
Data-driven Single Machine Scheduling
Minimizing Weighted Number of Tardy Jobs⋆

(preprint)

Nikolai Antonov[0009−0002−0156−3561], Přemysl Šůcha[0000−0003−4895−157X], and
Mikoláš Janota[0000−0003−3487−784X]

Czech Technical University in Prague, Czech Republic

Abstract. We tackle a single-machine scheduling problem where each
job is characterized by weight, duration, due date, and deadline, while the
objective is to minimize the weighted number of tardy jobs. The problem
is strongly NP-hard and has practical applications in various domains,
such as customer service and production planning. The best known ex-
act approach uses a branch-and-bound structure, but its efficiency varies
depending on the distribution of job parameters. To address this, we pro-
pose a new data-driven heuristic algorithm that considers the parameter
distribution and uses machine learning and integer linear programming
to improve the optimality gap. The algorithm also guarantees to obtain a
feasible solution if it exists. Experimental results show that the proposed
approach outperforms the current state-of-the-art heuristic.

Keywords: Data-driven · Heuristic · Machine Learning · Scheduling

1 Introduction

We address an optimization problem with a number of practical applications in
everyday life, including parcel delivery, crop harvesting, and customer service [6].
To illustrate the problem’s essence, imagine a production line that produces var-
ious orders or batches, which we call jobs. Assume that the technical process
imposes limitations that only one item can be produced at a time, and no in-
terruptions are allowed until a product is completed. The production of every
particular good is assigned with two deadlines: soft (also known as due date)
and hard. Missing the due date is allowed but results in a loss or a penalty.
However, failing to meet the hard deadline is strictly unacceptable and may re-
sult in catastrophic failures on other production lines or even bring the entire
production to a halt. The goal is to manufacture all products before their hard
⋆ This work was supported by the Czech MEYS under the ERC CZ project POSTMAN

no. LL1902, by the Grant Agency of the Czech Technical University in Prague, grant
No. SGS22/167/OHK3/3T/13 and by the Grant Agency of the Czech Republic under
the Project GACR 22-31670S. This article is part of the RICAIP project that has
received funding from the EU’s Horizon 2020 research and innovation programme
under grant agreement No 857306.

2 Antonov et al.

deadline while minimizing the total penalty incurred. In scheduling theory, the
problem is known as 1|d̃i|

∑
wiUi in Graham’s notation [5].

The problem is typically addressed in the literature using two common meth-
ods. The first involves creating an integer linear programming (ILP) model and
handling it with a general solver. Another option is to use the state-of-the-art
exact branch-and-bound algorithm by Baptiste et al. [1], developed specifically
for this problem. Since both approaches have their limitations, heuristics can be
a suitable alternative. Indeed, solving the ILP model may have volatile running
times, while a heuristic works quickly and reliably. An efficient heuristic can also
improve the branch-and-bound technique by providing tighter bounds for quicker
solutions. Although the state-of-the-art approach can handle up to 30,000 jobs
within an hour, we observed that the algorithm struggles with smaller instances
of 1000–5000 jobs, exceeding a one-hour time limit. The literature also reports
specific instances of 250 jobs that the algorithm was unable to solve within the
same time limit [7]. This paradox is primarily due to the heuristic algorithm
inside the branch-and-bound, which may not provide a tight enough bound on
the objective. The fact that a heuristic method can be efficient for some in-
stances but not others inspired us to create an algorithm that will benefit from
the distribution of job parameters.

Problem Formulation. Let us have a machine (system) capable of doing some
work divided into pieces, which we call jobs. The machine follows three basic
assumptions: it handles a single job at a time, never interrupts a started job
and does not idle, i.e., after processing a job, it immediately moves to the next
one until all the assigned jobs are completed. We are given a set of jobs N =
{1, 2, ..., n} with durations pi, due dates di and deadlines d̃i for all i ∈ N . We
assume that pi, di, d̃i are positive integers and pi ≤ di ≤ d̃i for all i ∈ N .
In addition, each job has a weight (or cost), which is a positive integer wi,
i ∈ N that represents how valuable a particular job is. All the jobs are available
from the very beginning (time moment 0). Let the jobs be processed according
to the permutation π of N and completed at time moments Cπ

