with Rfin and thus also the correctness and completeness results

will be relative to Rfin. That is to say that we shall prove that resulting shape

predicate is a restricted principal Rfin-type of P . The last step is to prove that the

result is an R-type as well and this section provides some definitions and techniques

to do that.

Firstly we define lengths of Poly✶ type entities similarly to the lengths of

Meta✶ entities.

Definition 12.2.1. The length of a Poly✶ entity is defined as follows.

(1) a sequence type “ι0 . . . ιk” has the length k � 1

(2) an input element type “(ι1, . . . , ιk)” has the length k

(3) an output element type “<µ1, . . . , µk>” has the length k

(4) a form type “ε0 . . . εk” has the length k � 1

(5) any other Poly✶ entity has the length 0

Let maxlenpϕq be the maximum of the lengths of all Poly✶ entities in ϕ (including

ϕ itself). Let maxlenpΠq be the maximum of the lengths of all Poly✶ entities in

Π.

123

Chapter 12. Technical Details on Type Inference

The following lemma is used to prove Proposition 12.2.3 and it says that selection

of a subset of rules does not affect the set of active nodes. Note that the lemma

holds also for a non-standard and non-monotonic R. An important condition is that

maxlenpΠq ¤ len.

Lemma 12.2.2. Let R, Π, and a natural number len be given. Let R0 � tL̊ P R :

maxlenpL̊q ¤ lenu and maxlenpΠq ¤ len. Then the following holds.

ActiveNodeRpΠq � ActiveNodeR0
pΠq

Proof. Let Π � 〈Γ, χr〉 and len and R0 be as above. It is enough to prove that for

any χ it holds that ActiveSuccRpχ, Γq � ActiveSuccR0
pχ, Γq. At first let us prove the

“�” inclusion. Let χ0 P ActiveSuccRpχ, Γq. Thus there are � and active{ p̊ in P̊ } P
R such that � (L P̊ : 〈Γ, χ〉 and �(p̊) � χ0. Now � (L P̊ : 〈Γ, χ〉 implies that

maxlenpP̊ q ¤ maxlenp〈Γ, χ〉q � maxlenpΠq because otherwise P̊ would not be able

to match at 〈Γ, χ〉. Hence maxlenpP̊ q ¤ len and thus active{ p̊ in P̊ } P R0. Thus

χ0 P ActiveSuccR0
pχ, Γq because we have already proved above that � (L P̊ : 〈Γ, χ〉

and �(p̊) � χ0. The opposite inclusion “�” is trivial because R0 � R.

The following proposition allows us to generalize the correctness of the type

inference algorithm, that is, to prove that the result is an R-type once we prove

that it is an Rfin-type. Note that the proposition holds also for some non-standard

rule sets. However even for standard R, it does not hold for an arbitrary shape

predicate Π but only when maxlenpΠq ¤ len. The problem is that an arbitrary Π

can contain some extra edges on which some rewriting rule that is in R but not

in Rfin can apply. Nevertheless for a monotonic R and a principal R-type of P it

always hold that maxlenpΠq ¤ maxlenpP q and thus the type inference algorithm

can never introduces the extra edges as above.

Proposition 12.2.3. Let R be monotonic and let a natural number len be given.

Let R0 � tL̊ P R : maxlenpL̊q ¤ lenu and maxlenpΠq ¤ len. Then

R0 (type Π implies R (type Π.

Proof. Let R, len, R0, and Π be as above. Let R0 (type Π. Let Π � 〈Γ, χr〉. It is

enough to prove that Γ is locally R-closed at all active nodes ActiveNodeRpΠq. Let

χ P ActiveNodeRpΠq. By Lemma 12.2.2 we know that χ P ActiveNodeR0
pΠq and

thus R0 (type Π implies that Γ is locally R0-closed at χ. Now let us prove that Γ is

locally R-closed at χ.

Let rewrite{ P̊ ãÑ Q̊ } P R and let � (L P̊ : 〈Γ, χ〉 for some �. Now � (L

P̊ : 〈Γ, χ〉 implies that maxlenpP̊ q ¤ maxlenp〈Γ, χ〉q � maxlenpΠq because otherwise

P̊ would not be able to match at 〈Γ, χ〉. Hence maxlenpP̊ q ¤ len and because R is

124

Chapter 12. Technical Details on Type Inference

monotonic we obtain that maxlenpQ̊q ¤ len as well. But it means that rewrite{ P̊ ãÑ
Q̊ } P R0 and thus � (R Q̊ : 〈Γ, χ〉 because Γ is locally R0-closed at χ. Hence Γ is

locally R-closed at χ.

12.3 Upper Bound on Almost Disjoint Paths

In this section we enumerate the upper bound on almost distinct edge paths in a

shape predicate. We use this upper bound to construct an invariant valid during

an execution of PrincipalType which will become part of the argument for the

termination of the type inference algorithm.

Let two natural numbers tags and len be given. We shall count the number of

different almost disjoint edge paths that can be constructed from tags type tags

provided that no type entity has length more than len. Only finitely many sequence

types σ with maxlenpσq ¤ len can be constructed from a finite set of type tags with

tags elements. Firstly, there is only

seqs � leņ

k�1

tagsk � tags len�1 � tags

tags � 1

of different form types which are not longer than len that can be constructed from

tags type tags. From these form types only 2seqs of different form type sets can be

made. These give us

msgs � tags � 2seqs

of different message types. Furthermore, msgs message types gives rise to

elems � tags � leņ

k�0

k!� leņ

k�0

msgsk � tags � leņ

k�0

k!� msgs len�1 � 1

msgs � 1

of different element types. Thus altogether there is only

forms � leņ

k�1

elemsk � elems len�1 � elems

elems � 1

of different form types with no type entity longer than len constructible from tags

of different type tags. Finally there is only

maxpaths � forms

ķ�0

pk � 1q forms!pforms � kq!
of different almost disjoint edge paths constructible from forms form types. The

fraction inside the sum denotes the number of different k-length sequences of differ-

ent form types constructed from forms form types. It is multiplied by pk� 1q which

125

Chapter 12. Technical Details on Type Inference

embodies the number of k possibilities to choose the last form type that repeats one

of the preceding ones, plus the possibility that no form type repeats.

Let P and a finite R be given. It is clear that P and R contain only finitely many

type tags. It is easy to check that the initial shape predicate Π0 � ProcessShape(P)

is constructed only from the type tags in P . Moreover we can see that the type

inference algorithm can not introduce a new type tag that is not in R (except “
”)

during the computation of PrincipalType(P ,R). Let tags denote the number of

different type tags contained in P and R plus one (for “
”). Thus the shape predicate

in variable Π does not contain more than tags different type tags at any time during

the execution of PrincipalType.

Let R be additionally monotonic and let len � maxlenpP q. It is not hard to

see that for the initial shape predicate Π0 we have maxlenpΠ0q ¤ len (maxlen for

shape types is defined Definition 12.2.1). Moreover it is easy to observe that no

application of a monotonic rule can introduce a type entity longer than len to the

shape predicate in variable Π during the execution of PrincipalType. Thus the

shape predicate in variable Π never contain more than maxpaths of different almost

distinct edge paths during the execution of the type inference algorithm. That is to

say that pathspΠq ¤ maxpaths is an invariant valid at any time during the execution

of PrincipalType(P ,R). Note that we have required R to be finite and monotonic.

12.4 Note on Time Complexity of Type Inference

We can see that runtime of the time inference algorithm is closely related to the

number of edges in the resulting graph and thus it is reasonable to measure the

runtime in the number of edges that were added to a shape graph. The above upper

bound on the number of almost disjoint edge paths gives us over-approximation of

time complexity which would look similarly as the following (len and tags are clearly

smaller than the length n of inputs P and R).

2p2pnnqq
Although this time complexity is not very optimistic it has to be noted that the ac-

tual complexity heavily depends on rule description R. It is not hard to artificially

construct R which will result in large principal typings which are very near to the

above formula in size. Thus the height of the above approximation is not caused

by ineffectiveness of our implementation but rather by the complexity of the prob-

lem. Finally, the time complexity of type inference for rule descriptions of process

calculi from the literature which are of interest, like Psync or Amon from Section 5.3,

is much lower. We believe that in the case of the π-calculus Psync it is polynomial

although we have not formally proved it yet. In the case of calculi which communi-

126

Chapter 12. Technical Details on Type Inference

cate non-single name messages, like Mobile Ambients Amon, examples of processes

with principal typings which are exponential in the size of the process are known1.

These examples, however, are usually not meaningful Mobile Ambients processes.

A proper investigation of the time complexity of type inference is left for the future

research.

12.5 Properties of Renamings and Nestings

The following lemma says that application of a node renaming to a shape predicate

Π can not reduce its meaning. It can, however, extend it when two different nodes

are mapped to the same node.

Lemma 12.5.1. Let δ be a node renaming of Π. Then Π ¤ δpΠq.
Proof. Let P be given. We prove by induction of the structure P that for any Π

and any node renaming δ of Π, $ P : Π implies $ δpP q : Π. Let Π and δ as the

above be given and let $ P : Π. The only non-trivial case is when P � F.P0. Let

Π � 〈Γ, χ〉. Then there are some ϕ and χ0 such that $ F : ϕ and pχ ϕÝÑ χ0q P Γ

and $ P0 : 〈Γ, χ0〉. By the induction hypothesis we have that $ P0 : δp〈Γ, χ0〉q. Using

Definition 12.1.2 we obtain $ P0 : 〈δpΓq, δpχ0q〉 and pδpχq ϕÝÑ δpχ0qq P δpΓq. Thus$ P : 〈δpΓq, δpχq〉 which proves the claim.

The next lemma says that nesting of shape predicates implies subtyping. The

opposite implication does not necessarily hold.

Lemma 12.5.2. When δ6Π E Π1 then Π ¤ Π1.
Proof. Let δ6Π E Π1. Let $ P : Π. Let Π � 〈Γ, χr〉 and Π � 〈Γ1, χ1

r〉. Let us

prove by induction on the structure of P the property that for any χ it holds that$ P : 〈Γ, χ〉 implies $ P : 〈Γ1, δpχq〉. The only non-trivial case is when P � F.P0.

Then $ P :〈Γ, χ〉 implies that there are ϕ and χ0 such that $ F :ϕ and pχ ϕÝÑ χ0q P Γ

and $ P0 :〈Γ, χ0〉. The induction hypothesis gives us that $ P0 :〈Γ1, δpχ0q〉. Moreover

δ6Π E Π1 gives us that there is pδpχq ϕ1ÝÑ δpχ0qq P Γ1 with ϕ ¤ ϕ1. Clearly $ F : ϕ

and ϕ ¤ ϕ1 implies $ F :ϕ1. Thus $ F.P0 : 〈Γ1, δpχq〉 which was to be proved. Hence

the claim of the lemma follows from the above property because δpχrq � χ1
r.

Let δ6Π E Π1. The following lemma says that when a flow closure condi-

tion F1 or F2 applies for two edges from Π then the same condition applies for

the corresponding edges of Π1. To demonstrate this let us suppose that χ
ϕÝÑ χ0

and χ χ1�
are in Π. Now δ6Π E Π1 implies that there are some δpχq ϕ1ÝÑ δpχ0q

δpχq δpχ1q�1
in Π1 with ϕ ¤ ϕ1 and � ¤ �1. Now Lemma 8.1.6 implies that

1For example “(x).(y).p<x y>.0 | <x.y>.0q | <a>.0 | .0”.

127

Chapter 12. Technical Details on Type Inference

itagspϕq X domp�q � itagspϕ1q X domp�1q. Finally Lemma 12.5.3 says that con-

dition F1 is satisfied for the above two edges from Π iff condition F1 is satisfied for

the above corresponding edges from Π1.
Lemma 12.5.3. Let ϕ ¤ ϕ1 and � ¤ �1. It holds that

ϕ � ι P domp�q & �pιq R TypeTag iff ϕ1 � ι P domp�1q & �1pιq R TypeTag

Proof. Let ϕ ¤ ϕ1 and � ¤ �1. Firstly let us prove the “ñ” implication. Let

ϕ � ι P domp�q and �pιq R TypeTag. We see that ι � ϕ P TypeTag and thus ϕ1 � ι

by Lemma 8.1.5. Clearly ι P domp�1q. From �pιq ¤ �1pιq and �pιq R TypeTag we

obtain �1pιq R TypeTag by Lemma 8.1.4. Hence the claim.

Now let us prove the “ð” implication. Let ϕ1 � ι P domp�1q and �1pιq R TypeTag.

We see that ι � ϕ1 P TypeTag and thus ϕ � ι by Lemma 8.1.5. Clearly ι P domp�q.
From �pιq ¤ �1pιq and �1pιq R TypeTag we obtain �pιq R TypeTag by Lemma 8.1.4.

Hence the claim.

The following definition introduces nesting of type instantiations δ6 �E �1. The

main relation between nesting of shape predicates and nesting of type instantiations

is as follows. When δ6Π E Π1 and � (L P̊ : Π then there is some �1 such that

δ6 � E �1 and � (L P̊ : Π1. This is is formally expressed by Lemma 12.5.8. Note

that δ6 � E �1 does not depend on δ when domp�q does not contain any process

variables.

Definition 12.5.4. Write δ6 � E �1 iff

(1) domp�q � domp�1q,
(2) �p̊xq � �1p̊xq for all x̊ P domp�q X NameVar.

(3) �pm̊q ¤ �1pm̊q for all m̊ P domp�q XMessageVar, and

(4) �pp̊q P dompδq and δp�pp̊qq � �1pp̊q for all p̊ P domp�q X ProcessVar.

The following states that two nested type instantiations instantiates the same

element (respectively form) template to two element (respectively form) types cor-

respondingly related by the subtyping relation.

Lemma 12.5.5. Let δ6 � E �1. Then �(E̊) ¤ �1(E̊) and �(F̊) ¤ �1(F̊).
Proof. Let δ6 � E �1. The first claim �(E̊) ¤ �1(E̊) is easily proved by induction

on the structure of E̊. The second claim follows directly from the first one.

The following two lemmas are used to prove the above relation between the

nesting of shape predicates and the nesting of type instantiations. The first lemma

describes a relation between a subtyping of element types and a nesting of type

128

Chapter 12. Technical Details on Type Inference

instantiations as follows. Let varpE̊q � domp�q. When �(E̊) ¤ ε then we can find

type instantiation �1 such that ∅6 � E �1 and such that �1 instantiates E̊ to ε (that

is, �1(E̊) � ε). Note that E̊ can not contain any process variables and thus we

simply use the empty node map ∅. The lemma also assumes that � can be defined

for some variables not mentioned in E̊ and thus we restrict � in the lemma only to

the variables varpE̊q which are of interest.

Lemma 12.5.6. Let E̊ be a well lhs-formed element template and �(E̊) ¤ ε. Then

there is �1 such that ∅6pvarpE̊q ⊳ �qE �1 and �1(E̊) � ε.

Proof. Let us distinguish the following cases by the structure of E̊. Let

E̊ � x: Take �1 � ∅. We have that varpE̊q ⊳ � � ∅ and clearly �1(E̊) � x � ε.

E̊ � x̊: From �(E̊) ¤ ε it follows that there is ι such that ι � ε � �(E̊). Take�1 � tx̊ ÞÑ ιu. Clearly �1 � varpE̊q ⊳ �. Hence the claim.

E̊ � (x̊1, . . . , x̊k): From �(E̊) ¤ ε it follows that there are ι1, . . ., ιk such that

(ι1, . . . , ιk) � ε � �(E̊). Take �1 � tx̊1 ÞÑ ι1, . . . , x̊k ÞÑ ιku. We see that �1 is

a function because E̊ is a well lhs-formed element template and thus x̊i � x̊j

when i � j. Clearly �1 � varpE̊q ⊳ �. Hence the claim.

E̊ � <m̊1, . . . , m̊k>: From �(E̊) ¤ ε it follows that there are some µ1, . . ., µk such

that ε � <µ1, . . . , µk> and that �pm̊iq ¤ µi holds for all i P t1, . . . , ku. Take�1 � tm̊1 ÞÑ µ1, . . . , m̊k ÞÑ µku. We see that �1 is a function because E̊ is a well

lhs-formed element template and thus m̊i � m̊j when i � j. Clearly �1(E̊) � ε.

Moreover ∅6pvarpE̊q ⊳ �q E �1 follows from �pm̊iq ¤ µi shown above. Hence

the claim.

The following is an equivalent of the previous lemma for form templates. Note

that the requirement that F̊ is a well lhs-formed form template is essential (as is the

equivalent requirement of the previous lemma). Basically it says that no message

variable appears in F̊ more than once. Consider F̊ � <̊M, M̊> which is not well lhs-

formed and let � � t̊M ÞÑ tau*u. Clearly �(F̊) � <tau*, tau*> ¤ <tau*, ta, bu*> but

there is no �1 that would instantiate F̊ to <tau*, ta, bu*>.
Lemma 12.5.7. Let F̊ be a well lhs-formed form template and �(F̊) ¤ ϕ. Then

there is �1 such that ∅6pvarpF̊ q ⊳ �qE �1 and �1(F̊) � ϕ.

Proof. We know that F̊ � E̊0 . . . E̊k and ϕ � ε0 . . . εk. Now �(F̊) ¤ ϕ implies

that �(E̊i) ¤ εi hold for all i P t0, . . . , ku. Thus by Lemma 12.5.6 for every i Pt0, . . . , ku there is �1i such that ∅6pvarpE̊iq ⊳ �q E �1i and �1i(E̊i) � εi. Let us take�1 � �10 Y � � � Y �1k. Firstly, we need to prove that �1 is a function, that is, that�1ip̊zq � �1j p̊zq whenever z̊ P domp�1iq X domp�1jq for some i and j. We see that

domp�1iq � varpE̊iq holds for all i P t0, . . . , ku. Clearly F̊ does not contain any

129

Chapter 12. Technical Details on Type Inference

process variable. Moreover, we know that F̊ is a well lhs-formed form template and

thus no message variable is both varpE̊iq and varpE̊jq when i � j. Thus the only

case when z̊ P domp�1iq X domp�1jq is when z̊ is a name variable, say x̊. But than�1ip̊xq � �p̊xq � �1j p̊xq because ∅6pvarpE̊iq ⊳ �qE�1i and ∅6pvarpE̊jq ⊳ �qE�1j. Thus

we see that �1 is a function. Moreover we see that �1p̊zq � �1ip̊zq holds for any i and

for all z̊ P varpE̊iq. Hence the claim.

Finally, the following lemma states the relation between nesting of shape predi-

cates and nesting of type instantiations.

Lemma 12.5.8. Let P̊ be a well formed lhs-template and let δ6〈Γ, χr〉 E 〈Γ1, χ1
r〉.

When � (L P̊ : 〈Γ, χ〉 then there is �1 such that δ6 � E �1 and �1 (L P̊ : 〈Γ1, δpχq〉.
Proof. Let P̊ be a well formed lhs-template and let δ6〈Γ, χr〉 E 〈Γ1, χ1

r〉. Let � (L

P̊ : 〈Γ, χ〉. Let us prove the claim by induction on the structure of P̊ . Let

P̊ � 0: Take �1 � �. The claim is clear.

P̊ � p̊: Here � (L P̊ : 〈Γ, χ〉 implies that �pp̊q � χ. Take �1 � �rp̊ ÞÑ δpχqs. Hence

the claim because �1pp̊q � δpχq � δp�pp̊qq
P̊ � F̊ .P̊1: Let ϕ � �(F̊). We know that there is some χ1 such that � (L P̊1 :

〈Γ, χ1〉 and pχ ϕÝÑ χ1q P Γ. Now δ6〈Γ, χr〉 E 〈Γ1, χ1
r〉 implies that there ispδpχq ϕ1ÝÑ δpχ1qq P Γ1 with ϕ ¤ ϕ1. Thus by Lemma 12.5.7 there is �10 such

that ∅6pvarpF̊ q ⊳ �q E �10 and �10(F̊) � ϕ1. From � (L P̊1 : 〈Γ, χ1〉 by the

induction hypothesis we obtain that there is some �11 such that δ6 � E �11 and�11 (L P̊1 : 〈Γ1, δpχ1q〉. Let us take�1p̊zq � $&%�10p̊zq if z̊ P varpF̊ q�11p̊zq otherwise

Firstly, we prove that �1p̊zq � �11p̊zq for all z̊ P varpP̊1q. This clearly holds when

z̊ P varpP̊1q and z̊ R varpF̊ q. When z̊ P varpP̊1q and z̊ P varpF̊ q then we can see

that z̊ has to be a name variable, say x̊, because P̊ is a well formed lhs-template.

But then ∅6pvarpF̊ q ⊳ �q E �10 and δ6 � E �11 implies that �1p̊xq � �10p̊xq ��p̊xq � �11p̊xq. Hence varpP̊1q ⊳ �11 � �1 and also it is clear that δ6 �E�1. Now

from �11 (L P̊1 : 〈Γ1, δpχ1q〉 and from the above we obtain by Lemma 8.6.2 and

Lemma 8.6.1 that �1 (L P̊1 : 〈Γ1, δpχ1q〉. It is clear that �1(F̊) � �10(F̊) � ϕ1.
Hence the claim because pδpχq ϕ1ÝÑ δpχ1qq P Γ1 was shown above.

P̊ � P̊0 | P̊1: We know that � (L P̊0 : 〈Γ, χ〉 and � (L P̊1 : 〈Γ, χ〉. By the induction

hypothesis we obtain that there are some �10 and �11 such that δ6 � E �10 and

130

Chapter 12. Technical Details on Type Inference

δ6 � E �11 and �10 (L P̊0 : 〈Γ1, δpχq〉 and �11 (L P̊1 : 〈Γ1, δpχq〉. Let us take�1p̊zq � $&%�10p̊zq if z̊ P varpP̊0q�11p̊zq otherwise

Firstly, we prove that �1p̊zq � �11p̊zq for all z̊ P varpP̊1q. This clearly holds

when z̊ R varpP̊0q and z̊ P varpP̊1q. When z̊ P varpP̊0q and z̊ P varpP̊1q then we

can see that z̊ has to be a name variable, say x̊, because P̊ is a well formed

lhs-template. But then δ6 � E �11 and δ6 � E �10 implies that �11p̊xq � �p̊xq ��10p̊xq � �1p̊xq. Hence varpP̊1q ⊳ �11 � �1 and also it is clear that δ6 � E �1.
Now from �10 (L P̊0 : 〈Γ1, δpχq〉 and �11 (L P̊1 : 〈Γ1, δpχq〉 and from the above

we obtain by Lemma 8.6.2 and Lemma 8.6.1 that �1 (L P̊0 : 〈Γ1, δpχq〉 and�1 (L P̊1 : 〈Γ1, δpχq〉. Hence the claim.

otherwise: P̊ is a well formed lhs-template and thus condition L6 ensures that the

above cases cover all possibilities.

The following lemma states that any nesting δ6Π E Π1 maps an active node of

Π to an active node of Π1 (w.r.t. the same R).

Lemma 12.5.9. Let δ6Π E Π1. Then

χ P ActiveNodeRpΠq implies δpχq P ActiveNodeRpΠ1q.
Proof. Let δ6Π E Π1 and let χ P ActiveNodeRpΠq. Let Π � 〈Γ, χr〉. We know

that ActiveNodeRpΠq is a finite set and thus it follows from Definition 7.6.7 that

there is a finite sequence of nodes χ0, . . ., χk such that χ0 � χr, χk � χ, and

moreover that χi P ActiveSuccRpχi�1, Γq holds for all i P t1, . . . , ku. Let us prove by

induction on i that δpχiq P ActiveNodeRpΠ1q. For i � 0 we know that δpχ0q � δpχrq
is the root node of Π1 which is an active node. Now let δpχiq P ActiveNodeRpΠ1q
for some i k. We want to prove that δpχi�1q P ActiveNodeRpΠ1q. We know

that χi�1 P ActiveSuccRpχi, Γq and thus there are active{ p̊ in P̊ } P R and � such

that � (L P̊ : 〈Γ, χi〉 and �pp̊q � χi�1. Now Lemma 12.5.8 gives us �1 such that

δ6 � E �1 and �1 (L P̊ : 〈Γ1, δpχiq〉. Thus we see that �1pp̊q P ActiveSuccRpΓ1, δpχiqq.
But it means that �1pp̊q P ActiveNodeRpΠ1q because δpχiq P ActiveNodeRpΠ1q by the

induction hypothesis. Finally δ6 � E �1 gives us that �1pp̊q � δp�pp̊qq � δpχi�1q.
Hence the claim.

12.6 Properties of the Initial Shape Predicate

In this section we prove termination, correctness, and completeness of ProcessShape.

We start by proving corresponding properties of SequenceTypeSet, MessageType,

131

Chapter 12. Technical Details on Type Inference

ElementType, and FormType. For each of these four algorithms we prove its termi-

nation, correctness, and completeness together. This combined property is similar

all the four algorithms and it says that the algorithm terminates for every input

entity and it returns the principal type of the input.

Lemma 12.6.1 (SequenceTypeSet Properties). SequenceTypeSet terminates for

any M and its return value Σ � SequenceTypeSet(M) is the principal sequence

type set of M .

Proof. By induction on the structure of M . We prove the following three claims,

that (1) SequenceTypeSet(M) terminates, that (2) it returns a sequence type set

of M which (3) is the principal sequence type set. To prove (3) let us take Σ1 such

that $ M : Σ1. We shall prove that Σ ¤ Σ1. Let

M � 0: Termination (1) is obvious. The return value is Σ � ∅ and thus (2) is clear.

Now t0u � v∅w � vΣ1w and hence (3).

M � x0 . . . xk: Let σ � x0 � � �xk. Termination (1) is clear and the algorithm returns

Σ � tσu. Thus (2) holds because $ M : σ. Let us prove (3). We have$ x0 � � �xk : Σ1 which implies σ P Σ1 because there is no sequence type σ1 of M

other than σ. Thus $ σ : Σ1 and hence the claim.

M � M0.M1: By the induction hypothesis and by the fact that M is finite we obtain

that both recursive calls terminate and their results

Σ0 � SequenceTypeSet(M0) Σ1 � SequenceTypeSet(M1)

are in turn principal sequence type sets of M0 and M1. We have Σ � Σ0 YΣ1

and thus $ M0 : Σ and $ M1 : Σ. Thus (2) holds. From the principality of Σ0

it follows that only a sequence type of some sequence in M0 can be contained

in Σ0. Similarly for Σ1 and M0. All these sequence types have to be present

in Σ1 because $ M : Σ1. Thus Σ � Σ1 which implies Σ ¤ Σ1. Hence (3).

The termination, correctness, and completeness of MessageType is as follows.

Note that the relation between the principal sequence type set Σ of a message M

and the principal message type µ of M is not µ � Σ* only when M is a name. For

example, the principal sequence type set of M � a is tau but the principal message

type of M is just a.

Lemma 12.6.2 (MessageType Properties). MessageType terminates for any M

and its return value µ � MessageType(M) is the principal message type of M .

Proof. When M � x then MessageType terminates and returns x which is a valid

message type of x because $ x : x. Moreover x is the only possible message type of x

132

Chapter 12. Technical Details on Type Inference

because a single name message can not have a starred message type of the sequence

Σ*. Thus the claim holds when M � x.

Now suppose M � x for any x. The algorithm terminates by Lemma 12.6.1 and

it returns Σ* where Σ is the principal sequence type set of M . Thus $ M :Σ*. Take

some µ1 such that $ M : µ1. Obviously there is Σ1 such that µ � Σ1* and thus also$ M : Σ1. It is easy to see that vµw � vΣwzName and vµ1w � vΣ1wzName. Thus

µ ¤ µ1 follows from Σ ¤ Σ1, that is, from the principality of Σ.

The termination, correctness, and completeness of ElementType is stated as

follows.

Lemma 12.6.3 (ElementType Properties). ElementType terminates for any E

and its return value ε � ElementType(E) is the principal element type of E.

Proof. Let

E � x: Then the algorithm terminates and it returns the only possible (and thus

principal) element type x of x.

E � (x1, . . . , xk): As in the previous case, the algorithm terminates and it returns

the only possible (and thus principal) element type (x1, . . . , xk) of (x1, . . . , xk).

E � <M1, . . . , Mk>: Thus the algorithm terminates by Lemma 12.6.2 and it returns

ε � <µ1, . . . , µk> where µi is the principal message type of Mi for i P t1, . . . , ku.
Thus $ E : ε. Take ε1 such that $ E : ε1. Obviously ε1 � <µ11, . . . , µ1k> for some

µ11, . . ., µ1k such that $ Mi : µ1i holds for all i P t1, . . . , ku. Clearly, when$ E 1 : ε for some E 1 then E 1 � <M 1
1, . . . , M

1
k> for some M 1

1, . . ., M 1
k such that$ M 1

i : µi. Thus $ M 1
i : µ1i follows from the principality of message types µi.

Hence $ E 1 : ε1 and thus ε ¤ ε1.

Finally the termination, correctness, and completeness of FormType is stated as

follows.

Lemma 12.6.4 (FormType Properties). FormType terminates for any F and its

return value ϕ � FormType(F) is the principal form type of F .

Proof. Let F � E0 . . . Ek. The algorithm terminates by Lemma 12.6.3 and it

returns ϕ � ε0 . . . εk where εi is the principal element type of Ei for all i P t0, . . . , ku.
Thus $ F : ϕ. Let $ F : ϕ1 for some ϕ1. From the typing rules it follows that

ϕ1 � ε10 . . . ε1k for some ε10, . . ., ε1k with $ Ei : ε1i. It is easy to see thatvϕw � tE2
0 . . . E2

k : E2
i P vεiw & i P t0, . . . , kuuvϕ1w � tE2

0 . . . E2
k : E2

i P vε1iw & i P t0, . . . , kuu
Thus ϕ ¤ ϕ1 follows from εi ¤ ε1i, that is, from the principality of element types εi.

133

Chapter 12. Technical Details on Type Inference

The termination, correctness, and completeness of ProcessShape are stated sep-

arately by the following three propositions.

Proposition 12.6.5 (ProcessShape Termination). ProcessShape(P) termina-

tes for every P .

Proof. By induction on the structure of P because P is a finite object and using

Lemma 12.6.4.

The correctness of ProcessShape(P) simply says that it returns a shape predi-

cate matching P . The resulting shape predicate does not necessarily (and in most

cases it will not) be an R-type.

Proposition 12.6.6 (ProcessShape Correctness). Let ProcessShape(P) �
Π. Then $ P : Π.

Proof. Let ProcessShape(P) � Π. Let us prove the claim by induction on the

structure of P . Let

P � 0: Clearly Π � 〈∅, R〉 and $ P : Π.

P � F.P0: We see that Π � 〈tχ ϕÝÑ χ0uYΓ0, χ〉 where 〈Γ0, χ0〉 � ProcessShape(P0)

and ϕ � FormType(F) and χ is a node fresh for Γ0. By the induction hypoth-

esis we obtain that $ P0 : 〈Γ0, χ0〉. By Lemma 12.6.4 we obtain that $ F : ϕ.

Hence $ F.P0 : Π.

P � P0 | P1: Let Γ0, Γ1
0, Γ2

0, Γ1, χ0, and χ1 be values of variables of the corre-

sponding names at the time of execution of line 13. We can see that Π �
〈Γ0 Y Γ2

1, χ0〉. By the induction hypothesis we obtain that $ P0 : 〈Γ0, χ0〉 and$ P1 : 〈Γ1, χ1〉. Now it holds that $ P1 : 〈Γ1
1, χ1〉 because Γ1 and Γ1

1 have the

same structure, they differ only in names of nodes which do not participate

in matching of processes against shape predicates. Clearly also $ P1 : 〈Γ2
1, χ0〉

because Γ2
1 is Γ1

1 with node χ1 renamed to χ0. Hence the claim.

P � νx.P0: We see that Π � ProcessShape(P0). By the induction hypothesis we

obtain that $ P0 : Π. Hence $ νx.P0 : Π.

P � !P0: We see that Π � ProcessShape(P0). By the induction hypothesis we

obtain that $ P0 : Π. Hence $!P0 : Π.

The completeness of ProcessShape says that the algorithm returns a shape

predicate that is R-preprincipal for the input P . Note this holds for an arbitrary

R. The completeness can be equivalently expressed as that the resulting shape

predicate is ∅-preprincipal for P .

Proposition 12.6.7 (ProcessShape Completeness). Let R be arbitrary and let

Π � ProcessShape(P). Then Π is R-preprincipal for P .

134

Chapter 12. Technical Details on Type Inference

Proof. Let Π � ProcessShape(P). Let Π1 � 〈Γ1, χ1〉 be a restricted R-type of P .