i , i ∈ N . In
scheduling terminology, π is called a schedule. We define the set of early jobs
Eπ = {i ∈ N | Cπ

i ≤ di} completed before the due date, and the set of tardy
jobs Tπ = {i ∈ N | di < Cπ

i ≤ d̃i} completed after the due date, but before the
deadline. A schedule π is called feasible, if Cπ

i ≤ d̃i for every job i ∈ N , and
in terms of introduced sets that is equivalent to Eπ ∪ Tπ = N . Following [1],
we assume an equivalent maximization problem instead of minimization. Our
goal is to maximize the weighted number of early jobs while every job must
meet its deadline. That means we want to find a schedule π∗ maximizing f(π) =∑

i∈Eπ
wi, so that Eπ ∪ Tπ = N .

Literature Review. The problem is known to be strongly NP-hard [13]. The
state-of-the-art exact method for solving the problem is the algorithm proposed
by Baptiste et al.[1]. As it is mentioned above, the efficiency of this algorithm
varies for different types of instances; for example, for one class of specific in-

Data-driven Single Machine Scheduling 3

stances, it faces difficulties solving instances with 250 jobs. This class was studied
in [7], where the authors improved the algorithm from [1] such that it can solve
5000 jobs within the same time limit.

The state-of-the-art heuristic for the studied problem is also proposed by
Baptiste et al. [1]. Essentially, it is a part of the exact algorithm presented
there. It starts by solving a max-profit flow relaxation of the original problem
and then determines if a job is early or tardy using ILP and variable fixing
techniques. A common rule-based heuristics for solving 1|d̃i|

∑
wiUi are EDF

(Earliest Deadline First), EDD (Earliest Due Date first) and ATC (Apparent
Tardiness Cost) [12]. Although they are fast and easy to implement, they show
a large optimality gap in practice, and only EDF can guarantee meeting all job
deadlines if a solution exists. According to [1], exact algorithms and relaxation
heuristics are the primary sources of improvements for the studied problem.
Although meta-heuristic applications have been mentioned in the past for related
problems, the literature on this topic is significantly outdated, and therefore we
do not discuss them further.

Our approach is based on supervised machine learning (ML) and inspired by
the work [2] who have demonstrated the remarkable benefits of applying ML to
a wide range of combinatorial optimization problems. However, we are not aware
of any ML applications to the studied problem. The closest related work is [3],
which addresses the 1||

∑
Ti problem of minimizing the total violation of due

dates. The authors propose to estimate the objective value using LSTM-based
neural networks. However, their problem does not assume deadlines, and the ap-
proach depends on Lawler’s decomposition, which cannot be applied to our case.
In addition, a standard LSTM-based neural network requires significant running
time. Structured learning is highlighted in [11] for minimizing the completion
time of jobs with release times, and [9] addresses online single-machine schedul-
ing using Q-learning techniques. Many applications of reinforcement learning to
combinatorial optimization problems are described in the survey by [10]. For a
simple setup of supervised machine learning, refer to [8].

Our Contributions. We introduce a novel scheduling heuristic to minimize
the weighted number of tardy jobs on a single machine. Our approach consists
of three interconnected components that work in synergy to achieve optimal
or near-optimal results. The first component leverages machine learning as a
decision-making oracle. Unlike traditional methods that rely on a single neural
network to predict directly from extracted features, we use two separate networks
to estimate different aspects of the problem, achieving more accurate results.
Secondly, we refine our predictions through ILP, using an empirically proven
job selection strategy. Lastly, we develop a framework based on the fundamental
problem properties that can transform any sequence of predictions into a feasible
solution if one exists. Our experiments demonstrate that the proposed algorithm
outperforms state-of-the-art heuristics in [1] when the input data distribution is
known.

4 Antonov et al.

2 Solution Approach

With complete information on whether a job is early or tardy in a given instance,
the 1|d̃i|

∑
wiUi problem can be solved in polynomial time. Indeed, it is sufficient

to schedule the jobs in ascending order of Dj (j ∈ N), which will be a due date
(Dj = dj) for early job and a deadline (Dj = d̃j) for tardy job. More details can
be found in [12]. Thus, the main challenge is to decide whether a given job is
early or tardy. In this paper, we use supervised machine learning to make such
a decision. A typical naive ML approach (sometimes denoted as an end-to-end
approach in the literature) decides purely based on the job features. However,
in our method, the decision is made differently. Consider the following theorem,
presented in [1].