We want to find δ such that δ6Π E Π1. Let us prove the claim by induction on the

structure of P . Let

P � 0: Then Π � 〈∅, R〉. Let δ � tR ÞÑ χ1u. Clearly δ6Π E Π1.
P � F.P0: Then Π � 〈Γ0 Y tχ ϕÝÑ χ0u, χ〉 where 〈Γ0, χ0〉 � ProcessShape(P0),

and χ is a node fresh for Γ0, and ϕ � FormType(F). We know $ P : Π1
and thus there are some χ1

0, ϕ1 such that $ F : ϕ1 and pχ1 ϕ1ÝÑ χ1
0q P Γ1 and$ P0 : 〈Γ1, χ1

0〉. By the induction hypothesis we have that there is some δ0 such

that δ0 6〈Γ0, χ0〉 E 〈Γ1, χ1
0〉. Thus δ0pχ0q � χ1

0. By Lemma 12.6.4 we obtain

that $ F : ϕ and that ϕ ¤ ϕ1. Let us define δ � δ0rχ ÞÑ χ1s. Clearly δ is

defined for all nodes of Π. It is easy to see that δ6Π E Π1 because for the

edge χ
ϕÝÑ χ0 from Π there is the edge χ1 � δpχq ϕ1ÝÑ δpχ0q � χ1

0 in Π1 with

ϕ ¤ ϕ1 as required. The existence of the other required edges follows from

δ0 6〈Γ0, χ0〉 E 〈Γ1, χ1
0〉.

P � P0 | P1: Then Π � 〈Γ0 Y Γ2
1, χ0〉 where 〈Γ0, χ0〉 � ProcessShape(P0) and

〈Γ1, χ1〉 � ProcessShape(P1) and Γ2
1 is Γ1 with the node χ1 renamed to χ0

and with the other nodes made distinct from the nodes in Γ0. Thus there is

some node renaming δ11 such that Γ2
1 � δ11pΓ1q and also δ11pχ1q � χ0. We know$ P : Π1 and thus $ P0 : Π1 and $ P1 : Π1. Thus by the induction hypothesis

we obtain δ0 and δ1 such that δ0 6〈Γ0, χ0〉E Π1 and δ1 6〈Γ1, χ1〉E Π1. Clearlypδ11q�1 is a function a thus we can define δ on the nodes of Π as follows.

δpχq � $&%δ0pχq if χ is in Γ0

δ1pδ1�1
1 pχqq otherwise

We see that δ0pχ0q � δ1pδ1�1
1 pχ0qq where χ0 is the only node both in Γ0 and Γ1.

Let us prove that δ6ΠEΠ1. When χ2
ϕÝÑ χ3 is in Π then either pχ2

ϕÝÑ χ3q P Γ0

or pχ2
ϕÝÑ χ3q P Γ2

1. In the first case clearly there is some δpχ2q ϕ1ÝÑ δpχ3q in

Π1 with ϕ ¤ ϕ1 because δpχ2q � δ0pχ2q and δpχ3q � δ0pχ3q. In the second

case, when pχ2
ϕÝÑ χ3q P Γ2

1 we have that pδ1�1
1 pχ2q ϕÝÑ δ1�1

1 pχ3qq P Γ1. Because

δ1 6〈Γ1, χ1〉EΠ1, we have that there is some δpχ2q ϕ1ÝÑ δpχ3q in Π1 with ϕ ¤ ϕ1
as required. The situation with flow edges is analogous. Hence the claim.

P � νx.P0: The claim follows directly from the induction hypothesis.

P � !P0: The claim follows directly from the induction hypothesis.

12.7 Properties of the Restriction Algorithm

In this section we prove termination, correctness, and completeness of the restriction

algorithm, that is, of RestrictGraph and of its two subroutines RestrictWidth and

135

Chapter 12. Technical Details on Type Inference

RestrictDepth.

12.7.1 Properties of RestrictWidth

Firstly we prove that RestrictWidth terminates for every input.

Lemma 12.7.1. RestrictWidth(Π) terminates for every Π.

Proof. The algorithm increases the number of nodes in the graph assigned to vari-

able Γ by one with each iteration of the while cycle. Thus the algorithm has to

terminate after finitely steps because Π has only finitely many nodes.

The following property is used to prove termination of PrincipalType. It

implies that pathspΠq never decreases during the execution of PrincipalType.

Lemma 12.7.11 which proves that the restriction algorithm does not decrease num-

ber of almost distinct paths in a shape predicate uses this lemma. The proof contains

an inductive definition of a node renaming δ which is used in other proofs.

Lemma 12.7.2. Let Π � RestrictWidth(Π0). Then there is a node renaming δ of

Π0 such that δpΠ0q � Π.

Proof. Let Π � RestrictWidth(Π0). Let Π0 � 〈Γ0, χr〉. From Lemma 12.7.1

we know that RestrictWidth(Π0) terminates and thus that while is executed only

finitely many time during the execution of RestrictWidth(Π0). Let it be executed

n times.

Let δ0
ren be the identity on the nodes of Π0. We shall construct the sequence δ1

ren,

. . ., δn
ren of node renaming inductively as follows. Let χi

0 be the value of variable χ0

during the i-th iteration of the while cycle when computing RestrictWidth(Π0).

Similarly, let χi
1 and χ1

i be the values of χ1 and χ1 respectively. Let δi
renpχq be defined

for any node χ from Π0 as follows.

δi
renpχq � $&%χ1

i if δi�1
ren pχq � χi

0 or δi�1
ren pχq � χi

1

δi�1
ren pχq otherwise

Let Πi � 〈Γi, χr〉 where Γi is the value variable Γ after the execution of the i-th

iteration of the while cycle (Γ0 � Γ0). It is easy to prove by induction on i that

δi
ren is a node renaming such that δi

renpΠ0q � Πi for any i P t0, . . . , nu. We can also

see that Πn � Π. Finally let δ � δn
ren. Hence the claim δpΠ0q � Π.

The following proves the correctness of RestrictWidth which is that when the

algorithm returns its input unchanged then the input is width-restricted.

Lemma 12.7.3 (RestrictWidth Correctness). When RestrictWidth(Π) � Π

then Π is width-restricted.

136

Chapter 12. Technical Details on Type Inference

Proof. Let RestrictWidth(Π) � Π. Clearly the while cycle was not executed

because otherwise the returned graph would have less nodes than the input graph and

they could not be equal. Thus the condition of the while cycle is not satisfied which

directly implies the claim.

The completeness of RestrictWidth says that the algorithm preserve existence

of nesting of the input in any other restricted shape predicate. The same node map

which defines the nesting of the input in some restricted shape predicate defines the

nesting of the output in the same restricted shape predicated.

Lemma 12.7.4 (RestrictWidth Completeness). Let Πrestr be restricted and let

Π � RestrictWidth(Π0). Then δ6Π0 E Πrestr implies δ6Π E Πrestr.

Proof. Let Πrestr be restricted and let Π � RestrictWidth(Π0). Let Πrestr �
〈Γrestr, χrestr〉. Let Π0 � 〈Γ0, χr〉. Let δ6Π0 E Πrestr. Let n, χi

0, χi
1, χ1

i, Γi, Πi, and

δi
ren (for any i P t1, . . . , nu) be as in the proof of Lemma 12.7.2. Additionally let χi be

the value of variable χ during the i-th iteration of the while cycle when computing

RestrictWidth(Π0). Similarly, let ϕi
0 and ϕi

1 be the values of ϕ0 and ϕ1. We have

Π � Πn � δn
renpΠ0q. Let Π0 � Π0.

We shall prove by induction on i that δ6Πi E Πrestr for all i P t0, . . . , nu. The

case i � 0 follows directly from the assumptions because Π0 � Π0. Let i ¡ 0 and

δ6Πi�1 E Πrestr. We know that Πi � δi
renpΠ0q and Πi�1 � δi�1

ren pΠ0q. It means Πi�1

is obtained from Πi by unification of χi
0 and χi

1 (that is, replacing both of them by

χ1
i which is one of χi

0 and χi
1). It is enough to prove that δpχi

0q � δpχi
1q, that is, that

the nodes of Π0 which are being unified in the i-th iteration of the while cycle are

mapped by δ to the same node of Πrestr (they are already unified in Πrestr).

Now let us prove that δpχi
0q � δpχi

1q. We have pχi ϕi
0ÝÑ χi

0q P Γi�1 and pχi ϕi
1ÝÑ

χi
1q P Γi�1. The induction hypothesis says that δ6Πi�1 E Πrestr and thus there are

some ϕ1
0 and ϕ1

1 such that pδpχiq ϕ1
0ÝÑ δpχi

0qq P Γrestr and pδpχiq ϕ1
1ÝÑ δpχi

1qq P Γrestr

and ϕi
0 ¤ ϕ1

0 and ϕi
1 ¤ ϕ1

1. We know that ϕi
0 � ϕi

1 and thus the previous implies

ϕ1
0 � ϕ1

1. Thus δpχi
0q � δpχi

1q because Γrestr is width-restricted. Hence the claim.

12.7.2 Properties of RestrictDepth

The properties of RestrictDepth proved in this section are analogous to the prop-

erties of RestrictWidth from the previous section. The termination is stated is

follows.

Lemma 12.7.5 (RestrictDepth Termination). RestrictDepth(Π) terminates for

every Π.

137

Chapter 12. Technical Details on Type Inference

Proof. The algorithm increases the number of nodes in the graph assigned to vari-

able Γ by one with each iteration of the while cycle. Thus, because Π has only

finitely many nodes, the algorithm has to terminate after finitely steps.

The following define the property of RestrictDepth used to prove that the

restriction algorithm do not decrease the number of different almost disjoint edge

paths (Lemma 12.7.11). Again, it also provides an induction definition of δ used in

other proofs namely in the proof of the completeness of RestrictDepth.

Lemma 12.7.6. Let Π0 � RestrictDepth(Π). Then there is a node renaming δ of

Π such that Π0 � δpΠq.
Proof. Let Π0 � RestrictDepth(Π). Let Π � 〈Γ, χr〉. From Lemma 12.7.5

we know that RestrictDepth(Π) terminates and thus that while is executed only

finitely many time during the execution of RestrictDepth(Π). Let it be executed n

times.

Let δ0 be the identity on the nodes of Π. We shall construct the sequence δ1
ren, . . .,

δn
ren of node maps inductively as follows. Let χi

1 be the value of variable χ1 during

the i-th iteration of the while cycle when computing RestrictDepth(Π). Let ki be

the value of k in the i-th iteration. Similarly, let χi
ki�1 and χ1

i be the values of χki�1

and χ1 respectively. Let δi
renpχq be defined for any node χ from Π as follows.

δi
renpχq � $&%χ1

i if δi�1
ren pχq � χi

1 or δi�1
ren pχq � χi

ki�1

δi�1
ren pχq otherwise

Let Πi � 〈Γi, χr〉 where Γi is the value variable Γ after the execution of the i-th

iteration of the while cycle (Γ0 � Γ). It is easy to prove by induction on i that

δipΠq � Πi for any i P t0, . . . , nu. We can also see that Πn � Π0. Finally let δ � δn.

Hence the claim δpΠq � Π0.

The following defines and proves the correctness of RestrictDepth.

Lemma 12.7.7 (RestrictDepth Correctness). When RestrictDepth(Π) � Π

then Π satisfies the depth restriction.

Proof. Let RestrictDepth(Π) � Π. Clearly the while cycle was not executed

because otherwise the returned graph would have less nodes than the input graph and

they could not be equal. Thus the condition of the while cycle is not satisfied which

directly implies the claim.

The following proves the property of RestrictDepth which is essential for the

completeness of PrincipalType.

138

Chapter 12. Technical Details on Type Inference

Lemma 12.7.8 (RestrictDepth Completeness). Let Πrestr be restricted and let

Π � RestrictDepth(Π0). Then δ6Π0 E Πrestr implies δ6Π E Πrestr.

Proof. Let Πrestr be restricted and let Π � RestrictDepth(Π0). Let Πrestr �
〈Γrestr, χrestr〉. Let Π0 � 〈Γ0, χr〉. Let δ6Π0 E Πrestr. Let n, Γi, Πi, and δi

ren (for

any i P t1, . . . , nu) be as in the proof of Lemma 12.7.6. Additionally let χi be the

value of variable χ during the i-th iteration of the while cycle when computing

RestrictDepth(Π0) and let ki be the value of k in the i-th iteration. Similarly, let

ϕi
0, . . ., ϕi

ki
and χi

1, . . ., χi
ki�1 be the values of corresponding variables (that is, ϕi

ki

is the value of ϕk [more precisely ϕki
] in the i-th iteration and so on).

We shall prove by induction on i that δ6Πi E Πrestr for all i P t0, . . . , nu. The

case i � 0 follows directly from the assumptions because Π0 � Π0. Let i ¡ 0 and

δ6Πi�1 E Πrestr. We know that Πi � δi
renpΠ0q and Πi�1 � δi�1

ren pΠ0q. It means Πi�1

is obtained from Πi by unification of χi
1 and χi

ki�1 (that is, replacing both of them by

χ1
i which is one of χi

1 and χi
ki�1). It is enough to prove that δpχi

1q � δpχi
ki�1q, that

is, that the nodes of Π0 which are being unified in the i-th iteration of the while

cycle are mapped by δ to the same node of Πrestr (they are already unified in Πrestr).

Now let us prove that δpχi
1q � δpχi

ki
q. We know that there is the path tχi

0

ϕi
0ÝÑ

χi
1

ϕi
1ÝÑ � � �χki

ϕkiÝÝÑ χki�1u � Γi. The induction hypothesis says that δ6Πi�1 E Πrestr

and thus there are some ϕ1
0, . . ., ϕ1

ki
with ϕi

j ¤ ϕ1
j for all j P t0, . . . , kiu such that

there is the path tδpχi
0q ϕ1

0ÝÑ δpχi
1q ϕ1

1ÝÑ � � � δpχki
q ϕ1

kiÝÝÑ δpχki�1qu � Γrestr in Πrestr. We

know that ϕi
0 � ϕi

ki
and thus the previous implies ϕ1

0 � ϕ1
ki
. Thus δpχi

1q � δpχi
ki
q

because Γrestr is depth-restricted. Hence the claim.

12.7.3 Properties of RestrictGraph

The termination of RestrictGraph is closely related to the termination of its two

subroutines. It is proved in the following lemma.

Lemma 12.7.9 (RestrictGraph Termination). RestrictGraph(Π) terminates for

every Π.

Proof. We can see that every call to RestrictWidth (resp. RestrictDepth) ter-

minates by Lemma 12.7.1 (resp. Lemma 12.7.5). The number of nodes of the shape

predicate assigned to variable Π is either decreased during the call to RestrictWidth

(resp. RestrictDepth) or the whole shape predicate stays unchanged. Thus during

every execution of the repeat cycle the number of nodes of Π is either decreased or

Π stays unchanged. When it stays unchanged then the algorithm terminates. Thus

the number of iterations of the repeat cycle is bound by the number of nodes in the

input shape predicate which is a finite number.

139

Chapter 12. Technical Details on Type Inference

The following lemma is used to prove that the restriction algorithm does not de-

crease the number of different almost disjoint edge paths (the next Lemma 12.7.11).

Lemma 12.7.10. Let Π0 � RestrictGraph(Π). Then there is a node renaming δ

of Π such that Π0 � δpΠq.
Proof. The node renaming δ is obtained by composition of the node renamings

obtained from Lemma 12.7.2 and Lemma 12.7.6.

The following proves that the restriction algorithm does not decrease the num-

ber of different almost disjoint edge paths. It is used to prove the termination of

PrincipalType.

Lemma 12.7.11. Let Π0 � RestrictGraph(Π). Then pathspΠq ¤ pathspΠ0q.
Proof. Let Π � 〈Γ, χr〉 and Π0 � RestrictGraph(Π). By Lemma 12.7.10 we

have δ such that δpΠq � Π0. Let tχr
ϕ1ÝÑ χ1

ϕ2ÝÑ � � � ϕkÝÑ χku be a rooted path in Π

such that pϕ1, . . . , ϕkq is an almost disjoint edge path in Π. Then obviouslytδpχrq ϕ1ÝÑ δpχ1q ϕ2ÝÑ � � � ϕkÝÑ δpχkqu
is a rooted path in δpΠq and that is why pϕ1, . . . , ϕkq is an almost disjoint edge path

in δpΠq. Thus pathspΠq ¤ pathspδpΠqq.

The following lemma is used in the proof of the termination of PrincipalType.

It helps to prove that when LocalClosureStep or FlowClosureStep adds a new

form edge to Π then the number of different almost disjoint paths in Π is increased.

Lemma 12.7.12. Let Π0 � RestrictGraph(Π). If there is a rooted path to every

node in Π then there is a rooted path to every node in Π0 such that the corresponding

edge path in Π0 is disjoint.

Proof. Let Π0 � RestrictGraph(Π). By Lemma 12.7.10 there is δ such that

Π0 � δpΠq. Let χ1 be a node of Π0. There is a node χ of Π such that δpχq � χ1. By

the assumption, there exists a rooted path tχr
ϕ1ÝÑ χ1

ϕ2ÝÑ � � � ϕkÝÑ χu to χ in Π. Thentδpχrq ϕ1ÝÑ δpχ1q ϕ2ÝÑ � � � ϕkÝÑ δpχqu
is a rooted path to χ1 in Π0. We know that δpΠq satisfied the depth restriction. When

ϕi � ϕj for some i j then obviously ϕi � ϕj. Thus by the depth restriction it has

to hold that δpχiq � δpχjq. Let us construct a path by removing the edges between

δpχiq and δpχjq, that is, shorten the above pathtδpχrq ϕ1ÝÑ � � � ϕiÝÑ δpχiq ϕi�1ÝÝÝÑ � � � ϕjÝÑ δpχjq ϕj�1ÝÝÝÑ � � � ϕkÝÑ χ1u
140

Chapter 12. Technical Details on Type Inference

to tδpχrq ϕ1ÝÑ � � � ϕi�1ÝÝÝÑ δpχi�1q ϕiÝÑ δpχjq ϕj�1ÝÝÝÑ � � � ϕkÝÑ χ1u
Repeat this procedure until ϕi � ϕj for all i � j to obtain a rooted path to χ1 in

δpΠq. Clearly its corresponding edge path is disjoint.

The following is used to prove the correctness of RestrictGraph.

Lemma 12.7.13. When RestrictDepth(RestrictWidth(Π)) � Π then Π is re-

stricted.

Proof. Let RestrictDepth(RestrictWidth(Π)) � Π. We know that both the al-

gorithms RestrictWidth and RestrictDepth preserves the root node and that none

of these two algorithms can increase the number of nodes in the input shape predicate.

When any of the two functions do not decrease the number of nodes than they return

the input shape predicate unchanged. Thus it has to hold that RestrictWidth(Π) �
Π which gives us that RestrictDepth(Π) � Π. Thus Π satisfies the width re-

striction by Lemma 12.7.3 and the depth restriction by Lemma 12.7.7. Hence Π is

restricted.

The following proves the correctness of RestrictGraph. This correctness prop-

erty is slightly different from correctness properties of the subroutines RestrictWidth

and RestrictDepth. The correctness of RestrictGraph its property which is re-

quired to prove the correctness of PrincipalType. On the other hand, correctness of

RestrictWidth or RestrictDepth is its property required to prove the correctness

of RestrictGraph.

Lemma 12.7.14 (RestrictGraph Correctness). Let Π0 � RestrictGraph(Π).

Then Π0 is restricted.

Proof. Let Π0 � RestrictGraph(Π). The until condition at line 5 was satisfied

in the last iteration of the repeat cycle and thus

RestrictDepth(RestrictWidth(Π0)) � Π0

because Π0 is the value of both variables Π and Π0 at that point. Hence Π0 is

restricted by Lemma 12.7.13.

The completeness of RestrictGraph follows from the completeness of its sub-

routines RestrictWidth and RestrictDepth.

Lemma 12.7.15 (RestrictGraph Completeness). Let Πrestr be restricted and let

Π � RestrictGraph(Π0). Then δ6Π0 E Πrestr implies δ6Π E Πrestr.

Proof. Follows directly from Lemma 12.7.4 and Lemma 12.7.8.

141

Chapter 12. Technical Details on Type Inference

12.8 Properties of the Local Closure Algorithm

The following notion of compatible type instantiations will be used in the proofs in

this section. Two type instantiations are compatible when they agree on values of

variables which are defined by both of them.

Definition 12.8.1. Type instantiations � and �1 are compatible iff for all vari-

ables z̊ P domp�q X domp�1q it holds that �p̊zq � �1p̊zq.

12.8.1 Properties of MatchElement

We know that MatchElement returns either an empty set or an singleton set with

one type instantiation. The correctness of MatchElement says that when �(E̊) � ε

and varpE̊q � domp�q then MatchElement(∅,E̊,ε) � t�u. In other words, for a

given E̊ and ε, MatchElement computes (representations of) all instantiations such

that �(E̊) � ε. The following lemma proves a slightly more general property which

considers also type instantiations with varpE̊q � domp�q and nonempty accumulator�1.
Lemma 12.8.2 (MatchElement Correctness). Let � and �1 be compatible. Then�(E̊) � ε implies

MatchElement(�1, E̊, ε) � t�1 Y pvarpE̊q ⊳ �qu.
Proof. Let � and �1 be compatible and let �(E̊) � ε. Let

E̊ � x: Then ε � x and obviously MatchElement(�1, E̊, ε) � t�1u � t�1YpvarpE̊q ⊳�qu.
E̊ � x̊: Thus ε � �(̊x) P TypeTag and MatchElement(�1, E̊, ε) � t�1r̊x ÞÑ εsu be-

cause � and �1 are compatible. Now also because � and �1 are compatible and be-

cause varpE̊q � tx̊u we have that �1r̊x ÞÑ εs � �1Ytx̊ ÞÑ εu � �1YpvarpE̊q ⊳ �q.
E̊ � (x̊1, . . . , x̊k): Let ιj � �(̊xj) for j P t1, . . . , ku. Thus ε � (ι1, . . . , ιk) and

MatchElement(�1, E̊, ε) � t�1r̊x1 ÞÑ ι1, . . . , x̊k ÞÑ ιksu because � and �1 are

compatible and thus x̊j P domp�1q implies �1(̊xj) � ιj. From the same reason

and because varpE̊q � tx̊1, . . . , x̊ku we obtain that �1r̊x1 ÞÑ ι1, . . . , x̊k ÞÑ ιks ��1 Y tx̊1 ÞÑ ι1, . . . , x̊k ÞÑ ιku � �1 Y pvarpE̊q ⊳ �q.
E̊ � <m̊1, . . . , m̊k>: Let µj � �(m̊j) for j P t1, . . . , ku. Thus ε � <µ1, . . . , µk> and

MatchElement(�1, E̊, ε) � t�1rm̊1 ÞÑ µ1, . . . , m̊k ÞÑ µksu. Because � and �1
are compatible, and because varpE̊q � tm̊1, . . . , m̊ku we obtain that �1rm̊1 ÞÑ
µ1, . . . , m̊k ÞÑ µks � �1 Y tm̊1 ÞÑ µ1, . . . , m̊k ÞÑ µku � �1 Y pvarpE̊q ⊳ �q.

142

Chapter 12. Technical Details on Type Inference

The completeness of MatchElement says that the set returned by the algorithm

MatchElement(∅,E̊,ε) contains only type instantiations � such that �(E̊) � ε. We

know that ε and E̊ uniquely determines � such that �(E̊) � ε (with varpE̊q �
domp�q) and thus the set returned by the algorithm never has more than one mem-

ber. The formulation in the following lemma is again slightly more general as it

considers nonempty accumulators �1. Recall that well lhs-formed E̊ is an element

template that appears in some well formed lhs-template and thus the same message

variable can not appear more than E̊ once in E̊.

Lemma 12.8.3 (MatchElement Completeness). Let E̊ be a well lhs-formed ele-

ment template. Let domp�1qXvarpE̊q � NameVar. When � P MatchElement(�1, E̊, ε)

then �(E̊) � ε and � � �1 Y pvarpE̊q ⊳ �q.
Proof. Let E̊ be well lhs-formed and let domp�1q X varpE̊q � NameVar. Let � P
MatchElement(�1, E̊, ε). Clearly MatchElement(�1, E̊, ε) � t�u. Let

E̊ � x: The if condition at line 2 was satisfied during the execution and thus � � �1.
Now varpE̊q � ∅ implies the claim.

E̊ � x̊: The if condition at line 4 was satisfied during the execution and thus � ��1r̊x ÞÑ εs � �1 Y tx̊ ÞÑ εu. Now claim holds because varpE̊q � tx̊u.
E̊ � (x̊1, . . . , x̊k): Both relevant if conditions were satisfied and thus � � �1r̊x1 ÞÑ

ι1, . . . , x̊k ÞÑ ιks for some ι1, . . ., ιk. We know that x̊i � x̊j whenever i � j

because E̊ is well lhs-formed. The if condition at line 7 was satisfied and thus

ε � (ι1, . . . , ιk). This gives us �(E̊) � ε. Moreover the condition at line 8 was

satisfied and thus � � �1 Y tx̊1 ÞÑ ι1, . . . , x̊k ÞÑ ιku. Now varpE̊q � tx̊1, . . . , x̊ku
implies the claim.

E̊ � <m̊1, . . . , m̊k>: The if condition at line 11 was satisfied and thus � � �1rm̊1 ÞÑ
µ1, . . . , m̊k ÞÑ µks for some µ1, . . ., µk. We know that m̊i � m̊j whenever

i � j because E̊ is well formed. The if condition at line 11 was satisfied and

thus ε � <µ1, . . . , µk>. This gives us �(E̊) � ε. Moreover the assumption that

domp�1q X varpE̊q � NameVar implies that m̊i R domp�1q for all i P t1, . . . , ku
and thus � � �1 Y tm̊1 ÞÑ µ1, . . . , m̊k ÞÑ µku. Now varpE̊q � tm̊1, . . . , m̊ku
implies the claim.

12.8.2 Properties of MatchForm

The correctness of MatchForm is similar to the correctness of MatchElement. It says

that MatchForm(∅,F̊ ,ϕ) returns the set containing all instantiations � such that�(F̊) � ϕ (and varpE̊q � domp�q). The following slightly more general formulation

considers nonempty accumulators �1.
143

Chapter 12. Technical Details on Type Inference

Lemma 12.8.4 (MatchForm Correctness). Let � and �1 be compatible. Then�(F̊) � ϕ implies

MatchForm(�1, F̊ , ϕ) � t�1 Y pvarpF̊ q ⊳ �qu.
Proof. Let � and �1 be compatible and �(F̊) � ϕ. It is clear that F̊ � E̊0 . . . E̊k

and ϕ � ε0 . . . εk for some k. We have that �(E̊i) � εi for i P t0, . . . , ku. Now we

can construct two finite sequences �0, . . ., �k and �10, . . ., �1k of type instantiations

such that �10 � �1, and that �i and �1i are compatible, and it holds thatt�iu � MatchElement(�1i, E̊i, εi) �i � �1i Y pvarpE̊iq ⊳ �iq �1i � �i�1

The existence of the above sequences is easily proved by induction on i using the

above Lemma 12.8.2.

Now let us consider the execution of the algorithm MatchForm(�1, F̊ , ϕ). We can

see that �1i is the value of variable �0 at the time of evaluation of line 6 in the i-th

iteration of the for cycle, that is, when the value of variable i is i. Moreover we can

see the if condition at line 7 is satisfied in all iterations of the for cycle and that�i is the value assigned to the existentially quantified variable �1 in the condition in

the i-th iteration of the cycle. Hence the algorithm returns the singleton set t�ku. It

is easy to prove that �i and � are compatible for all i P t0, . . . , ku. Thus we can see

that varpE̊iq ⊳ �i � varpE̊iq ⊳ �. Using the above equations we obtain�k � �1 Y pvarpE̊0q ⊳ �0q Y � � � Y pvarpE̊kq ⊳ �kq ��1 Y pvarpE̊kq ⊳ �q Y � � � Y pvarpE̊0q ⊳ �q � �1 Y pvarpF̊ q ⊳ �q
The last equation holds because varpF̊ q � varpE̊0q Y � � � Y varpE̊kq and because � and�1 are compatible. Hence the claim.

The completeness of MatchForm is similar to the completeness of MatchElement.

It says that MatchForm(∅,F̊ ,ϕ) returns the set containing only instantiations � such

that �(F̊) � ϕ and no other instantiations. The following slightly more general

formulation considers nonempty accumulators �1.
Lemma 12.8.5 (MatchForm Completeness). Let F̊ be a well lhs-formed form tem-

plate. Let domp�1q X varpF̊ q � NameVar. When � P MatchForm(�1, F̊ , ϕ) then�(F̊) � ϕ and � � �1 Y pvarpF̊ q ⊳ �q.
Proof. Let F̊ be well formed and let domp�1q X varpF̊ q � NameVar. Let � P
MatchForm(�1, F̊ , ϕ). Obviously MatchForm(�1, F̊ , ϕ) � t�u and it implies that F̊ �
E̊0 . . . E̊k and ϕ � ε0 . . . εk for some k (which is equal to the value of variable k).

Moreover is implies that the if condition at line 7 was satisfied in all iterations of the

for cycle in MatchForm. Thus we can construct the sequence of type instantiations

144

Chapter 12. Technical Details on Type Inference�10, . . ., �1k such that �i is the value of variable �0 at the time of evaluation of line 6 in

the i-th iteration of the for cycle, that is, in the iteration when the value of variable

i is i. Similarly we construct the sequence �0, . . ., �k such that �i is the value of

variable �1 evaluated at line 7 in the i-th iteration of the for cycle. We see that� � �k and also that �10 � �1 and �1i � �i�1 for i P t1, . . . , ku. Moreover we see thatt�iu � MatchElement(�1i, E̊i, εi) for i P t0, . . . , ku. Let us verify the assumptions

of Lemma 12.8.3. The first assumption of Lemma 12.8.3 that E̊i is well formed is

satisfied because F̊ is well formed. The second assumption is domp�iq X varpE̊ 1
iq �

NameVar. We know that �0 � �1 and thus the assumption is satisfied for i � 0

and the lemma can be used for i � 0. The lemma proves that �1 � �0 � �11. By

induction on i we can prove that �1 � �i. Moreover the assumption that F̊ is well

formed implies that no message variable from E̊i is contained in the previous E̊0,

. . ., E̊i�1. Thus there is no message variable in both domp�iq and varpE̊iq because

domp�1q X varpE̊iq � NameVar. So by Lemma 12.8.3 we obtain that �i(E̊i) � εi and�i � �1i Y pvarpE̊iq ⊳ �iq for all i P t0, . . . , ku.
This implies that �i�1 � �i for i P t1, . . . , ku and also that �i � �k � � for

i P t0, . . . , ku and also more specifically that �1 � �. Now �i � � and �i(E̊i) � εi

implies �(E̊i) � εi which proves the first part of the claim that �(F̊) � ϕ. Using the

above equation that �i � �1i Y pvarpE̊iq ⊳ �iq we can prove that� � �k � �1 Y pvarpE̊0q ⊳ �0q Y � � � Y pvarpE̊kq ⊳ �kq
We have already proved that �i(E̊i) is defined for all i P t0, . . . , ku and thus we

know that varpE̊iq � domp�iq. Thus for all i P t0, . . . , ku we can see that varpE̊iq ⊳�i � varpE̊iq ⊳ � because �i � �. Thus � � �1 Y varpF̊ q ⊳ � because varpF̊ q �
varpE̊0q Y � � � Y varpE̊kq and �1 � �. Hence the claim.

12.8.3 Properties of LeftMatches

The correctness of LeftMatches is similar to the correctness of its above two sub-

routines. It says that LeftMatches(∅,P̊ ,Γ,χ) computes the set which contains all

instantiations � such that � (L P̊ : 〈Γ, χ〉 (and domp�q � varpP̊ q). Contrary to the

previous algorithms, the resulting set can have more than one member because P̊ , Γ,

and χ do not uniquely determine �. The following slightly more general formulation

considers a nonempty accumulator �1.
Lemma 12.8.6 (LeftMatches Correctness). Let � and �1 be compatible. Then� (L P̊ : 〈Γ, χ〉 impliespvarpP̊ q ⊳ �q Y �1 P LeftMatches(�1, P̊ , Γ, χ).

145

Chapter 12. Technical Details on Type Inference

Proof. By induction on the structure of P̊ . Let � and �1 be compatible and � (L

P̊ : 〈Γ, χ〉. Let us take the set of type instantiations I � LeftMatches(�1, P̊ , Γ, χ).

We need to prove that pvarpP̊ q ⊳ �q Y �1 P I. Let

P̊ � 0: It is cleat that I � t�1u. Now pvarpP̊ q ⊳ �q Y �1 � �1 because varpP̊ q � ∅.

P̊ � p̊: We see that I � t�1rp̊ ÞÑ χsu. Now � (L p̊ : 〈Γ, χ〉 implies that �pp̊q � χ and

thus ptp̊u ⊳ �q � tp̊ ÞÑ χu. Also varpP̊ q � tp̊u and thus pvarpP̊ q ⊳ �q Y �1 ��1rp̊ ÞÑ χs P I.

P̊ � F̊ .P̊0: In this case we know that there is some χ0 such that � (L P̊0 : 〈Γ, χ0〉

and pχ ϕÝÑ χ0q P Γ where ϕ � �(F̊). Moreover we can see thatt�1 : �1 P LeftMatches(�0, P̊1, Γ, χ0) & �0 P MatchForm(�1, F̊ , ϕ)u � I

By Lemma 12.8.4 we obtain thatpvarpF̊ q ⊳ �q Y �1 P MatchForm(�1, F̊ , ϕ).