Theorem 1 (Dominance theorem). Let π∗ be an optimal schedule and for
jobs i and j holds wj > wi, pj ≤ pi, dj ≥ di, d̃j ≤ d̃i. Then if the job i is early
in π∗, the same holds for j; and if the job j is tardy in π∗, the same holds for i.

We can see that if there is a certain relation between the parameters of two
jobs, then a decision about one of them can be propagated to another. Drawing
an analogy, we formulate this in terms of apriori and conditional probabilities.
Our goal is to estimate the likelihood P̃r(j) of job j being early, given that
we know the probability of job i being early or tardy. Assume that job i has
an apriori probability Pr(i) of being early (iE). Then, it is tardy (iT) with a
probability 1 − Pr(i) since earliness and tardiness are mutually exclusive. Let
Pr(j | iE) and Pr(j | iT) denote the conditional probability of j being early
if i happened to be early or tardy, respectively. We then express the desired
probability P̃r(j) as a marginal probability:

P̃r(j) = Pr(j | iE) Pr(i) + Pr(j | iT) (1− Pr(i)) (1)

We utilize two neural network oracles to predict the values on the right side
of the equation. The first oracle estimates the apriori probability Pr(i), and the
second does the same for conditional probabilities Pr(j | iE) and Pr(j | iT). A
rounded average of different marginal estimates P̃r(j), computed with respect
to different jobs i, represents the decision about job j.

The proposed machine learning approach has several advantages. First, it
takes into account the combinatorial side of the problem by considering the
context provided by other jobs rather than just relying on individual job param-
eters. Secondly, our approach is more balanced as it incorporates both apriori
and conditional probability estimates made by two independent oracles. Our
observations show that using both oracles positively impacts the final objective
value f(π), resulting in a 7–10% improvement compared to using only apriori
probabilities. Lastly, our decision-making method can be easily combined with
Theorem 1: when the theorem can be applied directly, the oracle does not need
to be called to estimate conditional probabilities.

Data-driven Single Machine Scheduling 5

Classification procedure. We have introduced the concept of our oracle and
discussed its features and benefits. Now, we will explain how our oracle aids
decision-making in the problem instance by classifying jobs as early or tardy.
We formalize this procedure in Algorithm 1. The first step is to compute apriori
estimates Pr(j) for all j ∈ N using Papr oracle. Next, we randomly select a subset
S ⊆ N of k jobs and compute the conditional probabilities for all pairs of jobs
j ∈ N and i ∈ S. Here we check the preconditions of the dominance theorem: if
they hold for some jobs i and j (this fact is denoted in the algorithm’s pseudocode
with IEj and ITj), then either Pr(j | iE) or Pr(j | iT) are known with certainty;
otherwise, both conditional probabilities are computed by Pcond oracle. Finally,
we compute a sequence of |S| = k marginal probabilities P̃r(j) for each j ∈ N .
The predicted class cj is obtained by rounding off the average value of these
marginal probabilities to the closest integer, where 1 represents early, and 0
represents tardy.

Algorithm 1 Classify function
Require: set of jobs N = {1; 2; ...;n}; oracles Papr, Pcond; k ∈ N
1: Pr(j)← Papr(j), j ∈ N ▷ making apriori estimates
2: S ← Subset(N), |S| = k ▷ random subset of k jobs
3: for j ∈ N , i ∈ S do ▷ making conditional estimates
4: IEj ← (wj > wi) & (pj ≤ pi) & (dj ≥ di) & (d̃j ≤ d̃i)

5: ITj ← (wj < wi) & (pj ≥ pi) & (dj ≤ di) & (d̃j ≥ d̃i)
6: Pr(j | iE)← 1 if IEj = “true” else Pcond(j, iE) ▷ predict by oracle or DT
7: Pr(j | iT)← 0 if ITj = “true” else Pcond(j, iT)
8: end for
9: for j ∈ N do

10: P̃r(j)← 1
k

∑
i∈S Pr(j | iE) Pr(i) + Pr(j | iT) (1− Pr(i)) ▷ marginal estimates

11: cj ← “early” if P̃r(j) ≥ 0.5 else “tardy” ▷ final decision
12: end for
13: return c1, ..., cn; P̃r(1), ..., P̃r(n) ▷ predicted classes and marginal estimates

Prediction by neural networks. In this section, we provide details about
the implementation and training of our neural network oracle, complementing
the general perspective presented in the previous sections. At first, we used
the Autogluon framework [4], which provides various models for tabular predic-
tions, including KNN, neural networks, LightGBM trees, random forests, and
XGBoost. After fitting our data to these different models, we have settled on
the neural network model as one of the most accurate. We employed a fully
connected multi-layer perceptron with a Tanh activation function. This model
consists of 8-8-2 neurons in the input-hidden-output layers for estimating apri-
ori probabilities and 17-64-2 neurons for estimating conditional probabilities.
We experimented with various configurations, including 3-5 layers with up to
64 neurons each, and tried both Tanh and ReLU activation functions before
settling on this final configuration.

6 Antonov et al.

A job j is represented by an eight-dimensional vector of features h(j), which
includes its weight w, duration p, due date d, deadline d̃, and four derived fea-
tures: w

p , w − p, d
d̃
, d̃ − d. All features are normalized to [0; 1] interval. The

network that estimates the apriori probability takes h(j) as input for a given job
j. The network that estimates the conditional probability takes the vector h(i)
concatenated with h(j) − h(i), where the subtraction is performed component-
wise. The idea is to determine whether we end in a point labeled “early” if we
start in h(i) and move along the vector h(j) - h(i). We avoid directly concate-
nating h(i) and h(j) to prevent the network from acting like an apriori NN.
Finally, we concatenate [h(i), h(j)−h(i)] with a boolean value 0 or 1 depending
on which probability we are estimating: P (j | iE) or P (j | iT). The optimal
solution’s components serve as labels. A job is labeled as 1 if it’s considered
early in the optimal solution and 0 otherwise. While we experimented with more
complex features, like histograms based on job weights, duration, due dates,
and deadlines, we found that the assembly of the eight features described above
generalizes better for larger instances.

We trained a neural network to estimate apriori probabilities using instances
of 50 to 5000 jobs. Obtaining labels for most instances of this size was easy using
an exact solver. The feature-label pairs were split into training and validation
sets with a ratio of 80:20, resulting in approximately 1.7 million pairs. For the
second neural network that estimates conditional probabilities, we focused on
instances with 1000 jobs only. We used sampling to cover more instances and
obtained 25 million feature-label pairs in total. Both models were trained for 20
epochs using the AdamW optimizer with a learning rate of 10−3.

Solving subproblems with ILP. In the previous two subsections, we discussed
how our oracle classifies jobs on early or tardy. Suppose we have executed Al-
gorithm 1 on a given problem instance and obtained predicted classes cj and
probabilities P̃r(j) for each j ∈ N . However, relying solely on these predictions
for scheduling can be risky, as even a single incorrect prediction may lead to
significant deviations from optimal value f(π∗). Therefore, we aim to use the
predictions differently, focusing on the reduction theorem described in [1]. Sup-
pose a given job j ∈ N is known to be early (Dj = dj) or tardy (Dj = d̃j) in an
optimal solution. A reduced problem is formulated on the set of jobs N ′ = N \{j}
with the data modified as follows:

w′
i = wi, p′i = pi (i ∈ N ′) (2)

d′i =

{
min(di, Dj − pj), if di ≤ Dj

di − pj , otherwise
(i ∈ N ′) (3)

d̃′i =

{
min(d̃i, Dj − pj), if d̃i ≤ Dj

d̃i − pj , otherwise
(i ∈ N ′) (4)

Data-driven Single Machine Scheduling 7

Theorem 2 (Reduction theorem). There exists a feasible schedule π with an
early set of jobs Eπ if and only if there exists a feasible schedule π′ with early
set of jobs E′

π = Eπ \ {j} for the reduced problem.