Let �10 � pvarpF̊ q ⊳ �q Y �1. It is easy to see that � and �10 are compatible.

Thus by the induction hypothesis for �, �10, and P̊0 we obtain thatpvarpF̊ q ⊳ �q Y �10 P LeftMatches(�10, P̊0, Γ, χ0) � I

Finally, we know that varpP̊ q � varpF̊ q Y varpP̊0q and thuspvarpF̊ q ⊳ �q Y �10 � pvarpF̊ q ⊳ �q Y pvarpP̊0q ⊳ �q Y �1 � pvarpP̊ q ⊳ �q Y �1
P̊ � P̊0 | P̊1: We have that � (L P̊0 : 〈Γ, χ〉 and � (L P̊1 : 〈Γ, χ〉. We can see that

I � t�0 : �0 P LeftMatches(�1, P̊1, Γ, χ) & �1 P LeftMatches(�1, P̊0, Γ, χ)u
Let �11 � pvarpP̊0q ⊳ �q Y �1. By the induction hypothesis for �, �1, and P̊0 we

obtain that �11 P LeftMatches(�1, P̊0, Γ, χ). It is easy to see that � and �1 are

compatible. Thus by the induction hypothesis for �, �11, and P̊1 we obtain thatpvarpP̊1q ⊳ �q Y �11 P LeftMatches(�11, P̊1, Γ, χ) � I

Finally, we know that varpP̊ q � varpP̊0q Y varpP̊1q and thuspvarpP̊1q ⊳ �q Y �11 � pvarpP̊1q ⊳ �q Y pvarpP̊0q ⊳ �q Y �1 � pvarpP̊ q ⊳ �q Y �1
otherwise: � (L P̊ : 〈Γ, χ〉 implies that P̊ can not contain a substitution application

template and thus the above cases cover all possibilities.

146

Chapter 12. Technical Details on Type Inference

The completeness of LeftMatches is similar to the completeness of its above two

subroutines. It says that LeftMatches(∅,P̊ ,Γ,χ) computes the set which contains

only instantiations � such that � (L P̊ : 〈Γ, χ〉 (and domp�q � varpP̊ q). The following

slightly more general formulation considers a nonempty accumulator �1.
Lemma 12.8.7 (LeftMatches Completeness). Let P̊ be a well formed lhs-template

and domp�1q X varpP̊ q � NameVar. When � P LeftMatches(�1, P̊ , Γ, χ) then � (L

P̊ : 〈Γ, χ〉 and � � �1 Y pvarpP̊ q ⊳ �q.
Proof. Let P̊ be a well formed lhs-template and domp�1qXvarpP̊ q � NameVar. Let

I � LeftMatches(�1, P̊ , Γ, χ) and � P I. Let Π � 〈Γ, χ〉. Let

P̊ � 0: Then I � t�1u and thus � � �1. Also varpP̊ q � ∅. Hence the claim.

P̊ � x̊: Here � � �1r̊x ÞÑ χs and I � t�u. Obviously �(̊x) � χ and thus varpP̊ q ⊳� � tx̊ ÞÑ χu. Also p̊ R domp�1q because p̊ P varpP̊ q and p̊ R NameVar. Thus�1rp̊ ÞÑ χs � �1 Y tp̊ ÞÑ χu � �1 Y varpP̊ q ⊳ �. Hence the claim.

P̊ � F̊ .P̊0: We can see that

I � t�1 : �1 P LeftMatches(�0, P̊0, Γ, χ0) &�0 P MatchForm(�1, F̊ , ϕ) & pχ ϕÝÑ χ0q P Γu
Now � P I and thus there are some �0, χ0, and ϕ such that it holds that � P
LeftMatches(�0, P̊0, Γ, χ0) and �0 P MatchForm(�1, F̊ , ϕ) and pχ ϕÝÑ χ0q P Γ.

Clearly F̊ is well formed because P̊ is a well formed lhs-template and also

domp�1qXvarpF̊ q � NameVar. Thus by Lemma 12.8.5 we obtain that �0(F̊) �
ϕ and �0 � �1 Y pvarpF̊ q ⊳ �0q. The first statement implies that varpF̊ q �
domp�0q.
For any m̊ P varpP̊0q we have that m̊ R domp�0q because m̊ R varpF̊ q and

m̊ P varpP̊ q and m̊ R domp�1q and m̊ R NameVar. It is even more clear

for any process variable because an action template can not contain a process

variable. Thus domp�0q X varpP̊0q � NameVar. Clearly P̊0 is a well formed

lhs-template and thus by the induction hypothesis for �0 and P̊0 we obtain that� (L P̊0 : 〈Γ, χ0〉 and � � �0 Y pvarpP̊0q ⊳ �q. The second statement implies

that �0 � �.
Clearly �0 � � and �0(F̊) � ϕ implies that �(F̊) � ϕ. This proves � (L P̊ : Π.

Moreover �0 � � and varpF̊ q � domp�0q implies that varpF̊ q ⊳ �0 � varpF̊ q ⊳� and thus �0 � �1 Y pvarpF̊ q ⊳ �q. It gives us that � � �1 Y pvarpF̊ q ⊳�q Y pvarpP̊0q ⊳ �q � �1 Y pvarpP̊ q ⊳ �q because varpP̊ q � varpF̊ q Y varpP̊0q.
Hence the claim.

P̊ � P̊0 | P̊1: We can see that

I � t�1 : �1 P LeftMatches(�0, P̊1, Γ, χ) & �0 P LeftMatches(�1, P̊0, Γ, χ)u
147

Chapter 12. Technical Details on Type Inference

Now � P I and thus there is some �0 P LeftMatches(�1, P̊0, Γ, χ) such that� P LeftMatches(�0, P̊1, Γ, χ). Clearly P̊0 is a well formed lhs-template and

domp�1q X varpP̊0q � NameVar and thus we obtain by the induction hypothesis

for �1 and P̊0 that �0 (L P̊0 : Π and �0 � �1 Y pvarpP̊0q ⊳ �0q. The first

statement implies that varpP̊0q � domp�0q.
For any p̊ P varpP̊1q we have that p̊ R domp�0q because p̊ P varpP̊ q and p̊ R
domp�1q and p̊ R varpP̊0q and p̊ R NameVar. The same holds for any message

variable m̊ P varpP̊1q and thus domp�0qXvarpP̊1q � NameVar. Obviously P̊1 is

a well formed lhs-template and thus by the induction hypothesis for �0 and P̊1

we obtain that � (L P̊1 : Π and � � �0 Y pvarpP̊1q ⊳ �q. The second statement

implies that �0 � �.
Now �0 � � and �0 (L P̊0 : Π implies � (L P̊0 : Π by Lemma 8.6.1. This

proves � (L P̊ : Π. Moreover �0 � � and varpP̊0q � domp�0q implies that

varpP̊0q ⊳ �0 � varpP̊0q ⊳ � and thus �0 � �1 Y pvarpP̊0q ⊳ �q. It gives us

that � � �1 Y pvarpP̊0q ⊳ �q Y pvarpP̊1q ⊳ �q � �1 Y pvarpP̊ q ⊳ �q because

varpP̊ q � varpP̊0q Y varpP̊1q. Hence the claim.

otherwise: P̊ is a well formed lhs-template and thus can not contain a substitution

application template and thus the above cases cover all possibilities.

LeftMatches is called from LocalClosureStep and from ActiveNodes always

with the empty accumulator which saves the result computed so far (when a recursive

call to LeftMatches is made). Thus the following proposition combine the above

correctness and completeness properties to the property which is required to prove

correctness and completeness of LocalClosureStep and ActiveNodes. It says that

LeftMatches(∅,P̊ ,Γ,χ) computes the set which contains exactly the instantiations� such that � (L P̊ : 〈Γ, χ〉 (and domp�q � varpP̊ q).
Proposition 12.8.8 (LeftMatches Correctness). Let P̊ be a well formed lhs-

template. It holds that

LeftMatches(∅, P̊ , Γ, χ) � t� : � (L P̊ : 〈Γ, χ〉 & domp�q � varpP̊ qu.
Proof. Let P̊ be a well formed lhs-template. Let I � LeftMatches(∅, P̊ , Γ, χ). Let� P I. Clearly ∅ X varpP̊ q � ∅ � NameVar and thus by Lemma 12.8.7 we obtain

that � (L P̊ : 〈Γ, χ〉 and � � ∅ Y pvarpP̊ q ⊳ �q. The second statement implies that

domp�q � varpP̊ q. This proves the “�” direction of the equality in question.

Now let us prove the “�” direction. Let � be such that � (L P̊ : 〈Γ, χ〉 and

domp�q � varpP̊ q. Let �1 � ∅. Clearly � and �1 are compatible. We see thatpvarpP̊ q ⊳ �q Y �1 � � and thus � P I by Lemma 12.8.6.

148

Chapter 12. Technical Details on Type Inference

12.8.4 Properties of RightRequired

The correctness of RightRequired(�, Q̊, Γ, χ) says that the algorithm returns the

graph Γ1 which contains all the edges required for � (R Q̊ : 〈Γ1, χ〉 to hold. The

returned graph Γ1 can contain some edges which present in Γ.

Lemma 12.8.9 (RightRequired Correctness). Let

(1) varpQ̊q � domp�q and

(2) �p̊xiq � �p̊xjq whenever Q̊ contains {x̊0 := s̊0, . . . , x̊k := s̊k} p̊ and i � j.

When Γ1 � RightRequired(�, Q̊, Γ, χ) then it � (R Q̊ : 〈Γ1, χ〉.
Proof. By induction on the structure of Q̊.

Q̊ � 0: Clear.

Q̊ � p̊: Clear because Γ1 � t�pp̊q χ
∅ u and because p̊ P domp�q.

Q̊ � {x̊0 := s̊0, . . . , x̊k := s̊k} p̊: Here Γ1 � t�pp̊q χ
�(̊x0)ÞÑ�(̊s0),...,�(̊xk)ÞÑ�(̊sk) u contains a

properly defined type substitution because �p̊xiq � �p̊xjq for i � j and becausetx̊0, . . . , x̊k, s̊0, . . . , s̊k, p̊u � domp�q. Thus the claim.

Q̊ � F̊ .Q̊0: Let ϕ � �(F̊) (which is defined because varpF̊ q � domp�q). The value

of variable χ0 gives us node χ0 such that such that pχ ϕÝÑ χ0q P Γ1. Let Γ1
0 �

RightRequired(�, Q̊0, ΓY tχ ϕÝÑ χ0u, χ0). We see that Γ1 � Γ1
0Ytχ ϕÝÑ χ0u. It

is clear that varpQ̊0q � domp�q and thus by the induction hypothesis we obtain

that � (R Q̊0 : 〈Γ1
0, χ0〉. By Lemma 8.6.3 we have that � (R Q̊0 : 〈Γ1, χ0〉.

Hence � (R F̊ .Q̊0 : 〈Γ1, χ〉.
Q̊ � Q̊0 | Q̊1: Let the recursive calls result in Γ1

0 � RightRequired(�, Q̊0, Γ, χ) and

Γ1
1 � RightRequired(�, Q̊1, ΓY Γ1

0, χ). It is clear that Γ1 � Γ1
0YΓ1

1. Obviously

varpQ̊0q � domp�q and varpQ̊1q � domp�q and thus by the induction hypothesis

we obtain that � (R Q̊0 : 〈Γ1
0, χ〉 and � (R Q̊1 : 〈Γ1

1, χ〉. Thus by Lemma 8.6.3

we have that � (R Q̊0 : 〈Γ1, χ〉 and � (R Q̊1 : 〈Γ1, χ〉. Hence the claim.

The completeness of RightRequired says that it preserves existence of nest-

ing of the input in any restricted R-type (where R is the argument of the call

of LocalClosureStep from which RightRequired is called). That is, when Γ0 �
RightRequired(�, Q̊, Γ, χ) and there is a nesting of 〈Γ, χ〉 in some restricted Π1 then

we can construct a nesting of 〈Γ Y Γ0, χ〉 in Π1. In order words it means that Γ0

does not contain unnecessary edges, that is, that the local closure algorithm adds

only those edges which have to be added. Assumptions (4) & (5) will be satisfied

for all locally R-closed Π1 � 〈Γ1, χ1
r〉.

Lemma 12.8.10 (RightRequired Completeness). Let

149

Chapter 12. Technical Details on Type Inference

(1) Γ0 � RightRequired(�, Q̊, Γ, χ), and

(2) δ6〈Γ, χr〉 E 〈Γ1, χ1
r〉, and

(3) let 〈Γ1, χ1
r〉 be restricted, and

(4) δ6 � E �1, and

(5) �1 (R Q̊ : 〈Γ1, δpχq〉.
Then there is δ0 such that δ0 6〈ΓY Γ0, χr〉 E 〈Γ1, χ1

r〉 and δ0 6 � E �1.
Proof. Let the assumptions hold. Let us prove the claim by induction on the struc-

ture of Q̊. Let

Q̊ � 0: Then Γ0 � ∅ and thus we can simply take δ0 � δ.

Q̊ � p̊: We have Γ0 � t�pp̊q χ
∅ u. An important observation here is that both the

nodes �pp̊q and χ are in dompδq. The node �pp̊q because (4) & (5) and χ

because δpχq is mentioned and thus defined in (5). Now let us prove that

δ6〈ΓYΓ0, χr〉E 〈Γ1, χ1
r〉. We know that δ6〈Γ, χr〉E 〈Γ1, χ1

r〉 and thus we only

need to prove that Γ1 contains an edge which corresponds to the only edge in

Γ0. From �1 (R Q̊ : 〈Γ1, δpχq〉 we know that p�1pp̊q δpχq∅ q P Γ1. Now δ6 �E�1
implies that �1pp̊q � δp�pp̊qq and thus we have that pδp�pp̊qq δpχq∅ q P Γ1. Hence

the claim because clearly ∅ ¤ ∅.

Q̊ � {x̊0 := s̊0, . . . , x̊k := s̊k} p̊: Let � � t�p̊x0q ÞÑ �p̊s0q, . . . , �p̊xkq ÞÑ �p̊skqu. Let�1 � t�1p̊x0q ÞÑ �1p̊s0q, . . . , �1p̊xkq ÞÑ �1p̊skqu. Firstly assumptions (4) & (5)

implies that � is a correctly defined function, that is, that �p̊xiq � �p̊xjq for

i � j. Assumption (5) alone implies that � is a function. Assumption (4)

implies that � ¤ �1. We have Γ0 � t�pp̊q χ
� u. As in the previous case, both

the nodes �pp̊q and χ are in dompδq. Thus again we only need to prove the

existence of an edge postulated by Definition 12.1.3 for the only new edge in

Γ0. From �1 (R Q̊ : 〈Γ1, δpχq〉 we know that p�1pp̊q δpχq�1 q P Γ1. Clearly Now

δ6 � E �1 implies that �1pp̊q � δp�pp̊qq. Hence the claim because � ¤ �1.
Q̊ � F̊ .Q̊1: Let ϕ � �(F̊) and ϕ1 � �1(F̊). By Lemma 12.5.5 we have that ϕ ¤ ϕ1.

Let η be the value of variable η. Thus we see that η � pχ ϕÝÑ χ0q for some

χ0. Let Γ1 � RightRequired(�, Q̊1, ΓY tηu, χ0). Now we can see that Γ0 �tηuYΓ1. In order to use the induction hypothesis we need at first find some δ1

such that δ1 6〈ΓYtηu, χr〉E〈Γ1, χ1
r〉 and δ1 6 �E�1. From �1 (R Q̊ : 〈Γ1, δpχq〉 we

obtain that there is some χ2
0 such that �1 (R Q̊1 : 〈Γ1, χ2

0〉 and pδpχq ϕ1ÝÑ χ2
0q P Γ1

0.

We shall prove that we can take δ1 � δrχ0 ÞÑ χ2
0s.

We have that δ1pχ0q � χ2
0. When χ0 was chosen fresh for Γ then χ0 R dompδq

and thus it is easy to see that δ1 6〈ΓYtηu, χr〉E 〈Γ1, χ1
r〉 as well as δ1 6 �E �1.

Now, let us consider the case where χ0 is a node already present in Γ. We

know thus that η P Γ. Thus there is pδpχq ϕ2ÝÑ δpχ0qq P Γ1 such that ϕ ¤ ϕ2.
150

Chapter 12. Technical Details on Type Inference

We also know from the above that pδpχq ϕ1ÝÑ χ2
0q P Γ1

0 with ϕ ¤ ϕ1. Now

ϕ ¤ ϕ1 and ϕ ¤ ϕ2 implies that ϕ1 � ϕ2 because vϕw � ∅. We know that Γ1
is restricted and thus the width restrictions requires that δpχ0q � χ2

0. Thus we

can see that in this case δ1 � δ and thus clearly δ1 6〈Γ Y tηu, χr〉 E 〈Γ1, χ1
r〉

because ΓY tηu � Γ.

Thus we obtain �1 (R Q̊1 : 〈Γ1, δ1pχ0q〉 and we can use the induction hypothesis

for Γ1 (as Γ0), Q̊1, χ0, ΓYtηu (as Γ), and δ1. The induction hypothesis gives

us δ0 such that δ0 6〈ΓYtηuYΓ1, χr〉E〈Γ1, χ1
r〉 and δ0 6 �E�1. Hence the claim

because Γ0 � tηu Y Γ1.

Q̊ � Q̊1 | Q̊2: Let Γ1
0 � RightRequired(�, Q̊1, Γ, χ) and moreover let us take Γ1

1 �
RightRequired(�, Q̊2, ΓY Γ1

0, χ). It is easy to see that Γ0 � Γ1
0 Y Γ1

1. Now�1 (R Q̊ : 〈Γ1, δpχq〉 implies that �1 (R Q̊1 : 〈Γ1, δpχq〉 and �1 (R Q̊2 : 〈Γ1, δpχq〉.
Using the induction hypothesis for Γ1

0 and Q̊1 we obtain δ1 such that δ1 6〈ΓY
Γ1

0, χr〉E〈Γ1, χ1
r〉. Furthermore using the induction hypothesis for Γ1

1, Q̊2, ΓYΓ1
0,

and δ1 we obtain that there is δ0 6〈ΓYΓ1
0YΓ1

1, χr〉E 〈Γ1, χ1
r〉. Hence the claim

because Γ0 � Γ1
0 Y Γ1

1.

12.8.5 Properties of ActiveNodes

The following proposition proves the termination, correctness, and completeness of

ActiveNodes. It says that the algorithm correctly computes the set of active nodes.

The correctness of ActiveNodes is the “�” direction of the equality below while the

“�” direction is its completeness.

Proposition 12.8.11. Let R be finite. Then ActiveNodes terminates for every

input and ActiveNodes(Π,R) � ActiveNodeRpΠq.
Proof. Firstly let us observe that the following invariants are valid all the time

during the execution of the algorithm. (1) Ξ and Ξnew are set of nodes of Γ and

thus are finite and there is an upper bound on the number of their members. (2) Ξ

and Ξnew are disjoint. (3) The size of Ξ is increased by one with every iteration of

the while loop. Invariant (2) is useful to observe (3), and (1&3) implies that the

algorithm terminates.

From Lemma 12.8.7 it follows that the foreach cycle on line 7 iterates through all

type instantiations that could provide different node values �pp̊q. Thus the foreach

cycles on lines 6 and 7 iterates through ActiveSuccRpΓ, χ0q. It means that line 8

is executed for every �pp̊q P ActiveSuccRpΓ, χ0q. Thus lines 6-8 can be equivalently

expressed by a one line statement

Ξnew :� Ξnew Y pActiveSuccRpΓ, χ0q zΞq;
151

Chapter 12. Technical Details on Type Inference

Now we can observe that another invariant (4) is satisfied:�χ1 P Ξ: ActiveSuccRpΓ, χ1q � pΞY Ξnewq
Let Ξ1 � ActiveNodes(Π,R). The algorithm terminates when Ξnew � ∅ and

then returns Ξ. Thus from (4) we have that �χ1 P Ξ1 : ActiveSuccRpΓ, χ1q � Ξ1.
When Π � 〈Γ, χr〉 we can conclude that the following recursive property is satisfied

(because χr is added to Ξ in the first while loop iteration):

Ξ1 � tχru Y tχ1 P ActiveSuccRpΓ, χ0q : χ0 P Ξ1u
Now ActiveNodeRpΠq is the smallest set with the above property by Definition 7.6.7

and thus we obtain that ActiveNodeRpΠq � Ξ1.
Opposite wise, when χ1 P Ξ1 we can find a natural number k and nodes χ1

0, . . ., χ1
k

such that χ1
0 � χr, and χ1

k � χ, and χ1
i P ActiveSuccRpΓ, χ1

i�1q for 0 i ¤ k. The

node χ1
i is the value of the program variable χ0 evaluated right after the execution

of line 5 in the pi � 1q-th iteration of the while loop in ActiveNodes (and k is

simply the number of the iteration which added χ1 to Ξ1). In other words, this node

sequence provides a justification that the node χ1 has to be a member of the smallest

set ActiveNodeRpΠq of active nodes. This gives us Ξ1 � ActiveNodeRpΠq. Hence

the claim.

12.8.6 Properties of LocalClosureStep

At first we prove the termination of LocalClosureStep together with the termina-

tion of all its subroutines whose termination has not been proved yet.

Lemma 12.8.12 (LocalClosureStep Termination). Every call of the algorithm

LocalClosureStep(Π,R) terminates for every Π and every finite R.

Proof. Let R be finite. ActiveNodes terminates by Proposition 12.8.11 and the

same proposition says the it returns a finite set of nodes (because the set of active

nodes is subset of all nodes which is finite). The termination of LeftMatches and its

subroutines MatchElement and MatchForm is proved easily by structural induction

on its template argument. Thus also LeftMatches has to return a finite set. The

termination of RightRequired is proved by induction on its template argument as

well. Hence every call LocalClosureStep(Π,R) terminates because R is finite.

A shape predicate is well formed when none of its form types contain more than

one occurrence of an input-bound type tag. For example, “(ι, ι)” can not appear in

a well formed shape predicate.

152

Chapter 12. Technical Details on Type Inference

Definition 12.8.13. A shape predicate Π is well formed when any ϕ in Π con-

tains exactly one occurrence of every ι P itagspϕq.

In the case of LocalClosureStep, the correctness is similar the correctness of

RestrictWidth. It says that when the algorithm returns its input shape predi-

cate uncharged then the input is locally R-closed. The assumption of well formed-

ness of the input shape predicate is used to prove assumption (2) of Lemma 12.8.9

(RightRequired Correctness).

Lemma 12.8.14 (LocalClosureStep Correctness). Let R be finite and let Π

be well formed. It holds that when LocalClosureStep(Π,R) � Π then Π is locally

R-closed at any active node χ P ActiveNodeRpΠq.
Proof. Let R be finite and let Π and R be well formed. Let Π � 〈Γ, χr〉 and χ P
ActiveNodeRpΠq. Let LocalClosureStep(Π,R) � Π. Moreover let rewrite{ P̊ ãÑ
Q̊ } P R and � (L P̊ : 〈Γ, χ〉. To prove the claim we need to show that � (R Q̊ :

〈Γ, χ〉.

Let Γ0 be the value of variable Γ0 at the time of evaluation of line 7 in the

execution of LocalClosureStep. Also we see that χr is the value of variable χr

during the whole execution. Thus LocalClosureStep(Π,R) � Π implies Γ0 � Γ.

By Proposition 12.8.11 we obtain that χ P ActiveNodes(Γ, χr,R, ∅) and thus the

rewriting rule rewrite{ P̊ ãÑ Q̊ } P R is processed by the for cycle at line 4 at the

point when the value of variable χ is χ.

Let �0 � varpP̊ q ⊳ �. Wee see that varpP̊ q � domp�q and thus domp�0q � varpP̊ q.
Thus �0 (L P̊ : 〈Γ, χ〉 by Lemma 8.6.2. Now by Proposition 12.8.8 we obtain that�0 P LeftMatches(∅, P̊ , Γ, χ). It means that �0 is processed at some point by the

for cycle at line 5. At this point the value of variable � becomes �0 and line 6 is

executed. The values of variables �, Q̊, Γ, and χ are in turn �0, Q̊, Γ, and χ. Let

Γ1 � RightRequired(�0, Q̊, Γ, χ).

Let us verify the assumptions of Lemma 12.8.9 for �0, Q̊, Γ, and χ. The rewriting

rule is well formed and thus varpQ̊q � varpP̊ q by rule R2 & R3 for Q̊. Thus

assumption (1) follows from varpP̊ q � domp�0q. Let Q̊ contain {x̊0 := s̊0, . . . , x̊k :=

s̊k} p̊ and let i � j. Rule R4 for Q̊ implies that x̊i � x̊j. By Lemma 6.3.1 we have

that there is some F̊ in P̊ such that tx̊0, . . . , x̊ku � bvpF̊ q. Now �0 (L P̊ : 〈Γ, χ〉

implies that �0(F̊) P Γ. It implies that �0(̊xi) � �0(̊xj) because Γ is well formed. Thus

assumption (2) is satisfied and by Lemma 12.8.9 we obtain that �0 (R Q̊ : 〈Γ1, χ〉.
Clearly Γ1 � Γ0 � Γ and thus by Lemma 8.6.3 it holds that �0 (R Q̊ : 〈Γ, χ〉. Finally

by Lemma 8.6.1 we prove the claim � (R Q̊ : 〈Γ, χ〉.

The completeness of LocalClosureStep says that it preserves existence of a

nesting of the input shape predicate in any restricted R-type.

153

Chapter 12. Technical Details on Type Inference

Lemma 12.8.15 (LocalClosureStep Completeness). Let R be well formed and

finite and let Π1 be locally R-closed and restricted. Let δ6Π E Π1 and let Π1 �
LocalClosureStep(Π,R). Then there is δ1 such that δ1 6Π1 E Π1.
Proof. Let R be well-formed and finite, and let Π1 be locally R-closed and re-

stricted. Let δ6Π E Π1 and let Π1 � LocalClosureStep(Π,R). Let Π � 〈Γ, χr〉

and Π1 � 〈Γ1, χ1
r〉. We know that LocalClosureStep terminates by Lemma 12.8.12

because R is finite. Thus line 6 is evaluated only finitely many times during the exe-

cution of the LocalClosureStep(Π,R). Let us consider that the line was evaluated

k-times. Let Γi be the value of variable Γ0 after the i-th evaluation of line 6. This

gives a finite sequence of graphs Γ1, . . ., Γk. Let us take Γ0 � ∅. We can see that

Π1 � 〈ΓY Γk, χr〉.

Let us prove by induction on i that there is δ1i such that δ1i 6〈Γ Y Γi, χr〉 E Π1.
Clearly, for i � 0 we can take δ10 � δ because Γ0 � ∅. Now let δ1i 6〈Γ Y Γi, χr〉 E Π1
for i k. We want to prove that there is δ1i�1 such that δ1i�1 6〈Γ Y Γi�1, χr〉 E Π1.
Let χ, P̊ , Q̊, and � be the values of the correspondingly named variables at the

time of the pi � 1q-th evaluation of line 6 during the execution of the algorithm.

We see that χ P ActiveNodes(Γ, χr,R, ∅) and rewrite{ P̊ ãÑ Q̊ } P R and that� P LeftMatches(∅, P̊ , Γ, χ). From the first and the third claim we obtain in turn by

Proposition 12.8.11 and Proposition 12.8.8 that χ P ActiveNodeRpΠq and � (L P̊ :

〈Γ, χ〉. Now the induction hypothesis says that δ1i 6〈ΓYΓi, χr〉E 〈Γ1, χ1
r〉. Thus from� (L P̊ : 〈Γ, χ〉 by Lemma 12.5.8 we obtain that there is some �1 such that δ1i 6 �E�1

and �1 (L P̊ : 〈Γ1, δ1ipχq〉. Furthermore, χ is a node in Γ and thus χ P dompδ1iq.
Thus by Lemma 12.5.9 we obtain that δ1ipχq P ActiveNodeRpΠ1q. We know that Π1
is locally R-closed and thus �1 (L P̊ : 〈Γ1, δ1ipχq〉 implies �1 (R Q̊ : 〈Γ1, δ1ipχq〉.

Let Γ1
i�1 � RightRequired(�, Q̊, Γ, χ). We see that Γi�1 � Γi Y Γ1

i�1. We

have already showed above that δ1i 6〈Γ Y Γi, χr〉 E Π1 and δ1i 6 � E �1 and �1 (R Q̊ :

〈Γ1, δ1ipχq〉. Thus by Lemma 12.8.10 we obtain that there is some δi�1 such that

δi�1 6〈ΓY Γi Y Γ1
i�1, χr〉 E Π1. Hence the claim because Γi Y Γ1

i�1 � Γi�1.

12.9 Properties of the Flow Closure Algorithm

The following lemma helps to prove the completeness of PrincipalType. It says

then when the condition “Π � Π0” of the repeat cycle in PrincipalType is valid

(and thus the algorithm terminates) then both the last calls to the subroutines

LocalClosureStep and FlowClosureStep returned its argument unchanged.

Lemma 12.9.1. When FlowClosureStep(LocalClosureStep(Π,R)) � Π then it

holds that LocalClosureStep(Π,R) � Π.

154

Chapter 12. Technical Details on Type Inference

Proof. The property in question follows from the fact that both FlowClosureStep

and LocalClosureStep preserves the root node and both algorithms can only add

edges to an input shape predicate.

The following proves the correctness of FlowClosureStep.

Lemma 12.9.2 (LocalClosureStep Correctness). FlowClosureStep(Π) � Π

implies that Π is flow-closed.

Proof. Let FlowClosureStep(Π) � Π. Let Π � 〈Γ, χr〉. Let Γ0 be the value of

variable Γ0 at the point when the last line 13 of FlowClosureStep is being evaluated.

From FlowClosureStep(Π) � Π is follows that Γ0 � Γ.

Let χ, χ0, χ1, ϕ, and � such that tχ ϕÝÑ χ0, χ χ1� u � Γ and itagspϕqXdomp�q � ∅

be given. It is clear that during the computation of FlowClosureStep(Π) there is

an iteration of the foreach cycle when these values are assign to the corresponding

variables. Moreover, the if condition on line 4 do not apply and thus the remaining

body of the foreach cycle is processed. It is easy to see that when (F1) ϕ � ι

and �̄ι � tσ1, . . . , σku* for some ι and σ1, . . ., σk, then tχ1 σiÝÑ χ1 : 0 i ¤
ku Y tχ0 χ1� u � Γ0. Otherwise, when (F2) ϕ R TypeTag or �̄ϕ is not a starred

message type, then we see that there is some χ1
0 such that tχ1 �̄ϕÝÑ χ1

0, χ0 χ1
0

� u � Γ0.

We conclude that Π is flow-closed because Γ0 � Γ.

The following proves the completeness of LocalClosureStep, that is, that it

preserves the existence of a nesting of its input in any restricted R-type. In fact

it is enough to assume that the shape predicate is flow-closed instead of being an

R-type.

Lemma 12.9.3 (FlowClosureStep Completeness). Let Π1 be flow-closed and re-

stricted. Let Π1 � FlowClosureStep(Π). When δ6Π E Π1 then there is δ1 such

that δ1 6Π1 E Π1.
Proof. Let Π � 〈Γ, χr〉 and let Π1 � FlowClosureStep(Π). We see that Π1 �
〈ΓYΓ0, χr〉 for some Γ0 and thus Π1 contains all the edges of Π but Π1 can contain

some additional edges and nodes. Let δ6Π E Π1. Firstly we shall construct δ1 by

extending δ with values for the additional nodes from Π1. Secondly we shall prove

that indeed δ1 6Π1 E Π1.
Let χ1

0 be a node in Γ0 which is not in Γ. We need to define the value δ1pχ1
0q.

We see that χ1
0 was added to Γ0 at line 12 as a fresh node in the iteration of the

foreach cycle when the value of variable χ1
0 was χ1

0. Let χ, χ0, χ1, ϕ, and � be

the values of the variables with corresponding names in this foreach iteration. We

know that pχ ϕÝÑ χ0q P Γ and pχ χ1� q P Γ as well as that itagspϕq X domp�q � ∅.

It is easy to see that the flow-closure condition (F2) is satisfied for the two above

edges. Now δ6Π E Π1 gives us two edges δpχq ϕ1ÝÑ δpχ0q and δpχq δpχ1q�1
in Π1

155

Chapter 12. Technical Details on Type Inference

such that ϕ ¤ ϕ1 and � ¤ �1. Now Lemma 12.5.3 and Lemma 8.1.6 imply that the

flow-closure condition F2 applies for two edges of Π1 as noted in the paragraph before

Lemma 12.5.3. Because Π1 is flow closed, we thus obtain that there is some χ2
0 such

that δpχ1q �̄1ϕ1ÝÝÑ χ2
0 and δpχ0q χ2

0
�1

are in Π1. We set δ1pχ1
0q � χ2

0. By Lemma 8.3.2

we obtain that �̄ϕ ¤ �̄1ϕ1. Thus we directly see that δ1 acts as a correct simulation

for the two edges χ1 �̄ϕÝÑ χ1
0 and χ0 χ1

0

�
newly added to Γ0 in the iteration of the

foreach cycle under consideration.