We aim to leverage our oracle to reduce the problem to itself, but of a smaller
size, removing the jobs with reliable predictions from the original instance. We
can apply the reduction theorem to those jobs and solve the obtained subproblem
to optimality with some general ILP solver (LINGO, Gurobi, etc.). Combining
the reliable predictions of our neural network with an optimal solution to the
reduced problem provides updated predictions for the original problem. We first
analyze how reliable are the predictions from our neural network. To address
this, we conducted an experiment using the training set, as shown in Figure 1.

Let’s consider the left sub-figure first. The x-axis displays predicted probabil-
ities of a job being early, with a bin size of a histogram equal to 0.01. The y-axis
shows the empirical frequency of prediction errors for each probability, given by
the fraction (νr)q, where q is the predicted probability, r is the total number
of samples with that probability, and ν is the number of incorrectly classified
samples. We employed a total of 500,000 samples uniformly distributed with
respect to q. The resulting graph shows that the neural network is the most
reliable when predicting probabilities close to 0 or 1, and most of the errors oc-
cur when the predicted probabilities are close to 0.5. Additionally, the network’s
error distribution appears to be approximately normal.

Fig. 1. Frequency of errors (left) and frequency of predicted probabilities (right)

The right-hand side of Fig. 1 shows how frequently our oracle predicts a
random job with one or another probability given by the x-axis. We can see that
the neural network almost always predicts the jobs having high confidence, e.g.,
most of P̃r(j) probabilities are close to 0 or 1. Analyzing both graphs, we observe
that the network achieves the lowest error rates for predictions with probabilities
close to 0 or 1, which also comprise the majority of all predictions. This is
a positive outcome, indicating that we can trust the network when it makes
such predictions. However, the error rate increases as the predicted probability
approaches 0.5, demonstrating that the network is more error-prone in this range.

8 Antonov et al.

Algorithm 2 Update function
Require: set of jobs N = {1; 2; ...;n}; γ ∈ N (0 ≤ γ ≤ n)
Require: jobs predicted classes c1, ..., cn; predicted probabilities Pr(j), ..., Pr(j)
1: (j1, ..., jn)← Sort(N, |Pr(j)− 0.5|), j ∈ N ▷ order jobs by |Pr(j)− 0.5| asc.
2: N ′ = N \ {jγ+1, ..., jn} ▷ reduce the original instance
3: (s1, ..., sγ)← ILP(N ′, time ≤ 60s) ▷ try to solve reduced problem by ILP
4: (cj1 , ..., cjγ)← (s1, ..., sγ) if ̸= ILP solution exists
5: return c1, ..., cn ▷ update predicted classes if a solution was found

The ideas outlined above are formalized in Algorithm 2, which we refer to
as the Update function. At the start of the algorithm, we choose the number
of jobs γ to be solved by a general ILP solver. This value can be arbitrarily
chosen between 0 and n. Assuming that the neural network has just returned
the predicted classes cj and predicted probabilities Pr(j) for each j ∈ N (as
described in Algorithm 1), we begin by sorting the jobs in ascending order of the
criterion |Pr(j)−0.5|, j ∈ N ; this rearranges the jobs as j1, ..., jn (line 1). Next,
we apply the reduction theorem (line 2), removing jobs jγ+1, ..., jn (which are
predicted closer to 0 or 1) and keeping the remaining jobs to be solved by ILP.
We then solve the reduced instance by ILP with a time limit of 60 seconds (line
3). If the solution s1, ..., sγ was found, it replaces the corresponding predictions
made by the neural network (line 4). Otherwise, we keep all the predictions made
by the neural network unchanged.

Scheduling Algorithm. Assume we have executed Algorithm 1 followed by
Algorithm 2 and thus obtained the predicted classes c1, ..., cn. This sequence of
predictions does not necessarily lead to a feasible schedule, and the final step is
to construct one based on the predictions we have. Further on, we use the fact
that a given problem is feasible if and only if scheduling jobs in ascending order
of their deadlines yields a feasible solution [12]. We refer to this check as the
EDF check (Earliest Deadline First check).

Algorithm 3 formalizes the scheduling of classified jobs. First, we check if the
instance is feasible. If it holds, we sort the jobs based on values Di (i ∈ N),
which is a due date if a job is predicted as early and the deadline otherwise.
This results in a permutation π, where the job with the smallest D value stands
in the first (leftmost) position, and the job with the largest D value is in the
last (rightmost) place. We introduce a cursor m and start with the first job j in
permutation π. If j is predicted as tardy, we schedule it immediately and move
to the next job (lines 8, 11, 14–16). If j is predicted as early, we perform an EDF
check to determine if we can schedule the remaining unscheduled jobs (line 9).
If the check passes, we schedule j and move to the next job (lines 14–16). If the
check fails, we do not schedule j. Instead, we change the predicted class cj to
tardy, update the sorting key of j to deadline (Dj = d̃j) and push j to a new
position in π such that the permutation is sorted again (lines 17–19). We repeat

Data-driven Single Machine Scheduling 9

the algorithm steps until all jobs are scheduled. In the end, the cursor stands to
the right of the last job in π, which is the output schedule.

Algorithm 3 Scheduling algorithm
Require: set of jobs N = {1; 2; ...;n}; predicted classes c1, ..., cn
1: return ∅ if EDF (N) = “infeasible”
2: Di ← di if ci = “early” else d̃i (i ∈ N)
3: π ← Sort(N,Dj) ▷ jobs ordered by Di (i ∈ N) ascending
4: S ← ∅ ▷ a set of scheduled jobs S
5: m← 1 ▷ a cursor m
6: while m ≤ n do
7: j ← π(m) ▷ consider the m-th job j from π
8: if cj = “early” then ▷ if it is predicted as early
9: α = EDF (N \ (S ∪ {j})) ▷ could we schedule the rest by EDF

10: schedNow← true if α = “feasible” else false
11: else
12: schedNow← true
13: end if
14: if schedNow then ▷ schedule if it’s early and passes EDF or if it’s tardy
15: S ← S ∪ {j}
16: m← m+ 1
17: else ▷ otherwise, put j further in π
18: Dj ← d̃j
19: π ← Push(j, π) ▷ a new order of jobs where j is placed by Dj = d̃j
20: end if
21: end while
22: return π

Proposition 1. Algorithm 3 halts and produces a feasible schedule if one exists.

Proof. The algorithm terminates after at most 2n steps because on each step
a job is either scheduled immediately or forced to become tardy and will be
scheduled when the cursor reaches it the second time.

Assume that we are given a feasible instance. To prove that the algorithm
always produces a feasible schedule, we need to show that scheduling a job j
allows us to schedule the remaining unscheduled jobs without violating their
deadlines. There are three mutually exclusive cases:

Case 1. A job j has an early predicted class and passes the EDF check. In
this case, the EDF check confirms that scheduling the remaining jobs after j will
not violate any deadlines. Thus, scheduling j preserves the ability to construct
a feasible schedule.

Case 2. A job j has an early predicted class but fails the EDF check. In this
case, j is not scheduled at this moment, and only the permutation π can change.
So, if there was an opportunity to construct a feasible schedule, it would remain.

Case 3. A job j has a tardy predicted class. Here we make two observations.
First, the jobs in π are always kept sorted during the algorithm, so the sorting key

10 Antonov et al.

Dj of job j is always the smallest value of D among the remaining unscheduled
jobs. Second, since j has a tardy predicted class, Dj = d̃j . Therefore, scheduling j
works as the very first step of scheduling all the remaining jobs by the EDF rule.
It preserves the opportunity to construct a feasible schedule, as the remaining
unscheduled jobs can still be scheduled by running the EDF until the end. This
completes the proof.