Now we need to prove that δ1 6Π1 E Π1. We see that the root node of Π1 is

the root node of Π and thus it is enough to prove that for every edge in Π1 there

exists the edge in Π1 proposed by Definition 12.1.3. This is clearly true for every

edge already present on Π and thus it is enough to check only the edges from Γ0.

Edges were added to Γ0 during the execution of the algorithm at lines 6 or 12 in

some iteration of the foreach cycle. Let χ, χ0, χ1, ϕ, and � be the values of the

variables with corresponding names in an iteration of the foreach cycle when some

new edges were added to Γ0. We know that pχ ϕÝÑ χ0q P Γ and pχ χ1� q P Γ as well

as that itagspϕq X domp�q � ∅. Now δ6Π E Π1 gives us two edges δpχq ϕ1ÝÑ δpχ0q
and δpχq δpχ1q�1

in Π1 such that ϕ ¤ ϕ1 and � ¤ �1.
Let new edges were added to Γ0 at line 6. Then we know that ϕ � ι P domp�q

and �pιq � Σ* for some k and σ1, . . ., σk. Moreover the edges newly added to Γ0

are tχ1 σÝÑ χ1 : σ P Σu Y tχ0 χ1� u. Now Lemma 12.5.3 implies that ϕ1 � ι and

using also Lemma 8.1.6 we obtain that the flow-closure condition (F1) is satisfied

for the edges δpχq ϕ1ÝÑ δpχ0q and δpχq δpχ1q�1
in Π1 because Π1 is flow closed. We

know that �1pιq � pΣ1q* for some Σ1. Because Π1 is flow closed we know that the

edges tδpχ1q σÝÑ δpχ1q : σ P Σ1u Y tδpχ0q δpχ1q�1 u are present in Π1. Now using

Lemma 8.1.3 we obtain that Σ � Σ1. Thus for the edge χ1 σÝÑ χ1 with σ P Σ added to

Γ0 there is the edge δpχ1q σÝÑ δpχ1q in Π1 as required (clearly σ ¤ σ). Moreover for

the edge χ0 χ1�
added to Γ0 there is δpχ0q δpχ1q�1

in Π1 with � ¤ �1 as required.

Let some new edges were added to Γ0 at line 12. In this case the edges added

to Γ0 are χ1 �̄ϕÝÑ χ1
0 and χ0 χ1

0

�
. During the construction of δ1 we have already

handled the case when the destination node χ1
0 is a freshly created node. Thus the

remaining case is when χ1 �̄ϕÝÑ χ1
0 is already present in Γ. Using δ we obtain the

edge δpχ1q ϕ2ÝÑ δpχ1
0q in Π1 with �̄ϕ ¤ ϕ2. Now Lemma 12.5.3 and Lemma 8.1.6 give

us that the flow-closure condition (F2) is satisfied for the edges δpχq ϕ1ÝÑ δpχ0q and

δpχq δpχ1q�1
from Π1. Because Π1 is flow closed, we obtain that there is some node

χ2
0 such that the edges δpχ1q �̄1ϕ1ÝÝÑ χ2

0 and δpχ0q χ2
0

�1
are present in Π1. To prove

the claim it is enough to prove that δpχ1
0q � χ2

0. By Lemma 8.3.2 we obtain that�̄ϕ ¤ �̄1ϕ1. Now �̄ϕ ¤ ϕ2 and �̄ϕ ¤ �̄1ϕ1 implies ϕ2 � �̄1ϕ1 because v�̄ϕw � ∅. We

have that both δpχ1q ϕ2ÝÑ δpχ1
0q and δpχ1q �̄1ϕ1ÝÝÑ χ2

0 are present in Π1 and thus, because

Π1 is restricted, the width restriction implies that δpχ0q � χ2
0. Thus for the edge

χ1 �̄ϕÝÑ χ1
0 in Γ0 there is δpχ1q �̄1ϕ1ÝÝÑ δpχ1

0q in Π1 with �̄ϕ ¤ �̄1ϕ1, and for the edge

156

Chapter 12. Technical Details on Type Inference

χ0 χ1
0

�
there is the edge δpχ0q δpχ1

0q�1
in Π1 with � ¤ �1 as required.

12.10 Properties of the Type Inference Algorithm

Now we prove the termination of PrincipalType which is based on the argument

outlined in Section 12.1.1 and it uses the upper bound of almost disjoint edge paths

computed in Section 12.3.

Proposition 12.10.1 (PrincipalType Termination). PrincipalType(P,R) ter-

minates for every P and R.

Proof. ProcessShape terminates by Proposition 12.6.5. SelectApplicableRules

by design returns a finite number of rules when R is standard. When R is infinite

and non-standard then the algorithm terminates with failure. RestrictGraph ter-

minates by Lemma 12.7.14. LocalClosureStep terminates by Lemma 12.8.12 and

it is easy to check that FlowClosureStep terminates for all inputs because it iterates

over a finite objects. An iterative execution of the repeat loop in PrincipalType

gives us the following sequence of shape predicates.

Π0 � RestrictGraph(ProcessShape(P))

Πi�1 � RestrictGraph(FlowClosureStep(LocalClosureStep(Πi ,Rfin)))

The shape predicate Πi is the value of variable Π after the execution of line 4 in

the pi� 1q-th iteration of the repeat loop in the call of PrincipalType(P,R). To

prove the termination of PrincipalType it is enough to prove that there is k such

that Πk � Πk�1.

Let tags be the count of different type tags in P a Rfin plus one (for “
”). Let

len � maxlenpP q. Let maxpaths be the upper bound on different edge paths enu-

merated in Section 12.3. We have already argued in Section 12.3 that pathspΠkq ¤
maxpaths for all k and that Πk contains only the tags from Rfin and P and possibly

“
”. Now let us prove it in more details. Any action type ϕ from ProcessShape(P)

is introduced at line 6 of ProcessShape. It is easy to see that maxlenpϕq ¤ len and

that ϕ contains only type tags from P . RestrictGraph does not introduce new

action types and thus pathspΠ0q ¤ maxpaths. There are four places where a new

action type can be introduced to a shape graph during type inference: lines 6 and

12 in FlowClosureStep, and lines line 4 and 11 in RightRequired. It is easy

to check that the newly introduced action type ϕ contains only type tags from P

and Rfin (and possibly “
”), and that maxlenpϕq ¤ len. All action types of Πi�1

which are not introduced by the above four lines are already present in Πi. Thus

pathspΠkq ¤ maxpaths for any k follows by induction.

157

Chapter 12. Technical Details on Type Inference

Now let us prove that pathspΠkq ¤ pathspΠk�1q for all k. Let Γi be the shape

graph part Πi for any i, that is, we have Πi � 〈Γi, χr〉. Note that the all functions

called from RestrictGraph preserve the root node. Let Γlocal
i be the set of edges

newly introduced during the execution of LocalClosureStep(Πi ,Rfin) and let Γflow
i

be the set of edges newly introduced by FlowClosureStep(〈Γi Y Γlocal
i , χr〉). Let

Γ1
i � Γi Y Γlocal

i Y Γflow
i . By Lemma 12.7.10 there is δi such that Πi�1 � δip〈Γ1

i, χr〉q.
It is clear that pathsp〈Γi, χr〉q ¤ pathsp〈Γ1

i, χr〉q because every path in Γ1
i is a path in

Γ. Thus by Lemma 12.7.11 pathspΠiq ¤ pathspΠi�1q.
Now let us prove that for every i such that pathspΠiq � pathspΠi�1q there is j

such that Πi�j � Πi�j�1 or pathspΠiq pathspΠi�jq. This is sufficient to prove

the termination of the algorithm because the number pathspΠiq can not grow over

maxpaths. Let pathspΠiq � pathspΠi�1q but Πi � Πi�1. Thus we know that there is

at least one new edge in Γlocal
i or Γflow

i because otherwise Πi � Πi�1 (because δk is an

identity when Γlocal
i � Γflow

i � ∅).

When there is some (non-flow) edge in Γlocal
i or Γflow

i then let pχ ϕÝÑ χ1q P Γlocal
i Y

Γflow
i be the first edge newly introduced by the type inference algorithm. Thus we

have pχ ϕÝÑ χ1q R Γi but on the other hand we know that χ is a node in Γi. It is easy

to prove by induction that there is a rooted path to every node in Γi and similarly

for Γ1
i. By Lemma 12.7.12, there is a rooted path tχr

ϕ1ÝÑ χ1
ϕ2ÝÑ � � � ϕkÝÑ χu to χ

in Πi such that pϕ1, . . . , ϕkq is a disjoint edge path. Now pϕ1, . . . , ϕk, ϕq is an edge

path Πi�1 with at most one repetition. Let us prove that pϕ1, . . . , ϕk, ϕq is not an

edge path in Πi. We know that Πi is restricted and thus the edge path pϕ1, . . . , ϕkq
uniquely determines the above rooted path tχr

ϕ1ÝÑ χ1
ϕ2ÝÑ � � � ϕkÝÑ χu and its target

node χ. Moreover we know that there is no χ2 such that pχ ϕÝÑ χ2q P Γi because if

there was some χ2 then the above mentioned pχ ϕÝÑ χ1q would not be the first newly

introduced edge (the algorithm would reuse pχ ϕÝÑ χ2q). Thus pϕ1, . . . , ϕk, ϕq is not

an edge path in Πi (not to say an edge path with at most one repetition). Thus

pathspΠiq pathspΠi�1q as required (we set j � 0).

When there are only flow edges in Γlocal
i and Γflow

i , then Πi and Πi�1 have the

same nodes. The set of nodes is preserved also for other shape predicates Πi�2, . . .

in the sequence as long as the number of edge paths with at most one repetition

remains unchanged. With a fixed number of nodes there is clearly an upper bound

on flow edges that can be added to the graph. Thus after finitely many steps no more

flow edges can be added. Thus there is j such that after j steps either an ordinary

non-flow edge is added to a shape graph (which increases the number of paths as

proved above) or the shape graph remains unchanged (in which case the algorithm

terminates).

Now we prove the correctness of PrincipalType discussed in Section 12.1.2.

158

Chapter 12. Technical Details on Type Inference

Proposition 12.10.2 (PrincipalType Correctness). Let R be standard and

Π � PrincipalType(P,R). Then Π is a restricted R-type of P .

Proof. Let R be standard and Π � PrincipalType(P,R). Let Rfin be the value

of variable Rfin. We see that the value of variable Π0 in the last iteration of

the repeat cycle is Π. Thus Π is restricted by Lemma 12.7.14. Moreover we

can see that Π � FlowClosureStep(LocalClosureStep(Π,Rfin)) and thus Π �
FlowClosureStep(Π) � LocalClosureStep(Π,Rfin) by Lemma 12.9.1. Further-

more by Lemma 12.9.2 and by Lemma 12.8.14 we obtain that Π is Rfin-type. When

R is finite than Rfin � R and thus the result is R-type. We know that R is mono-

tonic and thus it is easy to verify that the type inference algorithm never introduces

any type entity whose length is bigger than maxlenpP q into the shape graph. Thus

clearly maxlenpΠq ¤ maxlenpP q and we can use Proposition 12.2.3 to prove that

that Π is an R-type whenever R is infinite and Rfin is the rule description returned

by SelectApplicableRules.

Now we shall prove that $ P : Π0 holds for Π0 being the value of variable Π at

any time of execution of the algorithm. This is true after evaluation of line 1 by

Proposition 12.6.6. Each call to RestrictGraph returns a shape predicate Π1
0 such

that $ P : Π1
0 by Lemma 12.7.10 and Lemma 12.5.1. Now both FlowClosureStep

and LocalClosureStep only add edges to Π1
0 preserving its root. Thus $ P : Π0

hold for the value Π0 of variable Π at any point of the execution of PrincipalType.

Hence $ P : Π.

Finally the following proves the main property of PrincipalType which is com-

pleteness together with correctness. Of course, the correctness is proved using the

previous Proposition 12.10.2. The completeness of PrincipalType was discussed in

Section 12.1.3.

Theorem 12.10.3 (PrincipalType Completeness). Let R be standard and Π �
PrincipalType(P,R). Then Π is a principal restricted R-type of P .

Proof. Let R be standard and Π � PrincipalType(P,R). Let Rfin be the value

of variable Rfin. By Proposition 12.10.2 we have that Π is a restricted R-type of P .

We also know that Π is a restricted Rfin-type of P . Firstly, let us prove that Π is

a principal Rfin-type of P . Let us take the derivation Π0, . . ., Πk of Π, that is, the

following sequence with Πk � Π.

Π0 � RestrictGraph(ProcessShape(P))

Πi�1 � RestrictGraph(FlowClosureStep(LocalClosureStep(Πi ,Rfin)))

Let Π1 be a restricted Rfin-type of P . By Proposition 12.6.7 and Lemma 12.7.15 we

obtain that there is some δ0 such that δ0 6Π0 E Π1. It is easy to prove by induction

on i and by Lemma 12.8.15, Lemma 12.9.3, and Lemma 12.7.15 that there is δi such

159

Chapter 12. Technical Details on Type Inference

that δi 6Πi E Π1 for all i ¤ k. Thus δk 6Π E Π1 and by Lemma 12.5.2 we obtain

that Π ¤ Π1. Hence Π is a principal Rfin-type of P .

Now every R-type is an Rfin-type because Rfin � R. Let Π1 be a restricted R-type

of P . Then Π1 is a restricted Rfin-type of P and by the above we know that Π ¤ Π1.
Hence Π is also a principal R-type of P .

160

Part III

Applications and Expressiveness of

Shape Types

161

Chapter 13

General View of Analysis Systems

This section discusses type and flow analysis systems, how to use Poly✶ to achieve

goals attained by other systems, how to use Poly✶ on its own, how and why to

relate Meta✶ with other calculi, and several possibilities how a formal comparison

of Poly✶ with other systems can be made.

13.1 General View of Analysis Systems

Different type and static analysis systems are designed for different purposes. A

single system is usually intended to statically verify a specific fixed property of

processes of a given calculus, for example, that a process does not execute an ill-

formed instruction. Commonly, it is easy to verify this property for a specific process.

On the other hand, to verify that the property in question is satisfied for a given

process and for all of its successor states, is generally much more complicated task.

Type and static analysis systems provide an effective solution of this problem.

Here we repeat general notations introduced in Section 1.5. A typical type

or static analysis system SC for the process calculus C works as follows. Firstly,

it defines the set of predicates. Let ρ range over it. Predicates formally represent

properties which the system reasons about and verifies. Secondly, the system defines

a binary relation on processes and predicates. Let B range over processes of C. Let

us write the relation as ⊲B : ρ. This relation formally represents the statement “B

has the property ρ”. The relation is desired to be effectively verifiable. Thirdly,

the system (usually) enjoys the subject reduction property, which states that the

relation ⊲ is preserved under rewriting of processes, that is, ⊲B0 : ρ implies ⊲B1 : ρ

for any successor state B1 of the process B0.

162

Chapter 13. General View of Analysis Systems

13.2 How To Use Poly✶ ?

Consider some type/static analysis system SC with the properties from the previous

section. Furthermore suppose that the rewriting rules of the calculus C can be

described in Meta✶ by the set of rewriting rules R. This gives us the instantiation

CR of Meta✶ and the type system SR provided by Poly✶. Now suppose that we

would like to compare expressiveness of SC and SR. We would like to know whether

questions answerable by the relation ⊲ of SC can be expressed and answered within

SR. Being able to do this for several different systems from the literature would lead

us to the conclusion that the generic concept of Poly✶ shape types is at least as

expressive as the single-purpose predicates of the selected systems. We shall show

how to do this for three systems from the literature. Several possible approaches

how to do this are outlined in Section 13.4.

Some systems are designed to verify a certain fixed property of processes, for

example, that a process does not execute an ill-formed instruction. When such a

property is given we can use Poly✶ directly without referencing SC . Let P denote

the property in question. For these systems the following holds: When there exists

some ρ such that ⊲B : ρ then B has property P. Usually some over-approximation is

encountered, which means that the opposite implication is not always satisfied. This

is a commonly accepted trade-off between preciseness and time complexity of the

verification of P. Suppose that we can formulate a condition on a Poly✶ shape type

Π whose fulfillment implies that every process matching Π has property P. Then

we can use Poly✶ to verify P directly. We can also choose property P directly

without any references to other type or static analysis systems. We shall show how

to use Poly✶ to verify communication safety of the π-calculus and Mobile Ambients

processes. We show that Poly✶ provides better results, that is, it over-approximates

communication safety less, than other two systems designed specifically for this

purpose. Moreover, we show that Poly✶ can also exactly recognize whether or not

⊲B : ρ holds for a given B and ρ in these two systems. This is important because

the relation ⊲B : ρ might be used by some applications of SC for various purposes

and not only to verify communication safety.

13.3 Relating Calculi C and CR

Calculi CR and C are usually reasonably equivalent. Nevertheless, for the reason of

a formal comparison of the systems SC and SR a reasonable relationship between the

calculi C and CR has to be proved. It is important to understand, however, that a

similar relationship has to be established only for the reasons of formal comparisons,

such are those presented in the next chapters, and it is not required for a standard

use of Poly✶.

163

Chapter 13. General View of Analysis Systems

At first we need an encoding pr�sq which translates processes of C into Meta✶

processes. Because of a benevolent syntax of Meta✶, this encoding is in many

cases almost an identity. To avoid technical problems, such as a different handling

of α-conversion, we suppose that processes of C are built from Meta✶ names, and

that C does α-conversion as Meta✶. One can easily construct an equivalent version

of C which meets this requirement when necessary. We suppose that the encodingpr�sq preserves free names and type tags. The relationship between the rewriting

relation Ñ of C and the relation
RãÝÑ of Meta✶ has two parts. The first says that

B0ÑB1 implies prB0sq RãÝÑ prB1sq. The second ensures that whenever prB0sq RãÝÑ P1 then

P1 is the translation of some B1 such that B0ÑB1. To handle subtle differences

in structural congruences of different calculi, we formulate this property modulo

structural congruences � of SC and Meta✶. As mentioned, proving Property 13.3.1

is usually easy.

Property 13.3.1 (Faithful Encoding). When B0ÑB1 then there are B1
0 and

B1
1 such that B0 � B1

0 & prB1
0sq RãÝÑ prB1

1sq & B1
1 � B1. When prB0sq RãÝÑ P1 then there is

B1 such that B0ÑB1 & prB1sq � P1.

13.4 Comparing Systems SC and SR

A straightforward way to relate SC and SR is to define an embedding 〈r�s〉 of predicates

of SC to Poly✶ types such that ⊲B : ρ if and only if $ prBsq : 〈rρs〉. This approach

is not possible when the relation ⊲ of SC is preserved under renaming of bound

type tags of a process. Unfortunately, this is the case of majority of the systems in

literature, especially of those we work with in this paper. Recall that we suppose

that C builds processes from Meta✶ names (which include type tags). The problem

is that bound type tags are used to build Poly✶ shape types. Thus, when a bound

type tag in a process is changed then the new process does not need to match the

same shape types as before (because typability in Poly✶ is not preserved under

renaming of bound type tags).

To put it another way, a straightforward embedding of one type system in another

can not be constructed when predicates of the systems differ too much and when they

contain different information. For example Poly✶ shape types contain information

about bound names which can appear in a process. These information contain their

type tags and an upper bound on the count of bound names (with different type

tags). These information are necessary to construct a shape type. On the other

hand these information are not usually contained in predicates of other systems.

Thus we can not construct a direct embedding of these other systems in Poly✶

because the information about bound names are missing.

In order to demonstrate explain this, let us suppose the encoding 〈r�s〉 with the

164

Chapter 13. General View of Analysis Systems

above desired property, and let ⊲pνxqB0 : ρ for some B0 and ρ such that x P fnpB0q.
Now, because both prpνxqpB0qsq and 〈rρs〉 are finite objects, we can take some type

tag ι which is in none of them. Let a be the basic name of x, that is, x � aι0 for

some ι0. Let us take B1 � pνaιqpB0tx ÞÑ aιuq, that is, let us change the type tag

of x from ι0 to ι in all occurrences of x. Because ⊲ is preserved under renaming of

bound type tags of SC ’s processes, we have that also ⊲B1 : ρ. But we can see thatprB1sq can hardly match 〈rρs〉 because 〈rρs〉 does not contain any ι0 necessary to match

occurrences of aι0 in prB1sq. A similar argument can be made even when we do not

require pr�sq to preserve type tags.

We investigate another ways to compare SC and SR to avoid the above problem.

The first one, which we use in Chapter 14 to compare Poly✶ with a typed version

of the π-calculus, exploits the existence of principal types for processes in SR. We

answer the question ⊲B : ρ by performing a simple check on a Poly✶ principal type

ΠB of prBsq. Formally we define the relation ρ � Π, which says that ρ “agrees” with

Π, and we prove that ⊲B : ρ if and only if ρ � ΠB.

Another approach to compare SC and SR is an enhancement of the straightfor-

ward comparison outlined above. We equip a translation of SC ’s predicate ρ into a

Poly✶ type with necessary information IB about bound names of the process B.

We translate ρ and IB into the Poly✶ type 〈rρ, IBs〉 and we prove that ⊲B : ρ if

and only if $prBsq : 〈rρ, IBs〉. We use this approach to compare Poly✶ with a typed

version of Mobile Ambients in Chapter 16.

Yet another style of comparison is used to compare Poly✶ with a flow analysis

system for BioAmbients in Chapter 18. For a given B, we compute a Poly✶

principal type ΠB of prBsq and use it to construct a predicate ρB of system SC such

that ⊲B : ρB. Then we take the actual result ρ of the analysis of B computed by

SC and we prove that ρB constructed from ΠB is at least as precise as ρ, let us write

it as ρB � ρ. Our result says that ⊲B : ρ implies ρB � ρ. The opposite implication

would not give a meaningful result in this particular case. Additionally, we also show

how to use the approach from the previous paragraph to compare Poly✶ with the

same BioAmbients flow analysis system.

165

Chapter 14

Shape Types for the π-calculus

This chapter demonstrates how to use Poly✶ with a polyadic π-calculus and proves

Poly✶ to be more expressive than a π-calculus type system from the literature.

Section 14.1 introduces the π-calculus, Section 14.2 introduces a type system from

the literature [Tur95, Chapter 3], Section 14.3 describes the type system for the π-

calculus provided by Poly✶, Section 14.4 formally compares expressiveness of the

above two systems, and finally Section 14.5 provides conclusions and discussion of

a related work.

14.1 A Polyadic π-calculus

The π-calculus [MPW92a, Mil99] is a process calculus involving process mobility

developed by Milner, Parrow, and Walker. Mobility is abstracted as channel-based

communication whose objects are atomic names. Channel labels are not distin-

guished from names and can be passed by communication. This ability, referred as

link passing, is the π-calculus feature that most distinguishes it from its predeces-

sors. We use a polyadic version of the π-calculus which supports communication of

tuples of names.

Figure 14.1 presents the syntax and semantics of the π-calculus. Processes are

built from Meta✶ names which contain type tags. The process “c(n1, . . . , nk).B”,

which (input)-binds the names ni’s, waits to receive a k-tuple of names over channel

c and then behaves like B with the received values substituted for ni’s. The process

“c<n1, . . . , nk>.B” sends the k-tuple n1, . . ., nk over channel c and then behaves like

B. Other constructors have the meaning as in Meta✶ (Chapter 3). The sets of

names and type tags fnpBq, ftagspBq, itagspBq, ntagspBq are defined as in Meta✶.

Processes are identified up to α-conversion of bound names which preserves type

tags. A substitution in the π-calculus is a finite function from names to names, and

its application to B is written postfix, that is, “Btn ÞÑ mu”. We set SpecialTag �t
u and forbid “
” to be used in processes because it is reserved for Poly✶. We

166

Chapter 14. Shape Types for the π-calculus

Syntax of the π-calculus processes:

c, n, m P PiName � Name
N P PiAction ::� c(n1, . . . , nk) | c<n1, . . . , nk>

B P PiProcess ::� 0 | pB0 | B1q | N.B | !B | pνnqB
Structural equivalence of the π-calculus:

B � B

B0 � B1

B1 � B0

B0 � B1 B1 � B2

B0 � B2

B0 � B1

B0 | B2 � B1 | B2

B0 � B1

N.B0 � N.B1

B0 � B1

!B0 � !B1

B0 � B1pνnqB0 � pνnqB1 B0 | B1 � B1 | B0

B0 | pB1 | B2q � pB0 | B1q | B2 B � B | 0 !B � B | !B

n R fnpB1qpνnqB0 | B1 � pνnqpB0 | B1q
Rewriting relation of the π-calculus:

c(n1, . . . , nk).B0 | c<m1, . . . , mk>.B1 Ñ B0tn1 ÞÑ m1, . . . , nk ÞÑ mku | B1

B0 Ñ B1pνnqB0 Ñ pνnqB1

B0 Ñ B1

B0 | B2 Ñ B1 | B2

B1
0 � B0 B0 Ñ B1 B1 � B1

1

B1
0 Ñ B1

1

Figure 14.1: The syntax and semantics of the π-calculus.

require all processes to be well formed according to the following definition. Well-

formedness can be achieved by name renaming if necessary and it is preserved by

rewriting.

Definition 14.1.1. A process B is well formed iff all the following hold.

(S1) ftagspBq Y itagspBq is disjoint with ntagspBq
(S2) for (n1, . . . , nk).B0 in B, ni R itagspB0q and ni � nj when i � j

(S3) B do not contain any type tag from SpecialTag

Example 14.1.2. Let us consider the following process.

B � !s(x, y).x<y>.0|s<a, n>.0 |a(v).v(p).0 |n<o>.0|

|s<b, m>.0|b(w).w(q, r).0|m<o, o>.0

Using the rewriting relation Ñ sequentially four times we can obtain (among

others) the process “ !s(x, y).x<y>.0 | n(p).0 | n<o>.0 | m(q, r).0 | m<o, o>.0”. �
167

Chapter 14. Shape Types for the π-calculus

Syntax of Tpi types:

β P PiTypeVariable ::� ı | ı’ | ı” | � � �
κ P PiType ::� β | Òrκ1, . . . , κks
∆ P PiContext � TypeTag Ñfin PiType

Typing rules of Tpi:

∆ $ 0

∆ $ B0 ∆ $ B1

∆ $ B0 | B1

∆ $ B

∆ $!B

∆rn ÞÑ κs $ B

∆ $ pνnqB
∆pcq � Òrκ1, . . . , κks ∆rn1 ÞÑ κ1, . . . , nk ÞÑ κks $ B

∆ $ c(n1, . . . , nk).B

∆pcq � Òr∆pn1q, . . . , ∆pnkqs ∆ $ B

∆ $ c<n1, . . . , nk>.B

Figure 14.2: Syntax of Tpi types and typing rules.

14.2 Types for the Polyadic π-calculus (Tpi)

We compare Poly✶ with a simple type system [Tur95, Chapter 3] for the polyadic

π-calculus presented by Turner which we name Tpi. Tpi is essentially Milner’s

sort discipline [Mil99]. In the polyadic settings, an arity mismatch error on channel

c can occur when the lengths of the sent and received tuple do not agree, like in

“c(n).0 | c<m, m>.0”. Processes which can never evolve to a state with a similar

situation are called communication safe. Tpi verifies communication safety of π-

processes.

The syntax and typing rules of Tpi are presented in Figure 14.2. Recall that

n denotes the type tag of n. Types κ are assigned to names. Type variables β

are types of names which are not used as channel labels. The type “Òrκ1, . . . , κks”
describes a channel which can be used to communicate any k-tuple whose i-th name

has type κi. A context ∆ assigns types to free names of a process (via their type

tags1). The relation ∆ $ B, which is preserved under rewriting, expresses that the

actual usage of channels in B agrees with ∆. When ∆ $ B for some ∆ then B is

communication safe. The opposite does not necessarily hold.

Example 14.2.1. Given B from Example 14.1.2 we can see that there is no ∆

such that ∆ $ B. It is because the parts s<a, n> and s<a, m> imply that types of

n and m must be equal while the parts n<o> and m<o, o> force them to be differ-

ent. On the other hand B is communication safe. We check this using Poly✶ in

Example 14.3.1. �
1Turner’s original system does not use Meta✶ type tags and assigns types directly to names.

This technical variation simplifies the correspondence with Poly✶.

168

Chapter 14. Shape Types for the π-calculus

14.3 Instantiation of Meta✶ to the π-calculus

The π-calculus syntax from Section 14.1 already matches the Meta✶ syntax and

thus only the following P is needed to instantiate Meta✶ to the calculus CP and

Poly✶ to its type system SP . Section 14.4 shows that CP is essentially identical to

the above π-calculus. The set P below is the set Ppoly from Section 10.3.

P �
rewrite{ c̊<̊a1, . . . , ån>.̊P | c̊(̊x1, . . . , x̊n).̊QãÑ

P̊ | {̊x1 := å1, . . . x̊n := ån}̊Q } : n ¥ 0
(

Each communication prefix length has its own rule; in the type inference algo-

rithm implementation, a single rule can uniformly handle all lengths, but the formal

Meta✶ presentation is deliberately simpler. The next example shows how to check

communication safety in SP without using Tpi.

Example 14.3.1. Let P be a Meta✶ equivalent of B from Example 14.1.2. The

processes P and B share the syntax and differ only by a syntactic category. We

can use the Poly✶’s type inference algorithm to compute a principal type ΠP of P

which has with root R and the following shape graph (with flow edges removed).�� �� � �
R � �� � �� ��

s(x, y) x<y>
a(v)

v(p)

b(w
)

w(q, r)

n(p)

n<o>

m(q, r)

m<o, o>

s<a, n>

a<n>

s<b, m>

b<m>

Names of non-root nodes are omitted because they are irrelevant. The type ΠP

contains all computational futures of P in one place. Thus, because there are no two

edges from the root node labeled by “ι(ι1, . . . , ιi)” and “ι<ι11, . . . , ι1j>” with i � j, we

can conclude that P is communication safe which Example 14.2.1 shows Tpi can

not do. Our type inference implementation can be instructed (using an additional

rule) to insert a special error name at the place of communication errors. Then

checking communication safety is equivalent to checking the presence of the special

error name. �
169

Chapter 14. Shape Types for the π-calculuspr0sq � 0 prB0 | B1sq � prB0sq | prB1sqpr!Bsq � !prBsq prc(n1, . . . , nk).Bsq � c(n1, . . . , nk).prBsqprpνnqBsq � νn.prBsq prc<n1, . . . , nk>.Bsq � c<n1, . . . , nk>.prBsq
Figure 14.3: Encoding of π-calculus processes in Meta✶.

The set of expected and actual channel types of Γ:

chtypesp∆, Γq � tp∆pιq, Òr∆pι1q, . . . , ∆pιkqsq :pχ ι(ι1,...,ιk)ÝÝÝÝÝÝÑ χ1q P Γ_ pχ ι<ι1,...,ιk>ÝÝÝÝÝÝÑ χ1q P Γu
Context ∆ and shape type Π agreement relation �:

Write ∆ � 〈Γ, χ〉 when there is some ∆1 with the domain disjoint from ∆ such that
chtypesp∆Y∆1, Γq is defined and is an identity.

Figure 14.4: Property of shape types corresponding to $ of Tpi.

14.4 Embedding of Tpi in Poly✶

Using the terminology from Section 13.1 we have that the calculus C is the π-

calculus, SC is Tpi, predicates ρ of SC are contexts ∆, and SC ’s relation ⊲B : ρ is

∆ $ B. Moreover R is P which was introduced with CP and SP in Section 14.3.

This section provides a formal comparison which shows how to, for a given B and

∆, answer the question ∆ $ B using SP .

As stated in Section 13.3, to relate Tpi and SP we need to provide a faithful

encoding pr�sq of π-processes in Meta✶. This pr�sq, presented in Figure 14.3, is almost

an identity because the π-calculus syntax (Figure 14.1) already agrees with Meta✶.

Thus pr�sq mainly changes the syntactic category. Property 13.3.1 holds in the above

context.

Given ∆, we define a shape type property which holds for the principal type ΠB

of prBsq iff ∆ $ B. The property is given by the relation ∆ � Π from Figure 14.4.

The set chtypesp∆, Γq contains pairs of Tpi types extracted from Γ. Each pair

corresponds to an edge of Γ labeled by a form type “ι(ι1, . . . , ιk)” or “ι<ι1, . . . , ιk>”.

The first member of the pair is ι’s type expected by ∆, and the second member

computes ι’s actual usage from the types of ιi’s. The set chtypesp∆, Γq is undefined

when some required value of ∆ is not defined. The context ∆1 from the definition

of � provides types of names originally bound in B. These are not mentioned by ∆

but are in Γ. The following theorem shows how to answer ∆ $ B by �.