3 Experimental Results

Table 1. Comparison of optimality gaps and the numbers of optimal solutions

(0.1-3) Optimal solutions (·/100) Avg optimality gap, %
n Ours Bapt. Rand Early Ours Bapt. Rand Early

500 71 22 0 0 0.0684 0.0264 66.888 73.037
1000 74 13 0 0 0.0199 0.0127 65.857 73.574
2000 70 27 0 0 0.0091 0.0050 66.775 73.462
3000 60 27 0 0 0.0064 0.0037 66.779 74.042
4000 61 32 0 0 0.0039 0.0025 66.625 73.808
5000 56 37 0 0 0.0041 0.0011 66.487 73.543

(0.1-7) Optimal solutions (·/100) Avg optimality gap, %
n Ours Bapt. Rand Early Ours Bapt. Rand Early

500 86 20 0 0 0.3472 0.0167 38.097 59.836
1000 92 19 0 0 0.0026 0.0077 38.048 60.528
2000 99 17 0 0 0.0001 0.0031 37.653 60.512
3000 76 20 0 0 0.0005 0.0020 37.790 60.316
4000 57 11 0 0 0.0008 0.0014 37.601 60.360
5000 63 26 0 0 0.0008 0.0009 37.602 60.146

(0.3-5) Optimal solutions (·/100) Avg optimality gap, %
n Ours Bapt. Rand Early Ours Bapt. Rand Early

500 88 30 0 0 0.3040 0.0162 40.957 49.378
1000 94 22 0 0 0.0012 0.0072 40.730 49.160
2000 93 35 0 0 0.0005 0.0027 40.861 49.212
3000 92 35 0 0 0.0009 0.0019 41.226 49.321
4000 83 50 0 0 0.0003 0.0013 40.884 49.460
5000 82 52 0 0 0.0003 0.0007 40.976 49.354

(0.3-7) Optimal solutions (·/100) Avg optimality gap, %
n Ours Bapt. Rand Early Ours Bapt. Rand Early

500 93 23 0 0 0.0033 0.0117 33.365 40.763
1000 95 27 0 0 0.0011 0.0055 33.756 41.085
2000 94 28 0 0 0.0007 0.0035 33.611 40.637
3000 94 42 0 0 0.0007 0.0016 33.643 40.353
4000 85 45 0 0 0.0005 0.0009 33.656 40.416
5000 79 44 0 0 0.0003 0.0007 33.670 40.526

(0.5-7) Optimal solutions (·/100) Avg optimality gap, %
n Ours Bapt. Rand Early Ours Bapt. Rand Early

500 90 21 0 0 0.0018 0.0133 31.994 30.422
1000 99 32 0 0 0.0001 0.0036 32.210 30.134
2000 96 42 0 0 0.0010 0.0018 32.240 30.339
3000 88 46 0 0 0.0001 0.0011 32.092 30.273
4000 87 59 0 0 0.0001 0.0006 32.255 30.338
5000 85 56 0 0 0.0001 0.0003 32.122 30.473

To ensure a fair comparison with [1], we use their instance generation method,
where weights and durations are random natural numbers uniformly distributed
on the interval [1, 100]. We also use the same distribution of due dates, which are

Data-driven Single Machine Scheduling 11

Fig. 2. Impact of γ on the optimality gap and number of optimal solutions

random numbers between u
∑n

i=1 pi and v
∑n

i=1 pi, where (u, v) are selected from
the set (0.1, 0.3), (0.1, 0.7), (0.3, 0.5), (0.3, 0.7), (0.5, 0.7). Our implementation of
the proposed algorithm is in Python, and we tested it in Google Colab. Both
the code and data are available at https://github.com/CTU-IIG/EPIA.

We compare the results of our approach with those of Baptiste et al.’s state-
of-the-art heuristic and two other methods that are identical to ours but use
different oracles: in the first method (Rand), jobs are predicted to be early or
tardy randomly with 0.5 probability; in the second approach (Early), every job
is predicted to be early with probability 1. We use two evaluation criteria: opti-
mality gap and the number of optimal solutions achieved out of 100 instances.
The optimality gap is the ratio f(π∗)−f(π)

f(π∗) · 100%, where π and π∗ represent the
constructed and optimal schedules, respectively. We first conduct an experiment
on our algorithm alone to demonstrate how the optimality gap and the number
of optimal solutions change when we increase the fraction of jobs solved by the
ILP, i.e., the γ parameter in Algorithm 2. The results are presented in Fig. 2.
The instance size is fixed to 1000 jobs, and the classification of each job in a
given instance uses k = 500 jobs to estimate conditional probabilities.