Theorem 14.4.1. Let no two different binders in B bind the same type tag, ΠB be

a principal (P-)type of prBsq, and domp∆q � ftagspBq. Then ∆ $ B iff ∆ � ΠB.

The requirement on different binders (which can be achieved by renaming) is

not preserved under rewriting because replication can introduce two same-named

binders. However, when all binding type tags differ in B0, then the theorem holds

170

Chapter 14. Shape Types for the π-calculus

for any successor B1 of B0 even when the requirement is not met for B1. We want to

ensure that the derivation of ∆ $ B does not assign different types to different type

tags. A slightly stronger assumption of Theorem 14.4.1 simplifies its formulation.

The theorem uses principal types and does not necessarily hold for a non-principal

P-type Π of prBsq because Π’s additional edges not needed to match prBsq can preclude

∆ � Π.

14.5 Conclusions

We showed a process (Example 14.1.2) that can not be proved communication safe

by Tpi (Example 14.2.1) but can be proved so by Poly✶ (Example 14.3.1). The-

orem 14.4.1 implies that Poly✶ recognizes safety of all Tpi-safe processes. Thus

we conclude that Poly✶ is better in recognition of communication safety then Tpi.

Theorem 14.4.1 allows to recognize typability in Tpi: B is typable in Tpi iff ∅ � ΠB.

This is computable because a Poly✶ principal type can always be found (for SP in

polynomial time), and checking � is easy.

Turner [Tur95, Ch. 5] presents also a polymorphic system for the π-calculus

which recognizes B from Example 14.1.2 as safe. However, with respect to our best

knowledge, it can not recognize safety of the process “B | s<n, a>.0” which Poly✶

can do. We are not aware of any process that can be recognized safe by Turner’s

polymorphic system but not by Poly✶. It must be noted, there are still processes

which Poly✶ can not prove safe, for example, “a(x).a(y, z).0 | a<o>.a<o, o>.0”.

Other π-calculus type systems are found in the literature. Kobayashi and Igarashi

[IK01] present types for the π-calculus looking like simplified processes which can ver-

ify properties which are hard to express using shape types (race conditions, deadlock

detection) but do not support polymorphism. One can expect applications where

Poly✶ is more expressive as well as contrariwise. Shape types, however, work for

many process calculi, not just the π-calculus.

171

Chapter 15

Details on the Tpi Embedding

This chapter contains technical details related to the previous chapter. It can be

skipped for the first reading and looked up later, either the whole chapter or just

some particular part.

Definition 15.0.1 extends the definition from Figure 14.4 with some additional

notations. Proposition 15.0.2 is the left-to-right implication of Theorem 14.4.1 and

Proposition 15.0.3 is its right-to-left implication. The proofs use standard weakening

and strengthening lemmas [Tur95, Lem. 3.8-9].

Definition 15.0.1. Write ∆ � Γ when ∆ � 〈Γ, χ〉 for an arbitrary χ. Moreover,

we say that ∆ � Γ holds via ∆1 when domp∆qXdomp∆1q � ∅ and chtypesp∆Y∆1, Γq
is defined and an identity.

Proposition 15.0.2. Let

(1) B be a π-process such that no two different binders bind the type tag,

(2) ΠB be a principal P-type of prBsq,
(3) domp∆q � ftagspBq, and

(4) ∆ $ B.

Then ∆ � ΠB.

Proof. By induction on the structure of B. Let Π � 〈Γ, χ〉 � ΠB. Let

B � 0: Then Γ � ∆ holds trivially because Γ � ∅.

B � B0 | B1: Let Π0 � 〈Γ0, χ0〉 be a principal type of prB0sq and Π1 � 〈Γ1, χ1〉 be a

principal type of prB1sq. Take

∆0 � tpι ÞÑ κq : pι ÞÑ κq P ∆ & ι P ftagspB0qu
∆1 � tpι ÞÑ κq : pι ÞÑ κq P ∆ & ι P ftagspB1qu

Let us verify the assumptions of the induction step for B0, Π0, and ∆0:

172

Chapter 15. Details on the Tpi Embedding

(1) Clear.

(2) Clear.

(3) domp∆0q � domp∆q X ftagspB0q � ftagspB0q.
(4) Here ∆0 $ B0 follows from ∆ $ B0 by strengthening.

Similarly the assumptions are satisfied for B1, Π1, and ∆1. Thus by the induc-

tion hypothesis we have that ∆0 � Π0 and ∆1 � Π1. Let ∆0 � Γ0 via ∆1
0 and

let ∆1 � Γ1 via ∆1
1. Because (1) we can suppose that domp∆1

0qXdomp∆1
1q � ∅.

Take ∆1 � ∆1
0Y∆1

1. We shall proof that ∆ � Γ via ∆0. Denote ∆+ � ∆Y∆1.
Although Γ can contain some additional edges not contained in Γ0 and Γ1 it

can not introduce new type tags. When Γ contains a type substitution � such

that �pιq � ι1 then it is not hard to that ∆+pιq � ∆+pι1q. Thus all additional

members in chtypesp∆+, Γq are identities because they are constructed by ap-

plication of type substitutions in Γ. Thus the claim.

B � c(n1, . . . , nk).B0: Let ι � c and ιi � ni for 0 i ¤ k. Let Π0 � 〈Γ0, χ0〉

be a principal type of prB0sq. There are some κ1, . . . , κk such that ∆pιq �Òrκ1, . . . , κks. Take ∆0 which does not contain ιi not mentioned in B0 as

follows:

∆0 � ∆rι1 ÞÑ κ1, . . . , ιk ÞÑ κksztιi ÞÑ κi : 0 i ¤ k & ιi R ftagspB0qu
Now verify the assumptions of the induction step for B0, Π0, and ∆0:

(1) Clear.

(2) Clear.

(3) domp∆0q � domp∆qYptb1, . . . , bkuX ftagspB0qq � ftagspBqY ftagspB0q �
ftagspB0q.

(4) The assumption ∆ $ B implies ∆rb1 ÞÑ κ1, . . . , bk ÞÑ κks $ B0 and thus

∆0 $ B0 by strengthening.

Thus by the induction hypothesis we have that ∆0 � Π0. Let ∆0 � Γ0 via

∆1
0. We can find ∆1 such that ∆ Y ∆1 � ∆0 Y ∆1

0 and thus also ∆ � Π0.

Denote ∆+ � ∆ Y∆1. It is easy to see that the principal type Π of B simply

directly corresponds to the syntax tree of B because no rewriting rule can be

applied to B standing alone. Also all form types contained in Γ, except of

ϕ � a(b1, . . . , bk) which labels the only edge coming out of the root node χ,

are contained in Γ0. The member of chtypesp∆+, Γq corresponding to the edge

labeled by ϕ is identity because ∆pιq � Òrκ0, . . . , κks follows directly from the

assumption ∆ $ B. All other members of chtypesp∆+, Γq are present also in

chtypesp∆0 Y ∆1
0, Γ0q and thus chtypesp∆+, Γq is defined and identity. Thus

∆ � Π.

173

Chapter 15. Details on the Tpi Embedding

B � c<n1, . . . , nk>.B0: Let ι � c and ιi � ni for 0 i ¤ k. Let Π0 � 〈Γ0, χ0〉 be

a principal type of prB0sq. Take ∆0 � tpι1 ÞÑ κq P ∆ : ι1 P ftagspB0qu. Let us

verify the assumptions of the induction step for B0, Π0, and ∆0.

(1) Clear.

(2) Clear.

(3) domp∆0q � domp∆q X ftagspB0q � ftagspB0q.
(4) Here ∆0 $ B0 follows from ∆ $ B0 by strengthening.

By the induction hypothesis we obtain that ∆0 � Π0. Let ∆0 � Γ0 via ∆1
0.

Denote ∆+ � ∆0 Y ∆1
0. Now let us proof that ∆ � Π. It is easy to see

that the principal type Π of B simply directly corresponds to the syntax tree

of B because no rewriting rule can be applied to B. Also it is easy to see

that all form types contained in Γ, except of ϕ � ι(ι1, . . . , ιk) which labels the

only edge coming out of the root node χ, are contained in Γ0. The member

of chtypesp∆+, Γq corresponding to the edge labeled by ϕ is identity because

∆paq � Òr∆pι1q, . . . , ∆pιkqs follows directly from the assumption ∆ $ P . All

other members of chtypesp∆+, Γq are present also in chtypesp∆+, Γ0q and thus

chtypesp∆+, Γq is defined and identity. Thus the claim.

B � !B0: Trivial.

B � pνnqB0: Let ι � n. We know that ∆ $ B. Condition (3) implies ι R domp∆q.
Take

∆0 � $&%∆rι ÞÑ κs when ι P ftagspB0q
∆ when ι R ftagspB0q

We see that Π is a principal type of prB0sq as well. Let us verify the assumptions

of the induction step for B0, Π, and ∆0.

(1) Clear.

(2) Clear.

(3) When ι P ftagspB0q then domp∆0q � domp∆q Y tau � ftagspBq Y tau �
ftagspB0q. When ι R ftagspB0q then domp∆0q � domp∆q � ftagspBq �
ftagspB0q.

(4) When ι P ftagspB0q then ∆0 $ B0 follows from ∆ $ P . When ι R
ftagspB0q then ∆ $ P implies ∆rι ÞÑ κs $ B0 and thus ∆0 $ B0 by

strengthening.

Thus by the induction hypothesis we have that ∆0 � Π. Let ∆0 � Γ via ∆1
0.

It is easy to see that we can take ∆1 such that ∆Y∆1 � ∆0Y∆1
0 and thus the

claim ∆ � Π holds.

174

Chapter 15. Details on the Tpi Embedding

Proposition 15.0.3. Let B be a π-process and let

(1) ΠB be a principal P-type of prBsq,
(2) ftagspBq � domp∆q, and

(3) ∆ � ΠB.

Then ∆ $ B.

Proof. By induction on the structure of B. Let Π � 〈Γ, χ〉 � ΠB. Let

B � 0: Trivial.

B � B0 | B1: Let Π0 � 〈Γ0, χ0〉 be a principal type of prB0sq and let Π1 � 〈Γ1, χ1〉 be

a principal type of prB1sq. It has to hold that any action type ϕ contained in Γ0

(respectively Γ1) as an edge label is also contained in Γ. Thus we have ∆ � Π0

and ∆ � Π1. It shows that the assumptions of the induction step are satisfied

and by the induction hypothesis we have that ∆ $ B0 and ∆ $ B1 which proof

the claim ∆ $ B.

B � c(n1, . . . , nk).B0: Let ι � c and ιi � ni for 0 i ¤ k. Let ∆ � Γ via ∆1.
Denote ∆+ � ∆Y∆1. Take

∆0 � ∆rι1 ÞÑ ∆+pι1q, . . . , ιk ÞÑ ∆+pιkqs
It is easy to see that ∆0 is defined. Let Π0 � 〈Γ0, χ0〉 be a principal type ofprB0sq. Now let us verify the assumptions of the induction step for B0, Π0, and

∆0.

(1) Clear.

(2) ftagspB0q � ftagspBq Y tι1, . . . , ιku � domp∆q Y tι1, . . . , ιku � domp∆0q.
(3) We can take ∆1

0 such that ∆+ � ∆ Y∆1 � ∆0 Y∆1
0. Note that Γ0 could

contain additional edges which are not in Γ. Those are edges introduced

by the type inference algorithm to make the shape graph flow closed. But

we can observe that whenever Γ0 contains some flow edge labeled with

type substitution � such that �pι1q � ι2, then it has to hold that ∆+pι1q �
∆+pι2q. Thus ∆0 � Π0.

By the induction hypothesis we obtain ∆0 $ B0. We see that it holds ∆pιq �Òr∆+pι1q, . . . , ∆+pιkqs and thus the claim.

B � c<n1, . . . , nk>.B0: Let ι � c and ιi � ni for 0 i ¤ k. Let ∆ � Γ via ∆1.
Denote ∆+ � ∆ Y∆1. Let Π0 � 〈Γ0, χ0〉 be a principal type of prB0sq. Now let

us verify the assumptions of the induction step for B0, Π0, and ∆.

(1) Clear.

175

Chapter 15. Details on the Tpi Embedding

(2) ftagspB0q � ftagspBq � domp∆q.
(3) To prove ∆ � Π0 use the same argument as in the proof of assumption 3

of the previous case concerning an input-binder.

By the induction hypothesis we obtain ∆ $ B0. We see that ∆ � Π implies

∆pιq � Òr∆pι1q, . . . , ∆pιkqs and thus the claim.

B � !B0: Trivial.

B � pνnqB0: Let ι � n. We can suppose that ι P ftagspB0q because otherwise we

can directly use the induction hypothesis (for B0, Π, and ∆) and weakening to

proof the claim. Let ∆ � Γ via ∆1. Because ι P ftagspB0q we have that there

is κ � p∆Y∆1qpιq. Take ∆0 � ∆rι ÞÑ κs. Let us verify the assumptions of the

induction step.

(1) Π is a principal type of prB0sq as well

(2) ftagspB0q � ftagspBq Y tιu � domp∆q Y tιu � domp∆0q
(3) When a R domp∆q then ∆0 � Γ via ∆1ztι ÞÑ κu. When ι P domp∆q then

∆ � ∆0.

By the induction hypothesis we have that ∆0 $ B0 and thus the claim.

176

Chapter 16

Shape Types for Mobile Ambients

This chapter shows how to instantiate Poly✶ to make a type system for Mobile

Ambients [CG98] (Ma). Furthermore it proves this Poly✶ instantiation to be

more expressive than an Ma type system from the literature [CG99] which we call

Tma, shows how to embed Tma predicates in Poly✶ types, and discusses possible

extensions of the embedding.

16.1 Mobile Ambients (Ma)

Mobile Ambients (Ma), introduced by Cardelli and Gordon [CG98], is a process cal-

culus for representing process mobility. Processes are placed inside named bounded

locations called ambients which form a tree hierarchy. Processes can change the

hierarchy and send messages to nearby processes. Messages contain either ambi-

ent names or hierarchy change instructions. In order to simplify the presentation we

build Ma processes from Meta✶ names with type tags preserved under α-renaming

as in Meta✶.

Figure 16.1 describes Ma process syntax. Capabilities are ambient hierarchy

change instructions. Executing a capability consumes it and instructs the surround-

ing ambient to change the hierarchy. The capability “in n” causes an ambient to

move itself into a sibling ambient named n. The capability “out n” causes an am-

bient to move out of the parent ambient n and become its sibling The capability

“open n” causes an ambient to dissolve the boundary of a child ambient n. Although

the syntax allows an arbitrary N after capability name (“in N”) so that substituting

a capability for a name yields valid syntax, capabilities where N is not a single name

are inert and meaningless. In capability sequences (N.N 1), the left-most capability

will be executed first.

The process constructors “0”, “|”, “.”, “!”, and “ν” have standard meanings.

Binders contain explicit type annotations (Section 16.2 below). The expression n[B]

describes the process B running inside ambient n. As above, the syntax also allows

177

Chapter 16. Shape Types for Mobile Ambients

Syntax of Ma processes:

n, m P AName � Name
N P ACapability ::� ε | n | in N | out N | open N | N.N 1
ω P AMsgType ::� definition postponed to Fig. 16.3
B P AProcess ::� 0 | pB0 | B1q | N[B] | N.B | !B | pνn :ωqB |

<N1, . . . , Nk> | (n1 :ω1, . . . , nk :ωk).B

Structural Equivalence of Ma:

B � B

B0 � B1

B1 � B0

B0 � B1 B1 � B2

B0 � B2

B0 � B1

B0 | B2 � B1 | B2

B0 � B1

N[B0] � N[B1]

B0 � B1

N.B0 � N.B1

B0 � B1

!B0 � !B1

B0 � B1pνn :ωqB0 � pνn :ωqB1

B0 � B1

(n1 :ω1, . . . , nk :ωk).B0 � (n1 :ω1, . . . , nk :ωk).B1 B0 | B1 � B1 | B0

B0 | pB1 | B2q � pB0 | B1q | B2 ε.B � B !0 � 0 B | 0 � B

!B � B | !B B0 | B1 � B1 | B0 pνn :Amb[κ]q0 � 0

B0|pB1|B2q � pB0|B1q|B2 pN.N 1q.B � N.pN 1.Bq
n � mpνn :ωqpm[B]q � m[pνn :ωqB]

n R fnpB0q
B0 | pνn :ωqB1 � pνn :ωqpB0 | B1q

n � mpνn :ω0qpνm :ω1qB � pνm :ω1qpνn :ω0qB
Figure 16.1: Syntax and structural equivalence of Ma processes.

inert meaningless constructions with non-name N at the position of n. Capabilities

can be communicated in messages. <N1, . . . , Nk> is a process that sends a k-tuple

of messages. (n1 :ω1, . . . , nk :ωk).B is a process that receives a k-tuple of messages,

substitutes them for appropriate n’s in B, and continues as this new process. The

name ni is said to be (input-)bound in (n1 :ω1, . . . , nk :ωk).B and it comes with an

explicit type annotation.

Bound type tags and free names of a process are defined like in Meta✶. Processes

are identified up to α-conversion of bound names which preserves type tags. A

substitution is a finite function from names to capabilities and its application to

B is written postfix, for example, Btn ÞÑ Nu. Figure 16.1 defines also structural

equivalence and Figure 16.2 describes semantics of Ma processes. The only thing

the semantics does with type annotations is copy them around. We set SpecialTag �
178

Chapter 16. Shape Types for Mobile Ambients

n[in m.B0 | B1] | m[B2]Ñ m[n[B0 | B1] | B2]

m[n[out m.B0 | B1] | B2]Ñ n[B0 | B1] | m[B2]

open n.B0 | n[B1]Ñ B0 | B1

(n1 :ω1, . . . , nk :ωk).B | <N1, . . . , Nk>Ñ Btn1 ÞÑ N1, . . . , nk ÞÑ Nku
B0 Ñ B1pνn :ωqB0 Ñ pνn :ωqB1

B0 Ñ B1

n[B0]Ñ n[B1]

B0 Ñ B1

B0 | B2 Ñ B1 | B2

B1
0 � B0 B0 Ñ B1 B1 � B1

1

B1
0 Ñ B1

1

Figure 16.2: Semantics of Ma.t
, in, out, openu in order to prevent type tags with a special meaning to be bound.

We require all processes to be well formed according to the following definition.

Well-formedness can be achieved by name renaming if necessary and it is preserved

by rewriting.

Definition 16.1.1. A process B is well formed iff all the following hold.

(S1) ftagspBq Y itagspBq is disjoint with ntagspBq
(S2) for (n1 : ω1, . . . , nk : ωk).B0 in B, ni R itagspB0q and ni � nj when i � j

(S3) bound names with the same type tag have the same type

(S4) B do not contain any type tags from SpecialTag

Example 16.1.2. In this Ma process, packet ambient p delivers a synchronization

message to destination ambient d by following instructions x received from the top

level. As we have not yet properly defined message types, we only suppose ωp �
Amb[κ] for some κ.

B � <in d> | pνp :ωpqpd[open p.0] | (x : ωx).p[x.<>]q Ñpνp :ωpqpd[open p.0] | p[in d.<>]q Ñpνp :ωpqpd[open p.0 | p[<>]]q Ñ
d[<>]

This example is also used in the sections to follow. �
179

Chapter 16. Shape Types for Mobile Ambients

Syntax of Tma types:

ω P AMsgType ::� Amb[κ] | Cap[κ]

κ P AExchangeType ::� Shh | ω1 b � � � b ωk

∆ P AEnvironment � TypeTag Ñfin AMsgType

Typing rules of Tma:

∆pnq � ω

∆ $ n : ω ∆ $ ε : Cap[κ]

∆ $ N : Cap[κ] ∆ $ N 1 : Cap[κ]

∆ $ N.N 1 : Cap[κ]

∆ $ N : Amb[κ1]
∆ $ in N : Cap[κ]

∆ $ N : Amb[κ1]
∆ $ out N : Cap[κ]

∆ $ N : Amb[κ]

∆ $ open N : Cap[κ]

∆ $ 0 : κ

∆ $ B : κ

∆ $!B : κ

∆ $ N : Cap[κ] ∆ $ B : κ

∆ $ N.B : κ

∆ $ N : Amb[κ1] ∆ $ B : κ1
∆ $ N[B] : κ

∆ $ B0 : κ ∆ $ B1 : κ

∆ $ B0 | B1 : κ�i : 0 i ¤ k ∆ $ Ni : ωi

∆ $ <N1, . . . , Nk> : ω1 b � � � b ωk

∆rn ÞÑ Amb[κ1]s $ B : κ

∆ $ pνn :Amb[κ1]qB : κ

∆rn1 ÞÑ ω1, . . . , nk ÞÑ ωks $ B : ω1 b � � � b ωk

∆ $ (n1 :ω1, . . . , nk :ωk).B : ω1 b � � � b ωk

Figure 16.3: Syntax of Tma types and typing rules.

16.2 Types for Mobile Ambients (Tma)

An arity mismatch error, like in “<a, b>.0 | (x).in x.0”, can occur in polyadic Ma.

Another communication error can be encountered when a sender sends a capability

while a receiver expects a single name. For example “<in a>.0 | (x).out x.0” can

rewrite to a meaningless “out pin aq.0”. Yet another error happens when a process

is to execute a single name capability, like in “a.0”. Processes which can never

evolve to a state with any of the above errors are called communication safe. A

typed Ma introduced by Cardelli and Gordon [CG99], which we name Tma, verifies

communication safety.

Tma assigns an allowed communication topic to each ambient location and Fig-

ure 16.3 describes Tma type syntax. Exchange types, which describe communication

topics, are assigned to processes and ambient locations. The type Shh indicates si-

lence (no communication). ω1 b � � � b ωk indicates communication of k-tuples of

messages whose i-th member has the message type ωi. For k � 0 we write 1 which

allows only synchronization actions <> and (). Message types describe communica-

tion objects (names and capability sequences). Amb[κ] is the type of an ambient

180

Chapter 16. Shape Types for Mobile Ambients

where communication described by κ is allowed. Cap[κ] describes capabilities whose

execution can unleash exchange κ (by opening some ambient). Environments assign

message types to free names (via type tags). Figure 16.3 also describes the Tma

typing rules. Types from conclusions not mentioned in the assumption can be ar-

bitrary. For example, the type of N[B] can be arbitrary provided B is well-typed.

It reflects the fact that the communication inside N does not directly interact with

N ’s outside. Subject reduction holds in Tma. When there are some ∆ and κ such

that ∆ does not assign a Cap-type to any type tag, then ∆ $ B : κ implies that B

is communication safe. For more details about Tma see [CG99].

Example 16.2.1. Consider the process B from Example 16.1.2. Let us take

∆ � td ÞÑ Amb[1]u ωp � Amb[1] ωx � Cap[1]

We can see that ∆ $ B : Cap[1] but, for example, ∆ & B : 1. �
16.3 Instantiation of Meta✶ to Ma

When we omit type annotations, add “0” after output actions, and write capability

prefixes always in a right associative manner (like “in a.pout b.pin c.0qq”), we see that

the Ma syntax is included in the Meta✶ syntax. The following set A instantiates

Meta✶ to Ma.

A �
active{ P̊ in å[̊P] },

rewrite{ å[in b̊.̊P | Q̊] | b̊[̊R] ãÑ b̊[̊a[̊P | Q̊] | R̊] },

rewrite{ å[̊b[out å.̊P | Q̊] | R̊] ãÑ å[̊R] | b̊[̊P | Q̊] },

rewrite{ open å.̊P | å[̊R] ãÑ P̊ | R̊ }
(Y�8

k�0

rewrite{ <̊M1, . . . , M̊k>.0 | (̊a1, . . . , åk).̊Q ãÑ {̊a1:= M̊1, . . . , åk:= M̊k} Q̊ }

(
The active rule lets rewriting be done inside ambients. It corresponds to the Ma

rule “B0 Ñ B1 ñ n[B0]Ñ n[B1]”. Each communication prefix length has its own

rule as described in Section 10.3. A defines the calculus CA and the type system

SA.

Communication safety of P can be checked on an A-type as follows. Two edges

with the same source labeled by (a1, . . . , ak) and <b1, . . . , bj> with k � j indicates

an arity mismatch error (but only at active positions). Every label containing

(introduced by a substitution) indicates that a capability was sent instead of a name.

Moreover, an edge labeled with a name a R itagspP q at active position indicates an

execution of a single name capability. A type of P not indicating any error proves

P ’s safety. Checking safety this way is easy.

181

Chapter 16. Shape Types for Mobile AmbientsrN � #
n if N � n P AName
 otherwise

prεsq � 0prN0.N1sq � prN0sq.prN1sqprin Nsq � in rN prout Nsq � out rN propen Nsq � open rNpr0sq � 0 pr(n1 :ω1, . . . , nk :ωk).Bsq�(n1, . . . , xk).prBsqpr!Bsq � !prBsq pr<N1, . . . , Nk>sq � <prN1sq, . . . , prNksq>.0prN.Bsq � prNsq�prBsq prpνn : ωqBsq � νn.prBsqprN[B]sq � rN[prBsq] prB0 | B1sq � prB0sq | prB1sq
Figure 16.4: Encoding of Tma processes in Meta✶.

Example 16.3.1. Let us consider process B from Example 16.1.2 whose CA equiv-

alent is “P � <in d>.0 | νp.pd[open p.0] | (x).p[x.<>.0]q”. Its SA principal type

(with flow edges removed) has root R and the following shape graph.� R � �
� � �

� � � �

d[
]

p[]

in d

op
en

p

<
>

p[]

<>

in
d

<>

<tin du*> (x) p[]

x
<
>

d[
] in

d

The names of non-root nodes are omitted. We can easily conclude that P is com-

munication safe by simply checking the labels of edges as described above. �
16.4 Embedding of Tma in Poly✶

Using the notation from Section 13.1 we have that C is Ma, SC is Tma, predicates

ρ are pairs p∆, κq, and SC ’s relation ⊲B : ρ is ∆ $ B : κ. Moreover R is A which

was introduced with CA and SA in Section 16.3. The current section provides an

embedding which shows how to, for a given B, ∆, and κ, answer the question

∆ $ B : κ using SA. We stress that it is primarily a theoretical embedding for

proving greater expressiveness which is not intended for use in practice.

Following the general discussion in Section 13.3 we need to provide an encodingpr�sq of Ma processes in Meta✶. This encoding, presented in Figure 16.4, is straight-

forward due to the flexibility of Meta✶ syntax. The encoding pr�sq translates capa-

bilities to Meta✶ messages and Ma processes to Meta✶ processes. Meaningless

expressions allowed by Ma’s syntax are translated using the auxiliary mapping r�
and the special name “
”. For example “prin pout aqsq � in
”. Recall that in Meta✶

“x[P]” is an abbreviation for “x[].P”, and that “�” linearizes composed messages

182

Chapter 16. Shape Types for Mobile Ambients

(like ppa.bq.cq�P q � a.b.c.P). The encoding erases type annotations; this is okay

because Tma’s rewriting rules only copy type annotations around without any other

effect. The type embedding in Section 16.4 will recover type information by different

means. Property 13.3.1 in the context given by Ma and A becomes the following

theorem.

Theorem 16.4.1. The following holds.

B0 Ñ B1 implies DB1
0, B

1
1 : B0 � B1

0 & prB1
0sq AãÝÑ prB1

1sq & B1
1 � B1prB0sq AãÝÑ P1 implies DB1 : prB1sq � P1 & B0 Ñ B1

Because the Tma relation$ is preserved under a consistent renaming of type tags

of processes, we can not translate p∆, κq to a Poly✶ shape type with an equivalent

meaning as discussed in Section 13.4. Nevertheless this becomes possible when we

specify the sets of allowed input- and ν-bound type tags and their types. These

can be easily extracted from a given process B. An environment ∆ν
B (resp. ∆in

B)

from the top part of Figure 16.5 describes ν-bound (resp. input-bound) type tags

of B. The definition reflects that ν-bound names in typable processes can only have

Amb-types. For a given ∆, B, and κ we construct the shape type 〈r∆Y∆ν
B, ∆in

B, κs〉
such that ∆ $ B : κ iff $prBsq : 〈r∆Y∆ν

B, ∆in
B, κs〉. The construction needs to know

which names are input-bound and thus they are separated from the other names.

The well-formedness rules S1-S4 ensure that there is no ambiguity in using only type

tags to refer to typed names in a process. The type information I (Figure 16.5, 2nd

part) collects what is needed to construct a shape type. For I � p∆ Y ∆ν
B, ∆in

B, κq
we define ∆I , ∆in

I , and κI such that ∆I describes types of all names in ∆ and B,

and ∆in
I describes types of B’s input-bound names, and κI is simply κ.

Example 16.4.2. ∆, B, and κ from the previous examples (Example 16.1.2 and

Example 16.2.1) gives us I � p∆Y∆ν
B, ∆in

B, Cap[1]q and we have:

∆Y∆ν
B � td ÞÑ Amb[1], p ÞÑ Amb[1]u ∆in

I � tx ÞÑ Cap[1]u
The main idea of the construction of the shape type 〈rIs〉 from I is that 〈rIs〉

contains exactly one node for every exchange type of some ambient location, that

is, one node for the top-level type κI , and one node for κ1 whenever Amb[κ1] is in

I. The top-level type corresponds to the shape type root. Each node corresponding

to some κ has self-loops which describe all capabilities and communication actions

which a process of the type κ can execute. When ∆Ipdq � Amb[1] then every node

would have a self-loop labeled by “in d” because in-capabilities can be executed

by any process. On the other hand only the node corresponding to 1 would allow

“open d” because only processes of type 1 can legally execute it. Finally, following

an edge labeled with “d[]” means entering d. Thus the edge has led to the node

183

Chapter 16. Shape Types for Mobile Ambients

Extraction of types of bound names:

∆in
Bpιq � ω iff B has a subprocess (. . . , aι : ω, . . .).B0

∆ν
Bpιq � ω iff ω � Amb[κ] & B has a subprocess pνaι :ωqB0

Type information:

I P TypeInfo � AEnvironment � AEnvironment � AExchangeType

Let I � p∆0, ∆1, κq. Write ∆I for ∆0 Y∆1, and ∆in
I for ∆1, and κI for κ.

Set of nodes of a shape graph (and correspondence functions):

typesI � tκIu Y tκ : Amb[κ] P rngp∆Iqu nodeofI � typeof�1
I

Let nodesI be an arbitrary but fixed set of nodes such that there exist the bijection
typeofI from nodesI into typesI .

Form types describing legal capabilities:

namesofIpωq � tι : ∆Ipιq � ωu
allowedinIpκq � movesI Y opensIpκq Y commsIpκq
movesI � tin ι, out ι : Dκ. ι P namesofIpAmb[κ]qu
opensIpκq � topen ι : ι P namesofIpAmb[κ]qu Y namesofIpCap[κ]q
msgsIpAmb[κ]q � namesofIpAmb[κ]q
msgsIpCap[κ]q � namesofIpCap[κ]q Y tpmovesI Y opensIpκqq*u
commsIpShhq � ∅
commsIpω1 b � � � b ωkq � t<µ1, . . . , µk> : µi P msgsIpωiquYt(ι1, . . . , ιk) : ∆in

I pιiq � ωi & pi � j ñ ιi � ιjqu
Construction of shape predicates and embedding of type judgments:

〈|I|〉 � tχ ϕÝÝÑ χ : ϕ P allowedinIptypeofIpχqq & χ P nodesIu Ytχ ι[]ÝÝÑ χ1 : ι P namesofIpAmb[typeofIpχ1q]q & χ, χ1 P nodesIu
〈rIs〉 � 〈〈|I|〉, nodeofIpκIq〉

Figure 16.5: Embedding of Tpi in Poly✶.

χd that corresponds to 1. In the above example with ∆Ipdq � Amb[1], the shape

graph would contain edges labeled with “d[]” from any node to χd.

The construction starts by building the node set of a shape predicate (Figure 16.5,

3rd part). All the exchange types of ambient locations are gathered in the set typesI .

These types are put in bijective correspondence with the set nodesI .

Example 16.4.3. Our example gives us typesI � tCap[1], 1u. Let us choose

nodesI � tR, 1u and define the bijections such that nodeofIpCap[1]q � R and

nodeofIp1q � 1. �
The 4th part of Figure 16.5 defines some auxiliary functions. The set namesofIpωq

contains all type tags declared with the type ω by I. The set allowedinIpκq contains

all Poly✶ form types which describe (translations of) all capabilities and commu-

nication action prefixes which are allowed to be legally executed by a process of

the type κ. The set allowedinIpκq consists of three parts: movesI , opensIpκq, and

184

Chapter 16. Shape Types for Mobile Ambients

commsIpκq. The form types in movesI describe all in{out capabilities constructible

from ambient type tags in I. The set does not depend on κ because in{out capabil-

ities can be executed by any process. The set opensIpκq describe open-capabilities

which can be executed by a process of the type κ. It consists of open-capabilities

constructible from ambient names in I and from those type tags which have the type

Cap[κ] in I. The second part of opensIpκq describes names of the type Cap[κ] which

might be instantiated to some executable capabilities. The set commsIpκq describes

communication actions which can be executed by a process of the type κ. Its first

part describes output- and the second input-actions. The auxiliary set msgsIpωq
describes all capabilities (sometimes called messages) of the type ω constructible

from names in I.

Example 16.4.4. Relevant sets for our example are as follows.

namesofIpAmb[1]q � td, pu opensIp1q � topen d, open p, xu
namesofIpCap[1]q � txu opensIpCap[1]q � ∅

commsIp1q � t<>, ()u movesI � tin d, in p, out d, out pu
commsIpCap[1]q � t<x>, <tin d, in p, out d, out p, open d, open p, xu*>, (x)u
The bottom part of Figure 16.5 constructs the shape graph 〈|I|〉 and the shape

predicate 〈rIs〉 from I. The first part of 〈|I|〉 describes self-loops of χ which describe

actions allowed to be executed by a process of typeofIpχq. The second part of 〈|I|〉
describe transitions among nodes. Any edge labeled by “a[]” always leads to the

node which corresponds to the exchange type allowed inside a.

Example 16.4.5. The resulting shape predicate 〈rIs〉 � 〈Γ, R〉 in our example has

the root R and its shape graph Γ is below. We merge edges with the same source and

destination into one using “|”.

R 1
d[] | p[]

in d | out d |
in p | out p |
<x> | (x) |
<tx, in d, in p,

out p, out d,
open d, open pu*> in d | in p |

out d | out p |
open d | open p |
p[] | d[] |
x | <> | ()

Correctness of the translation is expressed by Theorem 16.4.6. The assumptions

ensure that no ν-bound name is mentioned by ∆ or has a Cap-type assigned by an

annotation.

Theorem 16.4.6. Let domp∆q X ntagspBq � ∅ and domp∆ν
Bq � ntagspBq then

∆ $ B : κ iff $prBsq : 〈rp∆Y∆ν
B, ∆in

B, κqs〉
Theorem 16.4.7. 〈rp∆ Y ∆ν

B, ∆in
B, κqs〉 is an A-type without flow edges, that is, it

can be completed to an A-type by adding only flow edges.

185

Chapter 16. Shape Types for Mobile Ambients

16.5 Conclusions and Further Possibilities

We embedded Tma’s typing relation in SA (Section 16.4) and showed how to recog-

nize communication safety in SA directly (Section 16.3). The type 〈rIs〉 constructed

in Section 16.4 can also be used to prove the safety of B. But then, it follows from

the properties of principal types, that the safety of B can be recognized directly

from its principal A-type. Thus any process proved safe by Tma can be proved safe

by SA on its own.

Some processes are recognized safe by SA but not by Tma. For example, “(x :

ω).x.0 | <in a>” is not typable in Tma but it is trivially safe. Another examples

show polymorphic abilities of shape types, for example, the CA process

!(x, y, m).x[in y.<m>.0] | <p, a, c>.0 | a[open p.0] |

<q, b, in a>.0 | b[open q.0]

can be proved safe by Poly✶ but it constitutes a challenge for Tma-like non-

polymorphic type systems. We are not aware of other type systems for Ma and its

successor that can handle this kind of polymorphism.

The expressiveness of shape types 〈rIs〉 from Section 16.4 can be improved. In

subsequent work [CGG99], Cardelli, Ghelli, and Gordon define a type system which

can ensure that some ambients stay immobile or that their boundaries are never

dissolved. This can be achieved easily by removing appropriate self loops of nodes.

We can also assign nodes to (groups of) ambients instead of to exchange types. This

gives us similar possibilities as another Tma successor [CGG00]. Moreover, we can

use shape type polymorphism to express location-dependent properties of ambients,

like that ambient a can be opened only inside ambient b.

186

Chapter 17

Details of the Tma Embedding

This chapter contains technical details related to the previous chapter. It can be

skipped for the first reading and looked up later, either the whole chapter or just

some particular part.

17.1 Faithfulness of Ma Encoding in Meta✶

In this thesis we provide proof of Property 13.3.1 only for the case of Ma. Proof

of Property 13.3.1 for the π-calculus and Ba are analogous. The proof for Ma is

the most complicated because the encoding of Ma processes in Meta✶ is the less

straightforward. All important ideas of the proofs for the π-calculus and Ba are

shown on the proof for Ma.

We use the following names for the rewriting rules of Ma from Figure 16.2 in

the left-right and top-down order: AIn, AOut, AOpen, ACom, ANu, AAmb, APar,

and AStr. The following lemma states the relationship between Meta✶ and Tma

substitutions.

Lemma 17.1.1. It holds thatprBtn1 ÞÑ N1, . . . , nk ÞÑ Nkusq � tn1 ÞÑ prN1sq, . . . , nk ÞÑ prNksqupprBsqq
Proof. By induction on the structure of B.

The following proposition is the left-to-right implication of Property 13.3.1 for Ma.

Additionally we let C range over Ma processes AProcess in the proof.

Proposition 17.1.2. Let B0 Ñ B1. Then there exist B1
0 and B1

1 such that

B0 � B1
0 & prB1

0sq AãÝÑ prB1
1sq & B1

1 � B1

Proof. By induction on the derivation of B0 Ñ B1. Let it be derived by

187

Chapter 17. Details of the Tma Embedding

(AIn): Then, for some n, m, C0, C1, and C1 we have B0 � n[in m.C0|C1]|m[C1]

and B1 � m[n[C0 | C1] | C1]. Take the instantiation P � t̊a ÞÑ n, b̊ ÞÑ
m, P̊ ÞÑ prC0sq, Q̊ ÞÑ prC1sq, R̊ ÞÑ prC1squ. Now, we know that rewrite{ å[in b̊.̊P |

Q̊] | b̊[̊R] ãÑ b̊[̊a[̊P | Q̊] | R̊] } P A. Moreover it is easy to see that prB0sq �
P[̊a[in b̊.̊P | Q̊] | b̊[̊R]℄ and prB1sq � P[̊b[̊a[̊P | Q̊] | R̊]℄. Take directly B1

0 � B0

and B1
1 � B1 and we have prB1

0sq AãÝÑ prB1
1sq by RRew.

(AOut): Like case AIn.

(AOpen): Like case AIn.

(ACom): Similarly to case AIn but with the following changes.

B0 � (n1 :ω1, . . . , nk :ωk).C | <N1, . . . , Nk>

B1 � Ctn1 ÞÑ N1, . . . , nk ÞÑ Nku
P � t̊a1 ÞÑ n1, . . . , åk ÞÑ nk, M̊1 ÞÑ prN1sq, . . . , M̊k ÞÑ prNksq, P̊ ÞÑ 0, Q̊ ÞÑ prCsqu
P0 � P[(̊a1, . . . , åk).̊Q | <̊M1, . . . , M̊k>.̊P℄ �� (n1, . . . , nk).prCsq | <prN1sq, . . . , prNksq>.0
P1 � P[̊P | {̊a1:= M̊1, . . . , åk:= M̊k} Q̊℄ � 0 | tn1 ÞÑ prN1sq, . . . , nk ÞÑ prNksquprCsq
B1

0 � B0

B1
1 � 0 | B1

We have prB1
0sq � P0 directly and prB1

1sq � P1 by Lemma 17.1.1. By Tma

structure equivalence we have B0 � B1
0 and B1 � B1

1. Thus prB1
0sq AãÝÑ prB1

1sq by

RRew.

(AAmb): Here simply use the induction hypothesis and then instantiate the rule

active{ P̊ in å[̊P] } in RAct by P � t̊a ÞÑ nu where n is the ambient name

obtained from the assumptions. Here we have to verify that n �
 which is

clear because
 is forbidden to be used by Tma processes.

(ANu): Again use the induction hypothesis and verify that ν-bound type tag n is not

in tagspAq � tin, out, open, []u. This is satisfied for these name are excluded

from AName. Then use RNu to prove the claim.

(APar): Use the induction hypothesis and RPar to prove the claim.

(AStr): Use the induction hypothesis and RStr to prove the claim.

The following proposition is the right-to-left implication of Property 13.3.1 for

Tma.

Proposition 17.1.3. Let prB0sq AãÝÑP1. Then there exists some B1 such that prB1sq �
P1 and B0 Ñ B1.

Proof. By induction on the derivation of prB0sq AãÝÑ P1. Let it be derived by

(RRew): using the rule

188

Chapter 17. Details of the Tma Embedding

(1) rewrite{ P̊ ãÑ Q̊ } � rewrite{ å[in b̊.̊P | Q̊] | b̊[̊R] ãÑ b̊[̊a[̊P | Q̊] | R̊] }.

We also know that there is some instantiation P with all the variables

mentioned by the rule in its range. We define x � P[̊a℄, y � P[̊b℄,
P 1

0 � P[̊P℄, P 1
1 � P[̊Q℄, P 1

2 � P[̊R℄. Now we can deduce that prB0sq �
x[in y.P 1

0 | P 1
1] | y[P 1

2] and P1 � y[x[P 1
0 | P 1

1] | P 1
2]. Now there have

to be B1
0, B1

1, B1
2 such that prB1

0sq � P 1
0, prB1

1sq � P 1
1, prB1

2sq � P 1
2, and

B0 � x[in y.B1
0 | B1

1] | y[B1
2] It holds that both x and y are in AName

because (1) P can not map a name variable to
 and (2) in, out, open, []

can not appear in B0. Now we just take B1 � y[x[B1
0 | B1

1] | B1
2] and

thus we have prB1sq � P1. Finally we proof B0 Ñ B1 by AIn and AStr.

(2) Proof for the other three rules (out, open, and the communication one)

is similar as case (1).

(RAct): using the rule active{ P̊ in å[̊P] }. Let x � P[̊a℄. In this case we have that

there are some P and Q such that P
AãÝÑQ. We also have that prB0sq � x[P]

and P1 � x[Q]. Thus we see that there is some B1
0 such that prB1

0sq � P and

B0 � x[B1
0]. It also implies that x P AName. Thus we obtain prB1

0sq AãÝÑQ and

by the induction hypothesis we have that there exists B1
1 such that prB1

1sq � Q

and B1
0 Ñ B1

1. Take B1 � x[B1
1]. We have prB1sq � x[prB1

1sq] � x[Q] � P1.

Finally B0 Ñ B1 by AAmb.

(RNu): Thus there are x, P , and Q, such that prB0sq � νx.P and P1 � νx.Q, and

P
AãÝÑQ. Here we see that x P AName and thus x R fnpAq. From prB0sq � νx.P

we can conclude that there are some ω and B1
0 such that B0 � pνn : ωqB1

0

and prB1
0sq � P . Thus we have prB1

0sq AãÝÑQ and by the induction hypothesis we

obtain that there exists B1
1 such that prB1

1sq � Q and B1
0 Ñ B1

1. Let us take

B1 � pνx : ωqB1
1. Now prB1sq � νx.prB1

1sq � νx.Q � P1. Finally B0 Ñ B1 by

ANu.

(RPar): Proof is similar to case RNu.

(RStr): The problem to deal with in this case is the difference in structural equiva-

lences of Meta✶ and Tma, in particular, the Meta✶ rule present which al-

lows a ν-binder to skip an arbitrary action. On contrary Tma allows ν-binders

to skip ambient boundaries only. For example for B0 � ().pνa : ωqin a.0 and

B1 � pνa : ωq().in a.0 we have prB0sq � prB1sq in Meta✶ but not B0 � B1 in

Tma. The key observation here is that whenever in Meta✶ some rewriting

is inferred by RStr using Meta✶ structural equivalence in a way that is not

allowed in Tma then the same rewriting statement can be inferred in Meta✶

using a derivation that uses structural equivalence only in a Tma-compatible

way. Then is a simple application of the induction hypothesis.

189

Chapter 17. Details of the Tma Embedding

17.2 Correctness of Tma Embedding in Poly✶

Proposition 17.2.1 is the left-to-right implication of Theorem 16.4.6 and Proposi-

tion 17.2.2 is the right-to-left implication. The assumption of the propositions that

∆pιq � ∆ν
Bpιq for every ι P domp∆q X ntagspBq follows from the assumption of

Theorem 16.4.6 that domp∆q X ftagspBq � ∅.

Proposition 17.2.1. Let ∆pιq � ∆ν
Bpιq for every ι P domp∆q X ntagspBq. Then

∆ $ B : κ implies $prBsq : 〈rp∆Y∆ν
B, ∆in

B, κqs〉
Proof. Let ∆ $ B : κ. Let I � p∆Y∆ν

B, ∆in
B, κq and Π � 〈rIs〉. Prove $prBsq : Π by

induction on the structure of B. Let

B � 0: Clear.

B � pB0 | B1q: We know that ∆ $ B0 : κ. We see that ntagspB0q � ntagspBq.
Thus the assumption of the induction step for B0 is satisfied. Let Π0 � 〈rp∆Y
∆ν

B0
, ∆in

B0
, κqs〉. By the induction hypothesis we obtain $ prB0sq : Π0. Because

itagspB0q � itagspBq and ntagspB0q � ntagspBq we see that Π contains all the

edges of Π0. Thus also $prB0sq:Π by weakening. Similarly we obtain $prB1sq:Π.

Thus the claim.

B � N[B0]: We know that there is some κ1 such that ∆ $ N : Amb[κ1] and

∆ $ B0 : κ1. Thus it is clear that there is some n such that N � n. Let ι � n.

We have ntagspB0q � ntagspBq and thus the assumption of the induction step

for B0 and κ1 is satisfied. Let Π0 � 〈rp∆ Y ∆ν
B0

, ∆in
B0

, κ1qs〉. By the induction

hypothesis we obtain $prB0sq : Π0. We see that ∆in
B0
� ∆in

B and ∆ν
B0
� ∆ν

B and

thus Π0 and Π differ only in the root nodes. Let χ be the root node of Π and let

χ0 be the root node of Π0. It is clear that χ � nodeofIpκq and χ0 � nodeofIpκ1q.
(Note that for I0 � p∆Y∆ν

B0
, ∆in

B0
, κ1q it does not need to hold that κ P typesI0

.)

We can see that ∆paq � Amb[κ1] and thus ι P namesofIpAmb[κ1]q. Thuspχ ι[]ÝÝÑ χ0q P Γ. Hence the claim $n[prB0sq] : Π because $n[] : ι[].

B � N.B0: We see that ∆ $ N : Cap[κ] and ∆ $ B0 : κ. The assumption

of the induction step for B0 is satisfied because ntagspB0q � ntagspBq. Let

Π0 � 〈rp∆Y∆ν
B0

, ∆in
B0

, κqs〉. By the induction hypothesis we obtain $prB0sq : Π0.

Clearly Π contains all the edges as Π0 and thus also $prB0sq : Π by weakening.

Let χ � nodeofIpκq be the root node of Π. We see that χ is the root of Π0

as well. Let us prove the claim by induction on the structure of N . (We are

proving that $prB0sq : Π and ∆ $ N : κ implies $prN.B0sq : Π.)

N � n: Let ι � n. Then it is clear that ∆pιq � Cap[κ]. Thus it holds that

ι P namesofIpCap[κ]q and ι P opensIpκq. Now we see that Π contains the

edge χ
ιÝÑ χ and because $n : ι we see that $n.prB0sq : Π. Thus the claim.

190

Chapter 17. Details of the Tma Embedding

N � in N : We see that there is some κ1 such that ∆ $ N : Amb[κ1] and

thus there is some n such that N � n. Let ι � n. We have ∆paq �
Amb[κ1] and thus ι P namesofIpCap[κ1]q and in ι P movesI . Now we see

that Π contains the edge χ
in ιÝÝÑ χ and because $ in n : in ι we see that$ in n.prB0sq : Π. Thus the claim.

N � out N : As in the case for “in N”.

N � open N : As in the case for “in N” but here κ1 � κ and open ι P opensIpκq.
N � N0.N1: We have that ∆ $ N0 : κ and ∆ $ N1 : κ. By the induction

hypothesis for N1 and B0 we obtain that $prN1.B0sq : Π. By the induction

hypothesis for N0 and N1.B0 (which is still structurally smaller than N)

we obtain that $ prN0.pN1.B0qsq : Π. Now we see that prN0.pN1.B0qsq �prpN0.N1q.B0sq � prBsq. Hence the claim.

B � !B0: We know that ∆ $ B : Π. The assumption of the induction step is

clearly satisfied. Thus the claim follows from the induction hypothesis because

∆ν
B0
� ∆ν

B and ∆in
B0
� ∆in

B.

B � pνn :ωqB0: Let ι � n. We know that there is some κ1 such that ω � Amb[κ1].
Thus ∆ν

Bpιq � ω. Let ∆0 � ∆rι ÞÑ ωs. We know that ∆0 $ B0 : κ. Let ι1 P
domp∆0qXntagspB0q. When ι1 � ι then obviously ι1 P domp∆qXntagspBq and

thus ∆0pι1q � ∆ν
B0
pι1q. When ι1 � ι we have that ∆0pι1q � ω � ∆ν

Bpι1q. Now

because ι1 P ntagspB0q we have that ∆ν
B0
pι1q � ω by well-scopedness condition

S4. Thus the assumption of the induction step for ∆0 and B0 is satisfied.

Let Π0 � 〈rp∆0 Y ∆ν
B0

, ∆in
B0

, κqs〉. By the induction hypothesis we obtain that$ prB0sq : Π0. By the same arguments used to prove the assumption of the

induction step we can prove that ∆0 Y ∆ν
B0

� ∆ Y ∆ν
B. (When ι P domp∆q

then ∆pιq � ∆ν
Bpιq � ω � ∆0pιq.) Obviously ∆in

B0
� ∆in

B and thus Π0 � Π.

Thus $νn.prB0sq : Π. Hence the claim.

B � <N1, . . . , Nk>: We know that κ � ω1b� � �bωk and ∆ $ Ni : ωi for all 0 i ¤ k.

Let us prove for any i, by the induction on the structure of Ni that there is

some µi P msgsIpωiq such that $prNisq : µi. Let

Ni � n: Let ι � n. Take µi � ι. It is clear that ι P namesofIpωiq and thus

ι P msgsIpωiq. Hence the claim.

Ni � in N : It is clear that there is some n such that N � n. Let ι � n.

We can see that ω � Amb[κ1] for some κ1 and ∆pιq � Amb[κ1]. Take

µi � in ι. Thus µi P movesI . Hence the claim.

Ni � out N : As in the case for “in N”.

Ni � open N : As in the case for “in N” but here κ1 � κ and µi � open ι P
opensIpκq.

Ni � N.N 1: It is cleat that ω � Cap[κ1] for some κ1. From the induction

hypothesis we have µ and µ1 such that $prNsq:µ and $prN 1sq:µ1. When both

191

Chapter 17. Details of the Tma Embedding

µ and µ1 are message types of the form Σ* then µ � µ1 and thus $prNisq:µ.

When both µ and µ1 are type tags then we have N, N 1 P namesofIpωq. But

we know that msgsIpωq contains exactly one message type of the shape Σ*

and because namesofIpωq � namesofIpCap[κ1]q � opensIpκ1q we have that

µ, µ1 P Σ. Thus $ prNisq : Σ*. A similar situation is when only one of µ

and µ1 is a type tag. Then the second one is the same Σ* as above and

the first type tag is in Σ. Thus the claim.

Now let ϕ � <µ1, . . . , µk>. Let χ � nodeofIpκq be the root node of Π. We see

that Π contains χ
ϕÝÑ χ because ϕ P allowedinIpωq. Thus we can prove that$<prN1sq, . . . , prNksq>.0 : Π. Hence the claim.

B � (n1 :ω1, . . . , nk :ωk).B0: Let ιi � ni for 0 i ¤ k. Let ∆0 � ∆rn1 ÞÑ
ω1, . . . , nk ÞÑ ωks. We know that κ � ω1 b � � � b ωk and ∆0 $ B0 : κ. By the

well-scopedness condition S1 (the part that ν- and input-bound type tags do not

intersect) we have for any i that ιi R ntagspB0q. Thus domp∆0qXntagspB0q �
domp∆q X ntagspBq and the assumption of the induction step is satisfied.

Let Π0 � 〈rp∆0 Y ∆ν
B0

, ∆in
B0

, κqs〉. By the induction hypothesis we obtain that$prB0sq : Π0. Let ϕ � (ι1, . . . , ιk) and let χ � nodeofIpκq be the root node of

Π. We can see that χ is the root of Π0 as well. Moreover we can see that Π

contains all the edges of Π0 by weakening. Thus also $prB0sq : Π. For any i we

have ∆ν
Bpιiq � ωi and thus ϕ P allowedinIpω1b� � �bωkq. Thus the shape graph

of Π additionally contains the edge χ
ϕÝÑ χ. Thus $ (n1, . . . , nk).prB0sq : Π.

Hence the claim.

Proposition 17.2.2. Let ntagspBq � domp∆ν

Bq. Let ∆pιq � ∆ν
Bpιq for every ι P

domp∆q X ntagspBq. Then$prBsq : 〈rp∆Y∆ν
B, ∆in

B, κqs〉 implies ∆ $ B : κ.

Proof. Let I � p∆ Y ∆ν
B, ∆in

B, κq and Π � 〈rIs〉 and 〈Γ, χ〉 � Π. Thus we have

χ � nodeofIpκq. Let $prBsq : Π. Prove ∆ $ B : κ by induction on the structure of

B. Let

B � 0: Clear.

B � pB0 | B1q: We know $ prB0sq : Π. Let Π0 � 〈rp∆ Y ∆ν
B0

, ∆in
B0

, κqs〉. Now Π

contains additional edges which are not present in Π0. These comes from type

tags present in B but not in B0. Thus we can prove $ prB0sq : Π0 applying

strengthening for each of the above type tags not present in B0. The other two

assumptions of the induction step for B0 are clearly satisfied. By the induction

hypothesis we obtain ∆ $ B0 : κ. Similarly we obtain ∆ $ B1 : κ. Thus the

claim.

192

Chapter 17. Details of the Tma Embedding

B � N[B0]: We have $prN[B0]sq :Π and thus there is some n such that n � N and

n �
 (for
 is not in Π). Thus prn[B0]sq � n[].prB0sq. Let ι � n. There are

some ϕ and χ0 such that $n[] : ϕ, and pχ ϕÝÑ χ0q P Γ, and moreover $prB0sq :

〈Γ, χ0〉. Thus ϕ � ι[]. Let κ1 � typeofIpχ0q. Take Π0 � 〈rp∆Y∆ν
B0

, ∆in
B0

, κ1qs〉.
Now Π and Π0 differ only in the root node and Π can contain one additional

node (its root χ). But we can observe that all paths of Π which start at χ0 are

also present in Π0. Thus $prB0sq : Π0. The assumptions of the induction step

are satisfied because ∆ν
B1

0

� ∆ν
B and ∆in

B1
0

� ∆in
B. By the induction hypothesis

we obtain ∆ $ B1
0 : κ1.

Let us prove ∆ $ n : Amb[κ1]. We know that ϕ P Γ and thus it holds that

ι P namesofIpAmb[typeofIpχ0q]q. Because ι P ftagspBq it has to be the case

that ∆pιq � Amb[κ1]. Hence the claim.

B � N.B0: Take N 1.B1
0 � N.B0 such that N 1 is not a composed message, that is, it

is either n, in N0, out N0, or open N0. We can see that $prN 1.B1
0sq : Π because$prN.B0sq : Π. We have that prN 1.B1

0sq � prN 1sq�prB1
0sq � prN 1sq.prB1

0sq. Thus there

are some ϕ and χ0 such that $ prN 1sq : ϕ, and pχ ϕÝÑ χ0q P Γ, and moreover$ prB1
0sq : 〈Γ, χ0〉. It is clear that χ0 � χ because ϕ is not of the shape ι[].

Thus $prB1
0sq : Π. Take Π1

0 � 〈rp∆ Y∆ν
B0

, ∆in
B0

, κqs〉. Obviously ∆ν
B1

0

� ∆ν
B and

∆in
B1

0

� ∆in
B and thus Π � Π1

0. The other two assumptions of the induction step

for B0 are clearly satisfied. By the induction hypothesis we obtain ∆ $ B1
0 : κ.

Now let us prove ∆ $ N 1 : Cap[κ]. Distinguish the following cases:

N 1 � n: Let ι � n. We know $ prN 1sq : ϕ and thus ϕ � ι. Also we know

that ϕ P allowedinIpκq. It has to be the case that ϕ P opensIpκq and

ι P namesofIpCap[κ]q. Because ι P ftagspBq it has to be the case that

∆pιq � Cap[κ]. Thus the claim ∆ $ in n : Cap[κ] holds.

N 1 � in N0: Because $prN 1sq :ϕ we can see that there has to be some n (n �
)
such that n � N0. Let ι � n. Thus it has to be ϕ � in ι. Also we know

that ϕ P allowedinIpκq. It has to be the case that ϕ P movesI. Thus there

is some κ1 such that ι P namesofIpAmb[κ1]q. Because ι P ftagspBq it has

to be the case that ∆pιq � Amb[κ1]. Thus ∆ $ n : Amb[κ1] and the

claim ∆ $ in n : Cap[κ] holds.

N 1 � out N0: As in the case for “in N”.

N 1 � open N0: As in the case for “in N” but here κ1 � κ and open ι P
opensIpκq.

otherwise: Other possibilities are not allowed by the choice of N 1.
Thus we have ∆ $ N 1.B1

0 : κ. Hence the claim ∆ $ N.B0 : κ because N 1.B1
0 �

N.B0.

B � !B0: Clear.

193

Chapter 17. Details of the Tma Embedding

B � pνn :ωqB0: Let ι � n. We see ι P ntagspBq and thus ∆ν
Bpιq � ω. That is why

ω � Amb[κ1] for some κ1. Let ∆0 � ∆rι ÞÑ ωs. Let ι1 P domp∆0qXntagspB0q.
When ι1 � ι then obviously ι1 P domp∆qXntagspBq and thus ∆0pι1q � ∆ν

B0
pι1q.

When ι1 � ι we have that ∆0pι1q � ω � ∆ν
Bpι1q. Now because ι1 P ntagspB0q we

have that ∆ν
B0
pι1q � ω by well-scopedness condition S4.

We have that $prB0sq :Π. Let Π0 � 〈rp∆0Y∆ν
B0

, ∆in
B0

, κqs〉. Now we can see that

∆0 Y∆ν
B0
� ∆ Y∆ν

B. (When ι P domp∆q then ∆pιq � ∆ν
Bpιq � ω � ∆0pιq.)

Thus Π0 � Π and $prB0sq : Π0. Moreover we see that ntagspB0q � domp∆ν
B0
q

is satisfied as well. Thus the assumptions of the induction step for Π0 and ∆0

and B0 is satisfied. By the induction hypothesis we obtain that ∆0 $ B0 : κ.

Hence the claim because we have already shown that ω � Amb[κ1] for some

κ1.
B � <N1, . . . , Nk>: Let F � <prN1sq, . . . , prNksq>. We see prBsq � F.0. Now because

know that $ F.0 : Π we have that there are ϕ and χ0 such that $ F : ϕ andpχ ϕÝÑ χ0q P Γ. Thus there are some µ1, . . ., µk such that ϕ � <µ1, . . . , µk>

and $prNisq : µi. Also clearly ϕ P allowedinIpκq and ϕ P commsIpκq. It implies

that there are some ω1, . . ., ωk such that κ � ω1 b � � � bωk and µi P msgsIpωiq
for all i.

Let us prove ∆ $ Ni : ωi for all i. When µi � ι for some ι (we know ι �
)
then $prNisq : ι implies that there is some n such that n � Ni and ι � n. Now

µi P msgsIpωiq implies ι P namesofIpωiq. We see ι P ftagspBq and thus it has

to be the case that ∆pιq � ωi. Hence ∆ $ Ni : ωi. When µi � Σ* we know

that ωi � Cap[κ1] for some κ1 and also we see that Σ � movesI Y opensIpκ1q.
Let us prove the claim ∆ $ Ni : ωi by the induction of the structure of Ni. Let

Ni � n: Let ι � n. We have $ n : Σ* and thus ι P Σ. Thus we see ι P
namesofIpCap[κ1]q. Now ι P ftagspBq implies that ∆pιq � Cap[κ1].
Hence the claim ∆ $ n : ωi.

Ni � in N 1: Because $prNisq : µi and µi does not contain
 we know that there

is some n such that n � N 1. Let ι � n. Thus prMisq � in n and thus

in ιΣ. It implies that in ι P movesI and thus there is some κ2 such that

ι P namesofIpAmb[κ2]q. Because ι P ftagspBq we see that it must be the

case ∆pιq � Amb[κ2]. Hence ∆ $ in n : Cap[κ1].
Ni � out N 1: As in the case for “in N 1”.
Ni � open N 1: As in the case for “in N 1” but here κ1 � κ2 and open ι P

opensIpκ1q.
Ni � N 1.N2: By the induction hypothesis we have ∆ $ N 1 : Cap[κ1] and

∆ $ N2 : Cap[κ1]. Hence the claim.

Hence the claim ∆ $ B : ω1 b � � � b ωk holds.

194

Chapter 17. Details of the Tma Embedding

B � (n1 :ω1, . . . , nk :ωk).B0: We know that it holds $prBsq : Π and we have prBsq �
(n1, . . . , nk).prB0sq. Thus there are some ϕ and χ0 such that $(n1, . . . , nk) :ϕ,

and pχ ϕÝÑ χ0q P Γ, and $prB0sq:〈Γ, χ0〉. We see χ0 � χ. Thus $prB0sq:Π. Take

∆0 � ∆rn1 ÞÑ ω1, . . . , nk ÞÑ ωks. Let Π0 � 〈rp∆0 Y∆ν
B0

, ∆in
B0

, κqs〉. We can see

that Π0 contains all the edges of Π but the edge pχ ϕÝÑ χ0q This is because all the

names ni from ∆in
B have just moved to ∆0. Also by well-scopedness condition

S1 we know that ni R domp∆q for any i. By well-scopedness condition S2 we

have that no ni R itagspB0q for any i and thus the above edge pχ ϕÝÑ χ0q is not

used when matching prB0sq against Π. Thus also $prB0sq : Π0. The assumptions

of the induction step are satisfied. By the induction hypothesis we have that

∆0 $ B0 : κ. Hence the claim.

195

Chapter 18

Shape Types for BioAmbients

We show how to instantiate Poly✶ to a type system for BioAmbients [RPS�04] and

how to use it for flow analysis. Moreover we compare results achieved by Poly✶

with a flow analysis system for BioAmbients [NNPR07] from the literature which

we call Faba.

18.1 BioAmbients (Ba)

BioAmbients is a process calculus for modeling biomolecular systems introduced by

Regev, Panina, Silverman, Cardelli, and Shapiro [RPS�04]. Regev et al. present

BioAmbients with the choice operator to express computation options and with

replication. We work with a choice-free variant of BioAmbients with replication

which we name Ba. Poly✶ can handle choice in a way that achieves the same

results as Faba but we omit it to simplify the presentation.

Ba is similar to Ma but it differs in several ways. Ambients are anonymous, that

is, are not labeled with names. It implies that capabilities can no longer use names

to refer to ambients. Thus capabilities come in require/allow pairs synchronized by

names, for example, “enter a/accept a”. Then an appropriate action is performed

when two ambients containing corresponding parts are found in a required position.

The open capability is replaced by an operation that merges two sibling ambients.

Communication is channel-based, that is, both a sender and receiver have to agree on

a channel name for communication to happen. Moreover, communication is allowed

also across some ambient boundaries, and only single names are exchanged.

Figure 18.1 gives the syntax of Ba. As in the case of the π-calculus and Ma,

we build processes from Meta✶ names to ease the presentation. The capabil-

ity “enter n” instructs an ambient to enter a sibling containing a corresponding

“accept n”. The capability “exit n” instructs an ambient to exit its parent ambient

provided it allows it with the “expel n” capability. Finally, “merge+ n” instructs an

ambient to merge with a sibling containing “merge- n”. Communication is in four

196

Chapter 18. Shape Types for BioAmbients

Syntax of Ba:

l P BioLabel � TypeTag
n, m P BioName ::� Name

d P BioDirection ::� local | p2c | c2p | s2s

N P BioCapability ::� enter n | exit n | merge+ n |
accept n | expel n | merge- n

B P BioProcess ::� 0 | B0|B1 | [B]l | N.B | !B | pνnqB |
d n?{m}.B | d n!{m}.B

Structural equivalence of Ba:

B � B

B0 � B1

B1 � B0

B0 � B1 B1 � B2

B0 � B2

B0 � B1

B0 | B2 � B1 | B2

B0 � B1

[B0]
l � [B1]

l

B0 � B1

N.B0 � N.B1

B0 � B1

!B0 � !B1

B0 � B1pνnqB0 � pνnqB1

B0 � B1

d n?{m}.B0 � d n?{m}.B1

B0 � B1

d n!{m}.B0 � d n!{m}.B1 B | 0 � B

B0 | B1 � B1 | B0 B0 | pB1 | B2q � pB0 | B1q | B2 !0 � 0 !B � B | !Bpνnq0 � 0 pνnqp[B]lq � [pνnqB]
l

n R fnpB0q
B0 | pνnqB1 � pνnqpB0 | B1qpνnqpνmqB � pνmqpνnqB

Figure 18.1: Syntax and structural equivalence of Ba.

directions: between processes in the same ambient (local), between processes in sib-

ling ambients (s2s), from a parent ambient to its child (p2c), and from a child to the

parent (c2p). Only a single name (not capabilities) can be sent. The output action

syntax is “d n !{m}” where n is the channel name, d is the desired direction, and

m is the name being sent. The input prefix “d n ?{m}” is similar and (input-)binds

the name m.