Table 1 presents a comparison of our approach with the other heuristics.
Our algorithm significantly outperforms them in terms of the number of optimal
solutions, always achieving more than half, with a maximum of 99 out of 100. For
most distributions and instance sizes, our approach also demonstrates the best
optimality gap. However, we should note that Baptiste’s heuristic is still superior
in terms of running time: 1 second for 500–3000 jobs, 1.5 seconds for 4000 jobs,
and 3 seconds for 5000 jobs. The respective running times of our algorithm are
2–15, 19, and 28 seconds; the same for Rand and Early approaches. Finally, we
attempted to execute the simple rule-based heuristics EDD, ATC, and EDF.
However, the first two did not produce feasible solutions for any instance, and
the optimality gap of EDF is similar to the random oracle and equals 64–66%.

12 Antonov et al.

4 Conclusion

We have proposed a novel heuristic algorithm that employs a combination of
machine learning and ILP to minimize the weighted number of tardy jobs on
a single machine. Our approach guarantees a feasible solution and outperforms
the current state-of-the-art heuristic by considering the distribution of the pa-
rameters. Our experiments demonstrate promising results, including a high per-
centage of optimal solutions and a low optimality gap, indicating the efficiency
of our approach in handling practically-sized instances.

References

1. Baptiste, P., Croce, F.D., Grosso, A., T’kindt, V.: Sequencing a single machine
with due dates and deadlines: an ILP-based approach to solve very large instances.
J. Sched. 13(1), 39–47 (2010)

2. Bengio, Y., Lodi, A., Prouvost, A.: Machine learning for combinatorial optimiza-
tion: A methodological tour d’horizon. Eur. J. Oper. Res. 290(2), 405–421 (2021)

3. Bouška, M., Šůcha, P., Novák, A., Hanzálek, Z.: Deep learning-driven scheduling
algorithm for a single machine problem minimizing the total tardiness. European
Journal of Operational Research (2022)

4. Erickson, N., Mueller, J., Shirkov, A., Zhang, H., Larroy, P., Li, M., Smola, A.J.:
AutoGluon-tabular: Robust and accurate AutoML for structured data. CoRR
abs/2003.06505 (2020)

5. Graham, R., Lawler, E., Lenstra, J., Kan, A.: Optimization and approximation in
deterministic sequencing and scheduling: a survey. In: Hammer, P., Johnson, E.,
Korte, B. (eds.) Discrete Optimization II, Annals of Discrete Mathematics, vol. 5,
pp. 287–326. Elsevier (1979)

6. Hariri, A.M.A., Potts, C.N.: Single machine scheduling with deadlines to minimize
the weighted number of tardy jobs. Management Science 40(12), 1712–1719 (1994)

7. Hejl, L., Šůcha, P., Novák, A., Hanzálek, Z.: Minimizing the weighted number of
tardy jobs on a single machine: Strongly correlated instances. Eur. J. Oper. Res.
298(2), 413–424 (2022)

8. Karimi-Mamaghan, M., Mohammadi, M., Meyer, P., Karimi-Mamaghan, A.M.,
Talbi, E.G.: Machine learning at the service of meta-heuristics for solving combina-
torial optimization problems: A state-of-the-art. European Journal of Operational
Research 296(2), 393–422 (2022)

9. Li, Y., Fadda, E., Manerba, D., Tadei, R., Terzo, O.: Reinforcement learning algo-
rithms for online single-machine scheduling. In: 2020 15th Conference on Computer
Science and Information Systems (FedCSIS). pp. 277–283 (2020)

10. Mazyavkina, N., Sviridov, S., Ivanov, S., Burnaev, E.: Reinforcement learning for
combinatorial optimization: A survey. Comp. & Op. Research 134 (2021)

11. Parmentier, A., T’Kindt, V.: Structured learning based heuristics to solve the
single machine scheduling problem with release times and sum of completion times.
European Journal of Operational Research (2022)

12. Pinedo, M.L.: Scheduling. Theory, Algorithms, and Systems. Springer New York,
NY, 233 Spring St, New York, NY USA (2012)

13. Yuan, J.: Unary NP-hardness of minimizing the number of tardy jobs with dead-
lines. J. Sched. 20(2), 211–218 (2017)