Flow analysis must refer to ambients to track changes, so following the ap-

proach of Faba, our syntax introduces ambient labels with no influence on the

semantics. We use Meta✶ type tags as labels and write [B]l for an ambient la-

beled l. Bound type tags and free names of a process are defined like in Meta✶.

The set tagspBq do not contain ambient labels. Processes are identified up to

α-conversion of bound names which preserves type tags. We set SpecialTag �t
, enter, exit, merge+, accept, expel, merge-, local, p2c, c2p, localu in order to prevent

type tags with a special meaning to be bound. We require all processes to be well

formed according to the following definition. Well-formedness can be achieved by

197

Chapter 18. Shape Types for BioAmbients

[enter n.B0 | B1]
l0 | [accept n.B2 | B3]

l1 Ñ [[B0 | B1]
l0 | B2 | B3]

l1

[[exit n.B0 | B1]
l0 | expel n.B2 | B3]

l1 Ñ [B0 | B1]
l0 | [B2 | B3]

l1

[merge+ n.B0 | B1]
l | [merge- n.B2 | B3]

l1 Ñ [B0 | B1 | B2 | B3]
l

local n?{m0}.B0 | local n!{m1}.B1 Ñ B0tm0 ÞÑ m1u | B1

p2c n?{m0}.B0 | [c2p n!{m1}.B1 | B2]
l Ñ B0tm0 ÞÑ m1u | [B1 | B2]

l

[c2p n?{m0}.B0 | B1]
l | p2c n!{m1}.B2 Ñ [B0tm0 ÞÑ m1u | B1]

l
| B2

[s2s n?{m0}.B0 | B1]
l0 | [s2s n!{m1}.B2 | B3]

l1 Ñ
[B0tm0 ÞÑ m1u | B1]

l0 | [B2 | B3]
l1

B0 Ñ B1pνnqB0 Ñ pνnqB1

B0 Ñ B1

[B0]
l Ñ [B1]

l

B0 Ñ B1

B0 | B2 Ñ B1 | B2

B1
0 � B0 B0 Ñ B1 B1 � B1

1

B1
0 Ñ B1

1

Figure 18.2: Rewriting relation of Ba.

name renaming if necessary and it is preserved by rewriting.

Definition 18.1.1. A process B is well formed iff all the following hold.

(S1) ftagspBq Y itagspBq is disjoint with ntagspBq
(S2) for “d n ?{m}.B0” in B, m R itagspB0q
(S3) type tags of names from B are distinct from ambient labels from B

(S4) B do not contain any type tags from SpecialTag

Figure 18.1 also presents Ba structural equivalence. The semantics of Ba is in

Figure 18.2.

Example 18.1.2. Consider the following simple Ba process.

B � [enter n.accept x.0 | enter m.merge- y.0]a|

[accept n.0]b | [accept m.0]c

198

Chapter 18. Shape Types for BioAmbients

The following two different rewritings can be proved.

B Ñ [[accept x.0 | enter m.merge- y.0]a]b | [accept m.0]c

B Ñ [accept n.0]b | [[enter n.accept x.0 | merge- y.0]a]
c

18.2 Flow Analysis of BioAmbients (Faba)

Nielson, Nielson, Priami, and Rosa [NNPR07] designed a flow analysis system for

BioAmbients (hereafter Faba) which conservatively over-approximates the states

that a system can evolve to. The original Faba works for a version of Ba with the

µ (also called rec) operator instead of replication. Here we suppose only a restricted

usage of µ which can be expressed by replication because Meta✶ does not support

µ at the current moment. We could emulate the µ operator using additional rules as

described in Section 9.3.1 but we prefer to work with replication in order to simplify

the presentation.

The original Faba does α-conversion similarly to Meta✶. It assigns a canonical

name to every name that is preserved by α-conversion. We identify these canonical

names with Meta✶ type tags. Canonical names are used in canonical capabilities

and communication prefixes, which we map into Poly✶ form types.

Faba takes a Ba process as an input and its output collects information about

possible contents of ambients in any process that the input process can evolve to. A

result of Faba analysis is a pair pS,N q where S � BioLabel�FormType, and N �
TypeTag�TypeTag. For every ambient, S collects information about possible child

ambients, capabilities, and communication prefixes contained in it. For examplepa, b[]q P S says1 that the ambient (with the label) a can have a child ambient b,

while pa, enter nq P S says that an ambient with the label a can possibly contain

(and execute) the capability “enter an” for any a. Note that members of S are built

from type tags. In order to match the syntax of action types we write “d a(b)”

instead of “d a?{b}”, and “d a” instead of “d a!{b}”.

Input-bound names are handled in a special way. Capabilities built from input-

bound names are not contained in S. Instead, S contains all their actual in-

stantiations introduced by communication. For example, for the input process

“local a?{x}.enter x.0 | local a!{b}.0”, the S part of the result contains “enter b”

but not “enter x”. The set N describes possible name instantiations invoked by

communication. For example px, bq P N says that communication can instantiate x

to b.

Faba defines the predicate pS,N q (l B meaning that B matches the structure

allowed by pS,N q inside the ambient l. The name “Æ” is used to refer to the top

1In the original paper [NNPR07] the set S contains pι, ι0q instead of pι, ι0[]q. This technical
change we make allows easier formulation of our expressiveness evaluation.

199

Chapter 18. Shape Types for BioAmbientspS,N q (l 0 iff truepS,N q (l B0 | B1 iff pS,N q (l B0 & pS,N q (l B1pS,N q (l [B]l0 iff Spl, l0[]q & pS,N q (l0 BpS,N q (l N.B iff pS,N q (l N & pS,N q (l BpS,N q (l d n?{m}.B iff pS,N q (l d n?{m} & pS,N q (l BpS,N q (l d n!{m}.B iff pS,N q (l d n!{m} & pS,N q (l BpS,N q (l !B iff pS,N q (l BpS,N q (l pνaiqB iff N pa, aq & pS,N q (l BpS,N q (l enter n iff �ι : N pn, ιq ñ Spl, enter ιqpS,N q (l accept n iff �ι : N pn, ιq ñ Spl, accept ιqpS,N q (l exit n iff �ι : N pn, ιq ñ Spl, exit ιqpS,N q (l expel n iff �ι : N pn, ιq ñ Spl, expel ιqpS,N q (l merge+ n iff �ι : N pn, ιq ñ Spl, merge+ ιqpS,N q (l merge- n iff �ι : N pn, ιq ñ Spl, merge- ιqpS,N q (l d n?{m} iff �ι : N pn, ιq ñ Spl, d ι(m)qpS,N q (l d n!{m} iff �ι0, ι1 : N pn, ι0q & N pm, ι1q ñ Spl, d ι0<ι1>q
Figure 18.3: Faba analysis of Ba processes.

level location. pS,N q (l BFigure 18.3 defines the relation pS,N q (l B. When an

input process B is given, this figure gives us the set of conditions on pS,N q that has

to be satisfied for pS,N q (Æ B to hold. For example, pS,N q (Æ enter aι.B holds iffpS,N q (Æ B and Spenter ι1, Æq for all ι1 to which ι can be renamed to (that is, such

that N pι, ι1q).
Figure 18.4 specifies conditions which a Faba result has to satisfy to be closed

under rewriting. These conditions directly correspond to the Ba rewriting rules. For

example for the local communication rule, SpÆ, local ι(ι0)q and SpÆ, local ι<ι1>q has

to imply N pι0, ι1q because the rewriting can result in a corresponding renaming. The

Faba result for B is the smallest pair pS,N q such pS,N q (l B and which satisfies all

the closure conditions from Figure 18.4. Faba ensures that the structure described

by a valid result is closed under rewritings.

Example 18.2.1. The Faba resutl for the process B from Example 18.1.2 is as

follows.

N � t pn, nq, pm, mq, px, xq, py, yq u
S � t pÆ, a[]q, pa, enter nq, pa, enter mq, pa, accept xq, pa, merge- yq,pÆ, b[]q, pb, a[]q, pb, accept nq, pÆ, c[]q, pc, a[]q, pc, accept mq u

18.3 Instantiation of Meta✶ to BioAmbients

We can express Ba prefixes “d n !{m}” and “d n ?{m}” as 3-length Meta✶ forms

“d n<m>” and “d n(m)” respectively. Ambient labels can be translated using an

200

Chapter 18. Shape Types for BioAmbients�l, l1, l2, ι : Spl1, enter ιq & Spl, l1[]q & Spl2, accept ιq & Spl, l2[]qñ Spl2, l1q�l, l1, l2, ι : Spl2, exit ιq & Spl1, l2[]q & Spexpel ι, l1q & Spl, l1[]qñ Spl, l2q�l, l1, l2, ι : Spl1, merge+ ιq & Spl, l1[]q & Spl2, merge- ιq & Spl, l2[]qñ p�ϕ : Spl2, ϕq ñ Spl1, ϕqq�l, ι, ι0, ι1 : Splocal ι(ι0), lq & Splocal ι<ι1>, lqñ N pι0, ι1q�l, l0, ι, ι0, ι1 : Spl, p2c ι<ι1>q & Spl, l0[]q & Spl0, c2p ι(ι0)qñ N pι0, ι1q�l, l0, ι, ι0, ι1 : Spl, p2c ι(ι0)q & Spl, l0[]q & Spl0, c2p ι<ι1>qñ N pι0, ι1q�l, l0, l1, ι, ι0, ι1 : Spl0, s2s ι(ι0)q & Spl, l0[]q & Spl1, s2s ι<ι1>q & Spl, l1[]qñ N pι0, ι1q
Figure 18.4: Closure conditions valid for Faba results.

ambient syntactic sugar as in Ma, that is “[0]l” as “ll[0]”. Then the syntax of Ba

matches the syntax of Meta✶.

Recall that

SpecialTag � t
, enter, exit, merge+, accept, expel, merge-, local, p2c, c2p, localu.
The set B of Meta✶ rewriting rules looks as follows.

B �
active{ P̊ in å[̊P] },

rewrite{ å[enter n̊.̊P | Q̊] | b̊[accept n̊.̊R | S̊] ãÑ b̊[̊a[̊P | Q̊] | R̊ | S̊] },

rewrite{ b̊[̊a[exit n̊.̊P | Q̊] | expel n̊.̊R | S̊] ãÑ å[̊P | Q̊] | b̊[̊R | S̊] },

rewrite{ å[merge+ n̊.̊P | Q̊] | b̊[merge- n̊.̊R | S̊] ãÑ å[̊P | Q̊ | R̊ | S̊] },

rewrite{ local n̊(̊x).̊P | local n̊<̊M>.̊Q ãÑ {̊x:= M̊}̊P | Q̊ },

rewrite{ p2c n̊(̊x).̊P | å[c2p n̊<̊M>.̊Q | R̊] ãÑ {̊x:= M̊}̊P | å[̊Q | R̊] },

rewrite{ å[c2p n̊(̊x).̊P | Q̊] | p2c n̊<̊M>.̊R ãÑ å[{̊x:= M̊}̊P | Q̊] | R̊ },

rewrite{ å[s2s n̊(̊x).̊P | Q̊]|b̊[s2s n̊<̊M>.̊R | S̊] ãÑ å[{̊x:= M̊}̊P | Q̊] | b̊[̊R|S̊] }
(

The following set B instantiates Meta✶ to Ba and Poly✶ to Ba’s type system

SB.

Example 18.3.1. Poly✶ principal type ΠB for a Meta✶ equivalent of B from

201

Chapter 18. Shape Types for BioAmbientsprlocalsq � local prp2csq � p2cprc2psq � c2p prs2ssq � s2sprenter nsq � enter npraccept nsq � accept nprexit nsq � exit nprexpel nsq � expel nprmerge+ nsq � merge+ nprmerge- nsq � merge- n

pr0sq � 0prB0 | B1sq � prB0sq | prB1sqpr[B]lsq � ll[prBsq]prN.Bsq � prNsq.prBsqprd n?{m}sq.B � prdsq n(m).prBsqprd n!{m}sq.B � prdsq n<m>.prBsqpr!Bsq � !prBsqprpνnqBsq � νn.prBsq
Figure 18.5: Encoding of Ba processes in Meta✶.

Example18.1.2 looks as follows.

R� �� � �� �� � � �
b[]

a[]

c[]

ac
ce
pt

n
a[] a[]

accept
m

ac
ce
pt

x

en
te

r
n

en
te

r
m

m
erge-

yen
te
r
n enter

m

accept x merge- y

enter men
ter

n

Contents of ambients can be easily read from it. It also shows Poly✶’s spatial

polymorphism in action: ambient a can execute “accept x” only when contained

inside ambient b, and similarly for “merge- y” and c. �
18.4 Poly✶ Types and Faba Results

Using the notation from Section 13.1 we have that C is Ba, SC is Faba, predicates

ρ are triples pS,N , lq, and SC ’s relation ⊲ B : ρ is pS,N q (l B. Moreover, B, CB,

and SB were discussed in Section 18.3. This section shows that Poly✶ can provide

the same information as Faba and can do better. The encoding pr�sq of Ba processes

in Meta✶ is presented in Figure 18.5. Property 13.3.1 holds.

18.4.1 Faba Result from Shape Type

Information provided by Faba results are contained in Poly✶ principal types as

well. For example when the shape graph contains “χ0
l0[]ÝÝÑ χ1

l1[]ÝÝÑ χ2” then it

means that ambient l0 can possibly contain ambient l1. The above two edges can be

possibly separated by other edges. We use the following two predicates to extract

relevant information from a shape predicate Π � 〈Γ, χr〉. A form type ϕ is said to be

202

Chapter 18. Shape Types for BioAmbients

under the root of Π, written inrootΠpϕq, when Γ contains the path tχr
ϕ1ÝÑ χ0 � � � ϕkÝÑ

χk�1
ϕÝÑ χku of edges starting at the root χr where no ϕi has the shape “l[]”. The

condition on the shape of ϕi’s expresses that ϕ is not inside any ambient. Similarly,

the predicate inambΠpl, ϕq holds when ϕ is contained directly inside the ambient

l in Γ. That is, when Γ contains the path tχ l[]ÝÑ χ0
ϕ1ÝÑ χ1 � � � ϕkÝÑ χk

ϕÝÑ χk�1u
starting this time at any node and where no ϕi can have the shape “l1[]”. We write

inambΠpÆ, ϕq for inrootΠpϕq.
The following predicate is used to recognize non-instantiated capabilities, that

is, those that contain type tags which are bound in some other action types of the

shape graph. Let itagspΓq be the set of all type tags which appear as one of ιi’s

in some (ι1, . . . , ιk) in Γ. Write instantΠpϕq when ϕ labels some edge in the shape

graph Γ of Π and ftagspϕq X itagspΓq � ∅. Then a Faba-like result is constructed

from a shape predicate Π � 〈Γ, χ〉 as follows.

SΠ � tpl, ϕq : inambΠpl, ϕq & instantΠpϕqu
NΠ � tpι, ι1q :pχ0 χ1

tι ÞÑι1u q P Γu Y tpι, ιq :Dϕ.ι P pftagspϕqzBioLabelq & instantΠpϕqu
The set NΠ is constructed from Poly✶ flow-edges. Theorem 18.4.1 describes the

relation between native Faba results and those constructed from Poly✶: Poly✶

principal types contain the information provided by Faba. When pl, ϕq is in S but

not in SΠ, then subject reduction of Poly✶ ensures the situation predicted by Faba

can never happen, in which case Poly✶ is more precise.

Theorem 18.4.1. Let pS,N q be the result of Faba analysis for B Let Π be a

Poly✶ restricted principal B-type of prBsq. The following holds.

SΠ � S & NΠ � N & pSΠ,NΠq (Æ B

Example 18.4.2. The sets SΠ and NΠ constructed for process B (Example 18.1.2)

from the shape type ΠB (Example 18.3.1) gives exactly the same result as Faba

(Example 18.2.1) because of the simplicity of our example. However, Example 18.3.1

shows how Poly✶ can express more detailed information not contained in Faba

results. �
18.4.2 Shape Type from Faba Result

This section shows how to construct a Poly✶ shape type which exactly correspond

to a given Faba result. To be able to do this we need an upper bound on input-

bound names allowed in the examined process. The reasons for this limitation were

discussed in Section 13.4.

We do not need to be able to construct a shape predicate for every possible Faba

predicate but only for those which are valid Faba results. We could require this

203

Chapter 18. Shape Types for BioAmbients

Sets of labels and nodes; bejections between them:

labelsS � dompSq Y prngpSq X BioLabelq Y tÆu
nodesS � arbitrary but fixed nodes set of the same size as labelsS
nodeofS � labelof�1

S . . . bijections from labelsS into nodesS and reversely

Sets of form types describing legal actions:

activecapspS,N qplq � td ι<ι0> : Spl, d ι1<ι10>q & N pι, ι1q & N pι0, ι10quYttι1 ÞÑ ιuϕ : Spl, ϕq & ι1 P ftagspϕq & N pι, ι1q & ϕ R labelsSu
inertcapspN ,Zq � td ι(ι0) : d P BioDirection & ι P ZzdompN q & ι0 P ZuYtd ι<ι0>, d ι<ι0> : d P BioDirection & ι P ZzdompN q & ι0 P Z Y dompN quYtenter ι, accept ι, exit ι, expel ι, merge+ ι, merge- ι : ι P ZzdompN qu
allowedinpS,N ,Zqplq � activecapspS,N qplq Y inertcapspN ,Zq

Construction of a shape graph:

ΓpS,N ,Zq � tnodeofSplq l0[]ÝÝÑ nodeofSpl0q : pl, l0[]q P S & l, l0 P labelsSuYtχ ϕÝÑ χ : χ P nodesS & ϕ P allowedinpS,N ,ZqplabelofSpχqqu
Figure 18.6: Construction of a shape graph corresponding to a Faba result.

directly but it useful to explicitly state a specific condition on a Faba result. This

condition is required for our construction to be correct and it is satisfied for all valid

Faba results. The condition on pS,N q is as follows.

Definition 18.4.3. We say that pS,N q is closed when all of the following hold

for an arbitrary l, ι, ι1, ι0, ι10, d.
(1) N pι, ι1q & Spl, enter ι1q ñ p�ι2 : N pι, ι2q ñ Spl, enter ι2qq
(2)-(6) as case (1) but for accept, . . ., merge-

(7) N pι, ι1q & Spl, d ι1(ι0)q ñ p�ι2 : N pι, ι2q Ñ Spl, d ι2(ι0)qq
(8) N pι, ι1q & N pι0, ι10q & Spl, d ι1<ι10>q ñp�ι2, ι20 : N pι, ι2q & N pι0, ι20q Ñ Spl, d ι2<ι20>qq

The condition above has eight parts, one for each possible action prefix. It reflects

how input-bound names are handled in Faba. Let us describe the case for enter. It

says that when an ambient labeled by l can contain “enter ι1” and some ι can be

instantiated to ι1 by communication then l can also contain all other instantiations

of “enter ι”. Other cases are similar. Note that when pS,N q is a valid Faba result

for B than the following two claims hold. (1) When ι P ftagspBq Y ntagspBq then

N pι, ιq, and for any ι1 such that N pι, ι1q it holds ι1 � ι. (2) When ι P itagspBq then

ι R rngpN q.
The construction of a shape type which correspond to a Faba predicate pS,N q

is presented in Figure 18.6. The set labelsS is the set of labels contained in S. The

set nodesS is a set of nodes with the same number of members like labelsS . Two mu-

tually inverse bijections on these two sets are introduced. The set activecapspS,N qplq
204

Chapter 18. Shape Types for BioAmbients

describes all action prefixes allowed in an ambient labeled by l. Note that we have to

construct also original prefixes from their instantiations. As already noted, the con-

struction requires an upper bound on input-bound names allowed in a Ba process.

This is given by the set of type tags Z. The set inertcapspN ,Zq describes all ac-

tion prefixes constructed from those input-bound tags which are never instantiated

by communication to any actual value, that is, from communication inert input-

bound type tags. Such actions are not contained in Faba results but a shape type

needs to describe them. For example, for the Faba result S � tpÆ, s2s a(b)qu and

N � tpa, aqu it holds that pS,N q (Æ s2s a?{b}.enter b.0. But note that “enter b” is

not contained in S. In fact an arbitrary number of actions constructed from b can

be present under “s2s a?{b}” and the process is still correctly described by pS,N q
(as long as b R dompN q). The list of inert actions is added to activecapspS,N qplq
to form the set allowedinpN ,S,Zqplq. The shape graph ΓpS,N ,Zq connects the nodes

from nodesS accordingly to the ambient hierarchy described by S. Finally the ac-

tion types from allowedinpN ,S,Zqplq are added as labels of loops of the node which

correspond to l.

Example 18.4.4. Let us demonstrate the construction on the process B from Ex-

ample 18.1.2 and the Faba result for B from Example 18.2.1. We have labelsS �tÆ, a, b, cu. Let us take nodesS � tR, A, B, Cu and nodeofS such that nodeofSpÆq � R,

nodeofSpaq � A, nodeofSpbq � B, and nodeofSpcq � C. The situation with input-

bound names is simple because we know that itagspBq � ∅ and thus we can take

Z � ∅. Thus inertcapspN ,Zq � ∅. We have that

activecapspS,N qpÆq � ∅

activecapspS,N qpaq � tenter n, accept x, enter m, merge- mu
activecapspS,N qpbq � tmerge- nu
activecapspS,N qpcq � taccept mu

The shape graph looks as follows.

R

B C

A

a[]

b[
] c[]

a[] a[
]

accept n accept m

enter n | accept x | enter m | merge- m

Labels of multiple loop edges of node A are merged together by “|”. We can see

that this graph is slightly less precise that the graph of the principal type presented

in Example 18.3.1. �
205

Chapter 18. Shape Types for BioAmbients

The correctness of the construction is expressed by the following theorem. The

root node of a constructed shape graph is of course the node nodeofSpÆq. We see

that the theorem allows us to exactly emulate Faba relation pS,N q (Æ B.

Theorem 18.4.5. Let pS,N q be closed. Let itagspBq � Z and �ι P ftagspBq Y
ntagspBq it holds that N pι, ιq. Then the following holds.pS,N q (Æ B iff $prBsq : 〈ΓpS,N ,Zq, nodeofSpÆq〉
18.5 Conclusions and Further Discussions

We showed how to use Poly✶ for flow analysis of Ba. Theorem 18.4.1 says that

Poly✶ provides at least the same precision of information as a flow analysis system

Faba from the literature. We showed how to exactly emulate the Faba’s relationpS,N q (Æ B in Poly✶ which is important because the relation can potentially be

used by some application of Faba.

The original Faba works with a version of Ba containing the choice operator

(“�”) used to express computation options and with the µ (rec) operator to express

recursive behavior. These are not currently supported as builtin operators in Meta✶

and Poly✶ but Section 9.3.2 and Section 9.3.1 shows how they can be emulated.

Whit this emulations we could extend both embeddings to work with the full Faba

and we would achieve the same results as for the restricted Faba. However, the

main idea would be the same as in the embeddings in this chapter.

206

Chapter 19

Details on the Faba Embedding

This chapter contains technical details related to the previous chapter. It can be

skipped for the first reading and looked up later, either the whole chapter or just

some particular part.

In all the proofs in this section we consider BioDirection � TypeTag. At

first we prove Theorem 18.4.1. The following definition defines a binary relation

nodeunderΠpl, χq which is similar to inambΠpl, ιq but its second argument is χ rather

that a label.

Definition 19.0.1. For χ, ι, and the shape predicate Π � 〈Γ, χ1〉 write

(1) nodeunderΠpÆ, χq when tχ1 ϕ0ÝÑ � � � ϕkÝÑ χu � Γ and no ϕi contains []

(2) nodeunderΠpι, χq when tpχ0
ι[]ÝÝÑ χ1

ϕ1ÝÑ � � � ϕkÝÑ χqu � Γ and no ϕi contains []

Theorem (Proof of Theorem 18.4.1). Let pS,N q be the result of Faba anal-

ysis for B. Let Π be a Poly✶ restricted principal B-type of prBsq. The following

holds.

SΠ � S & NΠ � N & pSΠ,NΠq (Æ B

Proof. We suppose that the principal restricted B-type Π of prBsq was computed

using the type inference algorithm from Chapter 11. Let us take the derivation Π0,

. . ., Πk of Π, that is, the following sequence with Πk � Π.

Π0 � RestrictGraph(ProcessShape(P))

Πi�1 � RestrictGraph(FlowClosureStep(LocalClosureStep(Πi ,B)))

This derivation is also used in the proof of Theorem 12.10.3 and other proofs in

Chapter 12. It is not hard to prove the following by the induction on i.

(1) inambΠi
pι, ϕq implies pι, ϕq P S

(2) pχ0 χ1

tι ÞÑι1u q P Γi implies pι, ι1q P N

207

Chapter 19. Details on the Faba Embedding

(3) for all ι, ι1 such that nodeunderΠi
pι, χ0q and nodeunderΠi

pι1, χ1q and such that

there is the flow edge χ0 χ1
� q in Πi it holds that�ϕ : pι, ϕq P S ñ pι1, �̄ϕq P S

Items (1) and (2) when applied to Π prove the claim. Item (3) is designed to prove

the induction step.

The following is the left-to-right implication of Theorem 18.4.5. The assumption

ftagspBqYntagspBq � dompN qYZ is clearly satisfied because ftagspBqYntagspBq �
dompN q. Also Æ P labelsS by the definition.

Proposition 19.0.2. Let

(1) itagspBq � Z

(2) ftagspBq Y ntagspBq � dompN q Y Z

(3) l P labelsS

Then pS,N q (l B implies $prBsq : 〈ΓpS,N ,Zq, nodeofSplq〉.
Proof. Let Γ � ΓpS,N ,Zq, and χ � nodeofSplq, and Π � 〈Γ, χ〉. Let us prove the

claim $prBsq : Π by induction on the structure of B. Let

B � 0: Clear.

B � B0 | B1: From pS,N q (l B it follows that pS,N q (l B0 and pS,N q (l B1.

The assumptions of the induction step are clearly satisfied for both B0 and B1.

Thus by the induction hypothesis we have that $prB0sq :Π and $prB1sq :Π. Thus

the claim.

B � [B0]
l0: From pS,N q (l B it follows that Spl, l0[]q and pS,N q (l0 B0. Thus

we see that the assumptions of the induction step for B0 and l0 are clearly

satisfied. Let χ0 � nodeofSpl0q. Thus by the induction hypothesis we have that$prBsq:〈Γ, χ0〉. From the construction of ΓpS,N ,Zq it follows that pχ l0[]ÝÝÑ χ0q P Γ

and thus the claim because prBsq � l0[prB0sq].
B � N.B0: Suppose, for example, N � enter n. The proof for other capabilities

(communication actions are handled separately) is analogous. Let ι � n. Fur-

thermore let F � enter n and ϕ � enter ι. We see that prBsq � F.prB0sq and$ F : ϕ. Now pS,N q (l B implies pS,N q (l B0. The assumptions of the

induction step for B0 are clearly satisfied. Thus by the induction hypothesis

we have $prB0sq : Π.

To prove the claim it is enough to prove that ϕ P allowedinpS,N ,Zqplq. From (2)

we know that either ι P dompN q or ι P Z. Suppose

208

Chapter 19. Details on the Faba Embedding

ι P dompN q: Then we have some ι1 such that N pι, ι1q. It follows from pS,N q (l

enter n that Spl, enter ι1q. It is easy to see that ϕ � tι1 ÞÑ ιupenter ι1q P
allowedinpS,N ,Zqplq. Thus the claim.

ι P ZzdompN q: Then we have that ϕ P inertcapspN ,Zq. Thus the claim.

B � !B0: Simply apply the induction hypothesis.

B � pνnqB0: Now pS,N q (l B implies pS,N q (l B0. The assumption of the in-

duction step for B0 are clearly satisfied. Thus by the induction hypothesis we

have $prB0sq : Π and thus the claim because prBsq � νn.prB0sq.
B � d n?{m}.B0: Let ι � n and ι0 � m. Furthermore let F � d n(m) and ϕ �

d ι(ι0). We see that prBsq � F.prB0sq and $F : ϕ. From pS,N q (l B we have

that pS,N q (l B0. The assumptions of the induction step for B0 are satisfied

(number (3) because ι0 P Z follows from ι0 P itagspBq and (1)). Thus by the

induction hypothesis we have that $B0 : Π.

To prove the claim it is enough to prove that ϕ P allowedinpS,N ,Zqplq. From (2)

we know that either ι P dompN q or ι P Z. Suppose

ι P dompN q: Then we have some ι1 such that N pι, ι1q. It follows from pS,N q (l

d n?{m} that Spl, d ι1(ι0)q. We see that ϕ � tι1 ÞÑ ιupd ι1(ι0)q P
allowedinpS,N ,Zqplq. Thus the claim.

ι P ZzdompN q: Then we have that ϕ P inertcapspN ,Zq. Thus the claim.

B � d n!{m}.B0: Let ι � n and ι0 � m. Furthermore let F � d n<m> and ϕ �
d ι<ι0>. We see that prBsq � F.prB0sq and $F : ϕ. From pS,N q (l B we have

that pS,N q (l B0. The assumptions of the induction step for B0 are satisfied.

Thus by the induction hypothesis we have that $B0 : Π.

To prove the claim it is enough to prove that ϕ P allowedinpS,N ,Zqplq. From (2)

we know that either ι P dompN q or ι P Z and the same for ι0. Suppose

ι P dompN q & ι0 P dompN q: Then we have ι1 and ι10 such that N pι, ι1q and

N pι0, ι10q. It follows from pS,N q (l d n?{m} that Spl, d ι1<ι10>q. But now

it is easy to see that ϕ P allowedinpS,N ,Zqplq. Thus the claim.

ι P ZzdompN q _ ι0 P ZzdompN q: Then we have that ϕ P inertcapspN ,Zq. Thus

the claim.

The following is the right-to-left implication of Theorem 18.4.5.

Proposition 19.0.3. Let

(1) pS,N q be closed

(2) itagspBq � Z

209

Chapter 19. Details on the Faba Embedding

(3) ftagspBq Y ntagspBq � dompN q Y Z

(4) �ι P ntagspBq : N pι, ιq
(5) l P labelsS

Then $prBsq : 〈ΓpS,N ,Zq, nodeofSplq〉 implies pS,N q (l B.

Proof. Let Γ � ΓpS,N ,Zq, and χ � nodeofSplq, and Π � 〈Γ, χ〉. Let us prove the

claim pS,N q (l B by induction on the structure of B. Let

B � 0: Clear.

B � B0 | B1: It is easy to see that $prB0sq : Π and $prB1sq : Π. The assumptions of

the induction step are clearly satisfies. Thus the claim follows directly from

the induction hypothesis.

B � [B0]
l0: We know that pr[B0]

l0sq � l0[prB0sq] and $ l0[prB0sq] : 〈Γ, χ〉. Thus

Spl, l0[]q and l0 P labelsS . Let χ0 � nodeofSpl0q. Thus we have $prB0sq:〈Γ, χ0〉.

The assumptions of the induction step for B0 and l0 are clearly satisfied. Thus

by the induction hypothesis we have that pS,N q (l0 B0 which together with

Spl, l0[]q proves the claim.

B � N.B0: Suppose, for example, N � enter n. The proof for other capabilities

(communication actions are handled separately) is analogous. Let ι � n.

We know $ enter n.prB0sq : Π and thus there is some ϕ such that $ enter n :

ϕ. From the construction of ΓpS,N ,Zq it follows that ϕ � enter ι, and ϕ P
allowedinpS,N ,Zqplq, and also $ prB0sq : Π. The assumptions of the induction

step for B0 are clearly satisfied. Thus by the induction hypothesis we have thatpS,N q (l B0.

To prove the claim it is enough to prove the goal pS,N q (l enter ι, that is,�ι1 : N pι, ι1q ñ Spl, enter ι1q. The goal holds trivially when there is no ι1 such

that N pι, ι1q. So, let ι1 be such that N pι, ι1q. This means that ι P dompN q and

thus ϕ R inertcapspN ,Zq. Hence we know that ϕ P activecapspS,N qplq. Thus there

are some ϕ0, ι0, and ι10 such that Spl, ϕ0q, and N pι0, ι10q, and ι10 P ftagspϕ0q,
and also tι10 ÞÑ ι0uϕ0 � ϕ � enter ι. It is clear that ϕ0 � enter ι10 and ι0 � ι.

We have Spl, enter ι10q and N pι, ι10q. Thus the goal follows from assumption

(1) by point (1) of Definition 18.4.3.

B � !B0: Simply apply the induction hypothesis.

B � pνnqB0: Let ι � n. We have prBsq � νn.prB0sq. Thus it is clear that it holds$prB0sq : Π. The assumptions of the induction step for B0 are clearly satisfied.

Thus by the induction hypothesis we have that pS,N q (l B0. To proof the

claim it is enough to prove that N pι, ιq which holds by assumption (4).

B � d n?{m}.B0: Let ι � n and ι0 � m. We know $ d n(m).prB0sq : Π and thus

there is some ϕ such that $ d n(m) : ϕ. From the construction of ΓpS,N ,Zq
210

Chapter 19. Details on the Faba Embedding

it follows that ϕ � d ι(ι0), and ϕ P allowedinpS,N ,Zqplq, and also $ prB0sq : Π.

The assumptions of the induction step for B0 are clearly satisfied. Thus by the

induction hypothesis we have that pS,N q (l B0.

To prove the claim it is enough to prove the goal pS,N q (l d ι(ι0), that is,�ι1 : N pι, ι1q ñ Spl, d ι1(ι0)q. The goal holds trivially when there is no ι1 such

that N pι, ι1q. So, let ι1 be such that N pι, ι1q. This means that ι P dompN q
and thus ϕ R inertcapspN ,Zq. Hence we know that ϕ P activecapspS,N qplq. Thus

there are some ϕ0, ι1, and ι11 such that Spl, ϕ0q and N pι1, ι11q and ι11 P ftagspϕ0q
and also tι11 ÞÑ ι1upϕ0q � ϕ � d ι(ι0). It is clear that ϕ0 � d ι11(ι0) and ι1 � ι.

We have Spl, d ι11(ι0)q and N pι, ι11q. Thus the goal follows from assumption

(1) by point (7) of Definition 18.4.3.

B � d n!{m}.B0: Let ι � n and ι0 � m. We know $ d n<m>.prB0sq : Π and thus

there is some ϕ such that $ d n<m> : ϕ. From the construction of ΓpS,N ,Zq
it follows that ϕ � d ι<ι0>, and ϕ P allowedinpS,N ,Zqplq, and also $ prB0sq : Π.

The assumptions of the induction step for B0 are clearly satisfied. Thus by the

induction hypothesis we have that pS,N q (l B0.

To prove the claim it is enough to prove the goal pS,N q (l d ι<ι0>, that

is, �ι1, ι10 : N pι, ι1q & N pι0, ι10q ñ Spl, d ι1<ι10>q. The goal holds trivially

when there is no ι1 such that N pι, ι1q or there is no ι10 such that N pι0, ι10q.
So, let ι1 and ι10 be such that N pι, ι1q and N pι0, ι10q. This means that ι P
dompN q and ι0 P dompN q, and thus ϕ R inertcapspN ,Zq. Hence we know that

ϕ P activecapspS,N qplq. Thus there are some ι2 and ι20 such that N pι, ι2q and

N pι0, ι20q and Spl, d ι2<ι20>q. Thus the goal follows from assumption (1) by

point (8) of Definition 18.4.3.

211

Chapter 20

Conclusions

This chapter concludes the three parts of the thesis. Contributions of the thesis

were already discussed in Section 1.8.

In Part I we have presented the Poly✶ system which fixes and extends the

previous work of Makholm and Wells [MW05, MW04a]. These fixes and extensions

were summarized in Section 9.2. Additional possible extensions and future work

topics related to Poly✶ were discussed in Section 9.3.

Part II presents a type inference algorithm and a constructive proof of the exis-

tence of principal typings. These results are published for a first time in this thesis.

Future work related to the type inference algorithm and the proof of principal typ-

ings is closely related to extensions of Poly✶ because the algorithm and the proof

have to reflect these extensions. The type inference algorithm presented in Part II

is not compositional. To develop a compositional type inference algorithm, which is

important because of effectiveness and modularity, is left for the future research.

In Part III, we have demonstrated usage of shape types and we have evaluated

their expressiveness. We have presented embeddings of three systems from the

literature which were concluded separately in sections 14.5, 16.5, 18.5. As a future

work, we would like to (1) relate shape types with other systems which also use

graphs to represent types [Yos96, Kön99], and (2) to study the relationship between

shape types and session types [Hon93].

212

Bibliography

[AG99] Mart̀ın Abadi and Andrew D. Gordon. A calculus for cryptographic

protocols: The spi calculus. Inform. & Comput., 148(1):1–70, January

1999.

[AMW04a] Torben Amtoft, Henning Makholm, and J. B. Wells. PolyA: True type

polymorphism for Mobile Ambients. Technical Report HW-MACS-TR-

0015, Heriot-Watt Univ., School of Math. & Comput. Sci., February

2004. A shorter successor is [AMW04b].

[AMW04b] Torben Amtoft, Henning Makholm, and J. B. Wells. PolyA: True type

polymorphism for Mobile Ambients. In IFIP TC1 3rd Int’l Conf. The-

oret. Comput. Sci. (TCS ’04), pages 591–604. Kluwer Academic Pub-

lishers, 2004. A more detailed predecessor is [AMW04a].

[AW02] Torben Amtoft and J. B. Wells. Mobile processes with dependent com-

munication types and singleton types for names and capabilities. Techni-

cal Report 2002-3, Kansas State University, Department of Computing

and Information Sciences, December 2002.

[Bae05] Jos C. M. Baeten. A brief history of process algebra. Theoret. Comput.

Sci., 335(2-3):131–146, 2005.

[Bek84] Hans Bekič. Towards a mathematical theory of processes. In Cliff B.

Jones, editor, Programming Languages and Their Definition, volume

177 of LNCS. Springer-Verlag, 1984.

[BK84] Jan A. Bergstra and Jan Willem Klop. Process algebra for synchronous

communication. Information and Control, 60(1-3):109–137, 1984.

[Bou97] Gérard Boudol. The π-calculus in direct style. In Conf. Rec. POPL ’97:

24th ACM Symp. Princ. of Prog. Langs., pages 228–241, 1997.

[CG98] Luca Cardelli and Andrew D. Gordon. Mobile ambients. In Proc. FoS-

SaCS ’98, volume 1378 of LNCS, pages 140–155. Springer-Verlag, 1998.

213

Bibliography

[CG99] Luca Cardelli and Andrew D. Gordon. Types for mobile ambients. In

Conf. Rec. POPL ’99: 26th ACM Symp. Princ. of Prog. Langs., pages

79–92, 1999.

[CGG99] Luca Cardelli, Giorgio Ghelli, and Andrew D. Gordon. Mobility types

for mobile ambients. In Jiri Wiedermann, Peter van Emde Boas, and

Mogens Nielsen, editors, ICALP’99, volume 1644 of LNCS, pages 230–

239. Springer-Verlag, July 1999. Extended version appears as Microsoft

Research Technical Report MSR-TR-99-32, 1999.

[CGG00] Luca Cardelli, Giorgio Ghelli, and Andrew D. Gordon. Ambient groups

and mobility types. In IFIP International Conference on Theoretical

Computer Science (IFIP TCS2000), Tohoku University, Sendai, Japan,

volume 1872 of LNCS, pages 333–347. Springer-Verlag, August 2000.

[Hoa78] C. A. R. Hoare. Communicating sequential processes. Communications

of the ACM, 21(8):666–677, 1978.

[Hon93] Kohei Honda. Types for dyadic interaction. In CONCUR 1993, volume

715 of LNCS, pages 509–523, 1993.

[IK01] Atsushi Igarashi and Naoki Kobayashi. A generic type system for the

pi-calculus. In Conf. Rec. POPL ’01: 28th ACM Symp. Princ. of Prog.

Langs., pages 128–141, 2001.

[JW09] Jan Jakub̊uv and J. B. Wells. The expressiveness of generic process

shape types. Technical Report HW-MACS-TR-0069, Heriot-Watt Univ.,

July 2009.

[JW10] Jan Jakub̊uv and J. B. Wells. Expressiveness of generic process shape

types. In Martin Wirsing, Martin Hofmann, and Axel Rauschmayer,

editors, Trustworthly Global Computing, volume 6084 of LNCS, pages

103–119. Springer Berlin / Heidelberg, February 2010.

[Kön99] Barbara König. Generating type systems for process graphs. In CON-

CUR 1999, volume 1664 of LNCS, pages 352–367. Springer-Verlag, 1999.

[Mil80] Robin Milner. A Calculus of Communicating Systems, volume 92 of

LNCS. Springer-Verlag, 1980.

[Mil99] Robin Milner. Communicating and Mobile Systems: The π-Calculus.

Cambridge Press, 1999.

[MPW92a] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile

processes. Inform. & Comput., 100(1):1–77, September 1992.

214

Bibliography

[MPW92b] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile

processes, part i & ii. Inform. & Comput., 100(1):1–77, 1992.

[MW04a] Henning Makholm and J. B. Wells. Instant polymorphic type systems

for mobile process calculi: Just add reduction rules and close. Technical

Report HW-MACS-TR-0022, Heriot-Watt Univ., School of Math. &

Comput. Sci., November 2004. A shorter successor is [MW05].

[MW04b] Henning Makholm and J. B. Wells. Type inference for PolyA. Technical

Report HW-MACS-TR-0013, Heriot-Watt Univ., School of Math. &

Comput. Sci., January 2004.

[MW05] Henning Makholm and J. B. Wells. Instant polymorphic type systems

for mobile process calculi: Just add reduction rules and close. In Pro-

gramming Languages & Systems, 14th European Symp. Programming,

volume 3444 of LNCS, pages 389–407. Springer-Verlag, 2005. A more

detailed predecessor is [MW04a].

[NNPR07] Flemming Nielson, Hanne Riis Nielson, Corrado Priami, and Debora

Rosa. Control flow analysis for bioambients. ENTCS, 180(3):65–79,

2007. A preliminary version appeared at Bio-CONCUR 2003.

[Par01] Joachim Parrow. An introduction to the π-calculus. In Handbook of

Process Algebra, pages 479–543. North-Holland, Amsterdam, 2001.

[Pet62] C. A. Petri. Kommunikation mit Automaten. PhD thesis, Institut für

Instrumentelle Mathematik, Bonn, 1962.

[PV05] Catuscia Palamidessi and Frank D. Valencia. Recursion vs replication

in process calculi: Expressiveness. Bulletin of the EATCS, 87:105–125,

2005.

[RPS�04] Aviv Regev, Ekaterina M. Panina, William Silverman, Luca Cardelli,

and Ehud Shapiro. Bioambients: An abstraction for biological compart-

ments. Theoret. Comput. Sci., 325(1):141–167, September 2004.

[San93] Davide Sangiorgi. From pi-calculus to higher-order pi-calculus - and

back. In Marie-Claude Gaudel and Jean-Pierre Jouannaud, editors,

TAPSOFT, volume 668 of LNCS, pages 151–166. Springer-Verlag, 1993.

[Tur95] David N. Turner. The Polymorphic Pi-Calculus: Theory and Imple-

mentation. PhD thesis, University of Edinburgh, 1995. Report no ECS-

LFCS-96-345.

215

Bibliography

[Wel02] J. B. Wells. The essence of principal typings. In Proc. 29th Int’l Coll.

Automata, Languages, and Programming, volume 2380 of LNCS, pages

913–925. Springer-Verlag, 2002.

[Yos96] Nobuko Yoshida. Graph types for monadic mobile processes. In Foun-

dations of Software Technology and Theoret. Comput. Sci., 16th Conf.,

volume 1180 of LNCS, pages 371–386. Springer-Verlag, 1996.

216

Bibliography

Index of Metavariables

a (BasicName), 17

b (BasicName), 17

c (PiName), 166

i (Nat), 14

j (Nat), 14

k (Nat), 14

m

AName, 177

BioName, 196

PiName, 166

n

AName, 177

BioName, 196

PiName, 166

s (Sequence), 17

x (Name), 17

y (Name), 17

B

AProcess, 177

BioProcess, 196

general process, 2, 162

PiProcess, 166

C (process calculus), 2, 162

CR (Meta✶ instance), 10, 163

E (Element), 17

F (Form), 17

M (Message), 17

N

ACapability, 177

BioCapability, 196

PiAction, 166

P (Process), 17

Q (Process), 17

R (Process), 17

SC (analysis system for C), 6, 162

SR (Poly✶ instance), 10, 163

Z (any Meta✶ entity), 17

m̊ (MessageVar), 31

p̊ (ProcessVar), 31

s̊ (Substitute), 31

x̊ (NameVar), 31

ẙ (NameVar), 31

z̊ (any template variable), 32

E̊ (ElementTpl), 31

F̊ (FormTpl), 31

P̊ (ProcessTpl), 31

Q̊ (ProcessTpl), 31

L̊ (Rule), 31

Z̊ (any template entity), 32

β (PiTypeVariable), 168

ω (AMsgType), 180

δ (node map), 121

ε (ElementType), 48

ϕ (FormType), 48

η (Edge), 51

ι (TypeTag), 17

κ

AExchangeType, 180

PiType, 168

µ (MessageType), 48

ρ (general predicate), 6, 162

σ (SequenceType), 48

χ (Node), 51

ζ (type entity), 48

∆

AEnvironment, 180

PiContext, 168

Γ (ShapeGraph), 51

Π (ShapePredicate), 51

Σ (SequenceTypeSet), 48

N (Faba renaming), 199

P (process property), 163

P (process instantiation), 32

217

Bibliography

R (RuleSet), 31

S (Faba ambient content), 199

S (Meta✶ substitution), 20� (type substitution), 50� (type instantiation), 57, 77

218

Bibliography

Index of Rule and Condition Labels

AFrm (Fig. 4.3), 24

ANu (Fig. 4.3), 24

APar (Fig. 4.3), 24

ARef (Fig. 4.3), 24

ARep (Fig. 4.3), 24

ASwap (Fig. 4.3), 24

ASym (Fig. 4.3), 24

ATra (Fig. 4.3), 24

CFlow (Fig. 7.4), 57

CFrm (Fig. 7.4), 57

CNul (Fig. 7.4), 57

CPar (Fig. 7.4), 57

CSub (Fig. 7.4), 57

CVar (Fig. 7.4), 57

F1 (Def. 7.4.1), 54

F2 (Def. 7.4.1), 54

L1 (Def. 6.2.1), 37

L2 (Def. 6.2.1), 37

L3 (Def. 6.2.1), 37

L4 (Def. 6.2.1), 37

L5 (Def. 6.2.1), 37

L6 (Def. 6.2.1), 37

R1 (Def. 6.2.1), 38

R2 (Def. 6.2.1), 38

R3 (Def. 6.2.1), 38

R4 (Def. 6.2.1), 38

R5 (Def. 6.2.1), 38

R6 (Def. 6.2.1), 38

R7 (Def. 6.2.1), 38

RAct (Fig. 5.2), 31

RNu (Fig. 5.2), 31

RPar (Fig. 5.2), 31

RRw (Fig. 5.2), 31

RStr (Fig. 5.2), 31

S1

Def. 18.1.1, 198

Def. 16.1.1, 179

Def. 14.1.1, 167

S2

Def. 18.1.1, 198

Def. 16.1.1, 179

Def. 14.1.1, 167

S3

Def. 18.1.1, 198

Def. 16.1.1, 179

Def. 14.1.1, 167

S4 (Def. 16.1.1), 179

SBang (Fig. 3.3), 21

SFrm (Fig. 3.3), 21

SNu (Fig. 3.3), 21

SNuFrm (Fig. 3.3), 21

SNuNu (Fig. 3.3), 21

SNuPar (Fig. 3.3), 21

SPar (Fig. 3.3), 21

SPAsc (Fig. 3.3), 21

SPCom (Fig. 3.3), 21

SPNul (Fig. 3.3), 21

SRef (Fig. 3.3), 21

SRep (Fig. 3.3), 21

SRNul (Fig. 3.3), 21

SSym (Fig. 3.3), 21

STra (Fig. 3.3), 21

TCmp (Fig. 7.1), 48

TEls (Fig. 7.1), 48

TEmp (Fig. 7.1), 48

TFrm (Fig. 7.3), 51

TIn (Fig. 7.1), 48

TName (Fig. 7.1), 48

TNu (Fig. 7.3), 51

TNul (Fig. 7.3), 51

TOut (Fig. 7.1), 48

TPar (Fig. 7.3), 51

219

Bibliography

TRep (Fig. 7.3), 51

TSeq (Fig. 7.1), 48

TSet (Fig. 7.1), 48

TStar (Fig. 7.1), 48

U1 (Def. 6.1.3), 37

U2 (Def. 6.1.3), 37

W1 (Def. 3.2.1), 19

W2 (Def. 3.2.1), 19

W3 (Def. 3.2.1), 19

W4 (Def. 3.2.1), 19

220

Bibliography

Index of Mathematical Objects� (alternative composition), 93

. (prefixing), 3, 17� (message decomposition), 20

ν (name restriction), 3, 17, 87

! (replication), 3, 90

| (parallel composition), 3, 17

0 (null process), 3, 18

::� (BNF statement), 14(closed (closure), 56, 62, 86(restr (restricted type), 98(type (shape type), 61, 62, 86� (α-equivalence), 24z (set subtraction), 14� (Cartesian product), 14Ñ (general rewriting), 2Ñ (set of functions), 14Ñfin (finite functions), 14
RãÝÑ (Meta✶ rewriting relation), 33
ϕÝÑ (form edge), 52�

(flow edge), 53ò (name swapping), 24�r�s (function extension), 14�[�℄ (process instantiation), 32, 41��1 (inversion), 14�(�) (type instantiation), 57, 77� (type tag), 23v�w (meaning), 7, 49, 53, 66pr�sq (process encoding), 163

of Ba in Meta✶, 202

of Ma in Meta✶, 182

of π-calculus in Meta✶, 170

〈r�s〉 (predicate embedding), 164, 170,

182, 202� (similarity), 97¤ (subtyping), 53, 66, 71(L (matching graphs), 58, 111(R (matching graphs), 59, 111

(s (matching graphs), 58, 111(l (Faba predicate), 199

E (nesting), 122, 127Í (scoping), 37� (Tpi agreement), 170� (structural equivalence), 21, 166, 177,

196$ (respecting), 58$ (typing), 51, 526 (nesting), 122, 127

⊲ (general typing), 6, 162$� (all scoped occurrences), 37$D (exist scoped occurrence), 37

Amon, 34, 53, 56, 61, 63, 81

ACapability, 177

activecapspS,N q, 204

ActiveNode, 61

ActiveNodes, 114, 151

ActiveSucc, 61

AEnvironment, 180

AExchangeType, 180

allowedinI , 184

allowedinpS,N ,Zq, 205

AMsgType, 180

AName, 177

AProcess, 177

BasicName, 17

BioCapability, 196

BioDirection, 196

BioLabel, 196

BioName, 196

BioProcess, 196

bn, 23

bv, 36

chtypes, 170

commsI , 185

221

Bibliography

dom (domain), 14

Edge, 51

Element, 17

ElementTpl, 31

ElementType, 48

ElementType, 107, 133

FlowClosureStep, 116, 154

fn

fnpP q, 18, 23

fnpP̊ q, 36

fnpRq, 36

fnpSq, 20

fnpF q, 23

fnpZq, 23

fnpZ̊q, 36

Form, 17

FormTpl, 31

FormType, 48

FormType, 107, 133

ftags

ftagspP q, 18, 23

ftagspZq, 23

ftagspϕq, 66

ftagspΠq, 66

ftagspζq, 66

functionprBsq (process encoding), 163, 170,

182, 202

〈rρs〉 (predicate embedding), 164, 170,

182, 202vΠw (meaning), 53vρw (meaning), 7vζw (meaning), 49, 66

x (type tag), 23

δpΓq (node map), 121

δpΠq (node map), 121

P[P̊ ℄ (process instantiation), 32, 41

P[Z̊℄ (process instantiation), 32, 41�(P̊) (type instantiation), 57, 77

�(Z̊) (type instantiation), 57, 77

fv, 36

inamb, 203

inertcaps, 205

inroot, 202

instant, 203

itags

itagspP q, 18, 23

itagspZq, 23

itagspϕq, 49, 66

itagspΠq, 66

itagspζq, 66

labelofS , 204

labels, 204

LeftMatches, 112, 145

LocalClosureStep, 115, 152

MatchElement, 111, 142

MatchForm, 112, 143

maxlen

maxlenpP q, 100

maxlenpP̊ q, 100

maxlenpZq, 100

maxlenpZ̊q, 100

maxlenpΠq, 123

maxlenpζq, 123

Message, 17

MessageType, 48

MessageType, 107, 132

MessageVar, 31

moves, 184

msgsI , 185

Name, 17

namesofI , 184

NameVar, 31

Nat (natural numbers), 14

Node, 51

nodeofS , 204

nodeofI , 184

222

Bibliography

nodes, 184, 204

ntags, 18, 23

opensI , 184

Pasync, 34, 58

Ppoly, 99

Psync, 34

paths (almost disjoint paths), 120

PiAction, 166

PiContext, 168

PiName, 166

PiProcess, 166

PiType, 168

PiTypeVariable, 168

power (power set), 14

powerfin (power fin. set), 14

PrincipalType, 117, 157

Process, 17

ProcessShape, 107, 134

ProcessTpl, 31

ProcessVar, 31

relation$ P : Π (Poly✶ typing), 52$ S : � (subst. typing), 51

⊲B : ρ (general typing), 6, 162

B0ÑB1 (general rewriting), 2

P
RãÝÑQ (Meta✶ rewriting), 33

P̊ $� x̊ Í z̊ (scoping), 37

P̊ $D x̊ Í z̊ (scoping), 37

∆ � Π (Tpi agreement), 170

δ6Π0 E Π1 (nesting), 122, 127

ϕ0 ¤ ϕ1 (similarity), 97

Γ $ P : � (respecting), 58

Π0 ¤ Π1 (subtyping), 53, 66, 71

R (closed Π (closure), 56, 62, 86

R (restr Π (restricted type), 98

R (type Π (shape type), 61, 62, 86pS,N q (l B (Faba predicate), 199� (s P̊ : Π (matching), 58, 111

� (L P̊ : Π (matching), 58, 111� (R P̊ : Π (matching), 59, 111

RestrictDepth, 109, 137

RestrictGraph, 109, 139

RestrictWidth, 109, 136

RightRequired, 113, 149

rng (range), 14

Rule, 31

RuleSet, 31

SelectApplicableRules, 117, 123

Sequence, 17

SequenceType, 48

SequenceTypeSet, 48

SequenceTypeSet, 106, 131

ShapeGraph, 51

ShapePredicate, 51

SpecialTag, 199S (substitution application), 20

S̄ (substitution application), 20

Substitute, 319� (type sub. application), 50:� (type sub. application), 50�̄ (type sub. application), 50

tags

tagspP q, 23

tagspP̊ q, 36

tagspRq, 36

typeofI , 184

types, 184

TypeTag, 17

var, 36

223

Bibliography

General Index

ACP, 5

active node, 60, 61, 114

active node algorithm, 114, 151

active rule, 32, 33, 60

active successor, 60, 114

Algebra of Communicating Processes,

see ACP

almost disjoint edge path, 120, 125

count of, 120

upper bound on, 125

α-conversion, 17, 18, 23

α-convertible processes, 18, 25

α-equivalence, 23

α-equivalence relation (�), 24

α-renaming, see α-conversion

α-renaming of inputs, 25, 87

alternative composition (�), 5, 93

ambient, 4

ambient abbreviation, 18, 32

ambient hierarchy, 4

ambient syntax, 18, 32

ambient syntax in Meta✶, 18

analysis system, 6, 162

anomaly, 64

application of substitution, 20

applying rules to graphs, 60, 110

asynchronous π-calculus, 34

Ba, see BioAmbients

basic name, 17

Bekič, 5

Bergstra, 5

BioAmbients, 196–211

BNF statement, 14

recursive, 15

BNF-like statement, 14

bound name

in Meta✶ process, 18, 23

input-bound, 18, 23

ν-bound, 18, 23

bound template variable,

see template variable

bound type tag, see type tag

bug in previous Poly✶, 27, 83, 89

Calculus of Communicating Systems,

see CCS

capability, 4

Cartesian product, 14

CCS, 5

changes from previous Poly✶, 25, 27,

83, 89–90

channel, 3

channel polymorphism, 7

choice operator (�), 93

closure test, 57–62, 110

Communicating Sequential Processes,

see CSP

completeness of type inference, 122, 159

concurrent system, 1

constant definition, 90

correctness

of ActiveNodes, 151

of flow closure, 75

of FlowClosureStep, 121, 155

of LocalClosureStep, 121, 153

of type inference,

see type inference, correctness

of type substitution, 51, 68

of RestrictGraph, 141

counting, 65

CSP, 5

depth restriction, 9, 98

discrete restriction, 9

disjoint edge path, 120

domain, 14

224

Bibliography

edge path, 120

almost disjoint, 120, 125

disjoint, 120

embedding of

Faba in Poly✶, 202

Tma in Poly✶, 182

Tpi in Poly✶, 170

entity

process, 17

type, 48

executable prefix, 18

extension of Poly✶, 90

choice operator (�), 93

mark, 94

recursion (µ), 90

sequenced message type, 94

target borrowing, 94

Faba, see flow analysis for BioAmbi-

ents

faithful encoding, 164

faithful process encoding, 164

finite power set, 14

flow analysis

for BioAmbients, 199

flow closure, 54, 73–77, 115

flow closure algorithm, 115, 154

flow closure condition, 54, 73–77

flow closure correctness, 75

flow edge, 52–55

flow-closed

shape graph, 54, 73–77, 115

shape predicate, 54, 73–77, 115

form, 17, 18

form edge, 52

formal models, 1

free name

in Meta✶ process (fn), 18, 23

in Meta✶ substitution (fn), 20

in rule (fn), 36

in template (fn), 36

free template variable,

see template variable

free type tag, see type tag

function, 14

computable, 5

domain, 14

extension, 14

formalism, 3, 5

inverse, 14

range, 14

replacement, 14

set of all, 14

set of all finite, 14

guarded shape predicate, 83, 88

Higher-Order π-calculus, 25

Hoare, 5

identification of processes, 18, 25

in{open anomaly, 64

inactive process (0), 3

inconsistency of previous Poly✶, 27,

83, 89

infinite rule description, 99, 123

infinite set of rewriting rules, 99, 123

initial shape predicate, 106, 131

input element, 18

input-bound name, see bound name

input-bound type tag, see type tag

instantiation, 31, 34

of Meta✶, 10, 31, 163

of Poly✶, 10, 31, 163

of template to graph, 58, 111

of template to process, 32, 41

of template to type, 57

inverse function, 14

inverse relation, 14

Klop, 5

λ-calculus, 3, 5, 26

225

Bibliography

language (programming), 15

length

of Meta✶ entity, 100

of Poly✶ entity, 123

let expression, 90

local closure, see local R-closure

local closure algorithm, 110, 142, 152

local R-closure, 60, 110

locally R-closed shape predicate, 60,

110

Ma, see Mobile Ambients

mark (Poly✶), 94

meaning

of Poly✶ type entity, 49, 66

of analysis predicate, 7

of life, see for yourself

of shape predicate, 53

of type substitution, 51

message decomposition (�), 20

messenger ambient, 62

messenger example, 62

metacalculus, 10, 17

metacalculus Meta✶, 10, 17–30

Meta✶, 10, 17–30

Milner, 5

Mobile Ambients, 4, 34, 177–195

ambient, 4

ambient hierarchy, 4

capability, 4

monadic, 34

synchronous, 34

modest restriction, 9

monadic

π-calculus, 34

Mobile Ambients, 34

monotonic rule description, 100

µ operator, 90

name, 3

bound, see bound name

free, see free name

name capture, 37

name restriction (ν), 3, 17, 87

name swapping, 23

name swapping operator (ò), 24

natural number, 14

nesting of input binders, 83

nesting of shape predicates, 122, 127

node map, 121

node renaming, 121, 127

ν-bound name, see bound name

ν-bound type tag, see type tag

null process (0), 3, 18

open{in anomaly, 64

output element, 18

pair, 14

parallel composition (|), 3, 17, 18

parametric definition, 90

path (in Π), 98

Petri nets, 5

π-calculus, 3, 34, 166–176

asynchronous, 34

channel, 3

monadic, 34

polyadic, 99

synchronous, 34

PolyA, 8

polyadic

π-calculus, 99

polymorphism, 7

channel, 7

spatial, see spatial polymorphism

Poly✶, 9, 10, 48–86

power set, 14

of finite sets, 14

predicate embedding, 164

predicate of analysis system, 6, 162

prefix

executable, 18

226

Bibliography

non-executable, 18

prefixing (.), 17

preprincipal shape predicate, 122

preservation of well-formedness, 43

principal restricted type, 99

principal type, 96–104

among restricted types, 99

among unrestricted types, 96, 101

non-existence of, 101

of Poly✶ type entity, 122

principal typing, 7, 96–104

principal typing property, 96

private name, 18

process

in general, 2

in Meta✶, 17

process algebra, 5

ACP, 5

process calculus, 2

BioAmbients, 196–211

CCS, 5

CSP, 5

Higher-Order π-calculus, 25

Mobile Ambients, 4, 34, 177–195

π-calculus, 3, 34, 166–176

PolyA, 8

spi calculus, 93

process encoding, 163

of Ba in Meta✶, 202

of Ma in Meta✶, 182

of π-calculus in Meta✶, 170

process entity, 17

process instantiation (P), 32, 41

process prefixing (.), 17

process template, 31

programming language, 15

pseudo-programming language, 15

quasi-parallel composition, 5

R-closed shape predicate, 56

R-preprincipal shape predicate, 122

R-type, see shape type

range, 14

rec operator, 90

recursion, 90

release of bound name, 37

replication (!), 3, 17, 90

respecting relation, 58

restricted R-type, see restricted type

restricted shape type, see restricted type

restricted type, 9, 97–99, 108

restriction algorithm, 108, 135

restriction on rules, 37

rewrite rule, 32

rewriting of graphs, 60, 110

rewriting relation, 2

in general (Ñ), 2

in Meta✶ (
RãÝÑ), 33, 43

root of shape predicate, 51

rule description, 31

monotonic, 100

standard, 101

rule restriction, 37

scope in template, 37

sequenced message type, 94

sequential composition (.), 3

set subtraction, 14

shape expression, 9

shape graph, 51

flow-closed, 54, 73–77, 115

shape predicate, 8, 10, 48, 51–65

flow-closed, 54, 73–77, 115

guarded, 83, 88

locally R-closed, 60, 110

meaning of, 48

R-closed, 56

root of, 51

well formed, 152

shape R-type, see shape type

227

Bibliography

shape type, 8, 10, 57–65

restricted, 9, 97–99, 108

similar form types, 97

similarity relation, 97

sorts (π-calculus), 97

spatial polymorphism, 8, 62–64

special type tag, 19

in π-calculus, 166

in BioAmbients, 197

in Mobile Ambients, 19, 178

spi calculus, 93

standard rule description, 101

static analysis system, 6, 162

structural equivalence

in Meta✶ (�), 21, 29

in Ba (�), 196

in Ma (�), 177

in π-calculus (�), 166

structural messages, 93

subject reduction, 7, 162

in Poly✶, 62, 81–86

substitution, 20, 28

free names of (fn), 20

substitution application, 20

substitution application template,

see substitution template

substitution template, 32

subtyping relation, 53, 66, 71

synchronous

π-calculus, 34

Mobile Ambients, 34

syntactic error (
), 21, 49

syntax of

Ba process, 196

Ma process, 177

basic type entities (Poly✶), 48

Faba results, 199

Meta✶ process, 17

π-calculus process, 166

process entity (Meta✶), 17

process template (Meta✶), 31

rule description (Meta✶), 31

shape predicate (Poly✶), 51

Tma types, 180

Tpi types, 168

target borrowing, 94

template, 31

template variable, 31

bound (bv), 36

free (fv), 36

termination of type inference, 119, 157

time complexity of type inference, 126

Tma, see type system for Ma

Tpi, see type system for π-calculus

Turing machine, 5

type

entity (Poly✶), 48

of basic Meta✶ entities, 48

type inference, 105–160

completeness, 122, 159

correctness, 121, 158

overview, 105

termination, 119, 157

time complexity, 126

type inference algorithm,

see type inference

type instantiation (�), 57, 77

type substitution (�), 50, 68

correctness of, 51, 68

type system, 6, 162

for π-calculus, 168

for Mobile Ambients, 180

type system scheme, 10

type tag, 17

bound, 18, 23

free (ftags), 18, 23

in rule description (tags), 37

in template (tags), 37

input-bound (itags), 18, 23

228

Bibliography

ν-bound (ntags), 18, 23

set of all (tags), 18, 23

variable in template, 31

well formed

active rule, 40

lhs-template, 37

process, 19, 81

in π-calculus, 166

in Meta✶, 19, 81

in BioAmbients, 197

in Mobile Ambients, 179

rewrite rule, 40

rhs-template, 38

rule description (Meta✶), 40

rule set (Meta✶), 40

shape predicate, 152

well lhs-formed template, 41

well-formedness

changes in, 25

of object, see well formed

well-formedness condition

on process, 19, 81

on rule, 37

well-formedness preservation, 43

well-formedness restriction,

see well-formedness condition

width restriction, 9

229

