
Filtering Isomorphic Models by Invariants∗
1

João Araújo Ï2

Universidade Nova de Lisboa, Lisbon, Portugal3

Choiwah Chow !4

Universidade Aberta, Lisbon, Portugal5

Mikoláš Janota !Ï6

Czech Technical University in Prague, Czechia7

Abstract8

The enumeration of finite models of first order logic formulas is an indispensable tool in computational9

algebra. The task is hindered by the existence of isomorphic models, which are of no use to10

mathematicians and therefore are typically filtered out a posteriori. This paper proposes a divide-11

and-conquer approach to speed up and parallelize this process. We design a series of invariant12

properties that enable us to partition existing models into mutually non-isomorphic blocks, which13

are then tackled separately. The presented approach is integrated into the popular tool Mace4,14

where it shows tremendous speed-ups for a variety of algebraic structures.15

2012 ACM Subject Classification Computing methodologies; Theory of computation → Constraint16

and logic programming17

Keywords and phrases finite model enumeration, isomorphism, invariants, Mace418

Category Short Paper19

Funding João Araújo: Fundação para a Ciência e a Tecnologia, through the projects UIDB/00297-20

/2020 (CMA), PTDC/MAT-PUR/31174/2017, UIDB/04621/2020 and UIDP/04621/2020.21

Mikoláš Janota: The results were supported by the Ministry of Education, Youth and Sports within22

the dedicated program ERC CZ under the project POSTMAN no. LL1902. This scientific article23

is part of the RICAIP project that has received funding from the European Union’s Horizon 202024

research and innovation programme under grant agreement No 857306.25

1 Introduction26

There are many types of relational algebras (groups, semigroups, quasigroups, fields, rings,27

MV-algebras, lattices, etc.) using operations and relations of many arities, but the over-28

whelming majority of the most popular only use operations of arity at most 2; in the words of29

two famous algebraists, It is a curious fact that the algebras that have been most extensively30

studied in conventional (albeit modern!) algebra do not have fundamental operations of arity31

greater than two. (See page 26 of [4])32

To study and get intuition on them, mathematicians resort to libraries of all order n33

models of the algebra they are interested in (for small values of n). These libraries allow34

experiments such as testing and/or forming conjectures etc., to gain insights. Therefore, it35

comes as no surprise that GAP [8], the most popular computational algebra system, has36

many such libraries. For groups it has the list of almost all small groups up to order a few37

thousands and the list of all primitive groups up to degree a few thousands, among others;38

for semigroups it has the list of all small models up to order 8 [6]; for quasigroups up to39

order 6 [16]; there is also a library of Lie algebras and many others. These libraries are so40

important that the search for them has a long history in mathematics predating for many41

∗ Preprint, or original in the proceedings of CP 2021.

https://docentes.fct.unl.pt/jj-araujo
https://orcid.org/0000-0001-6655-2172
mailto:1702603@estudante.uab.pt
https://orcid.org/0000-0002-2067-0568
mailto:mikolas.janota@cvut.cz
http://people.ciirc.cvut.cz/~janotmik/
https://orcid.org/0000-0003-3487-784X

2 Filtering Isomorphic Models by Invariants1

years the use of computers. For example, the search for libraries of degree n primitive groups42

started long ago: Jordan (1872) for n ≤ 7; Burnside (1897) for n ≤ 8; Manning (1906-1929)43

for n ≤ 15; Sims (1970) for n ≤ 20, Pogorelov (1980) for n ≤ 50; Dixon and Mortimer (1988)44

for n ≤ 1000. (See Appendix B of [7]; and for more recent results in OEIS [17]).45

Many more such libraries are needed. For example, SMALLSEMI [6] has the list of46

semigroups up to order 8 (there are too many semigroups of order 9 to be storable), but47

if we impose extra properties on the semigroup (such as being inverse, a band, regular, or48

Clifford, etc. — there are tens of classes of semigroups —) their numbers decrease and hence49

libraries of models of higher orders could be produced and stored.50

Many of these algebras can be defined in first order logic (FOL) and there are tools51

to allow mathematicians to encode their algebras and produce a meaningful library. The52

problem is that usually the tools that can be easily learned and used by mathematicians53

generate too many isomorphic models, thus wasting time generating redundant models and54

then wasting more time to get rid of them. For example, Mace4 [13], a very popular finite55

model enumerator among mathematicians due to its very intuitive and user-friendly language,56

would produce 28,947,734 inverse semigroups of order 8 when given the following simple57

first-order formulas as input [1] (with binary operation ∗ and unary operation ′).58

(x ∗ y) ∗ z = x ∗ (y ∗ z). (x ∗ x′) ∗ x = x. 0 ∗ 0 = 0.

((x ∗ x′) ∗ y) ∗ y′ = ((y ∗ y′) ∗ x) ∗ x′. x′′ = x.
59

During the search, the number of output models in this example is already greatly reduced60

by the Least Number Heuristic (LNH) and the special symmetry breaking input clause61

0 ∗ 0 = 0. Out of the almost 29 millions output models, only 4,637 (≈ 0.016%) are pairwise62

non-isomorphic. The proportion of non-isomorphic models in the outputs tends to get smaller63

very fast as the order of the algebraic structure goes higher.64

Redundant models may either be eliminated during search or filtered out afterwards.65

Guaranteeing that search never produces isomorphic models is a hard problem and is rarely66

seen in modern solvers. This paper therefore tackles the second problem, i.e., the removal of67

redundant models from an already enumerated set.68

In our context, the complexity of checking whether two models are isomorphic is only69

part of the problem. Another source of complexity is the large number of models that need70

to be checked. If all pairs of models are checked, the performance degrades rapidly as the71

total number of models increases (see Section 5).72

To tackle this problem, we explored many different strategies eventually concluding that73

the best one is to assign to every generated model a vector that is invariant under isomorphism.74

This allows us to partition the output with all the isomorphic models living inside the same75

block (or part). This splits the problem into substantially smaller sub-problems. Moreover,76

processing inside each block can easily be done in parallel as models across blocks cannot77

be isomorphic. This is an important facet of the approach since modern-day computers are78

more often than not equipped with multiple cores.79

What made this project take off was the identification of a large number of general80

algebra properties invariant under isomorphism coupled with experiments to identify a small81

subset of these properties without losing discriminating power. This approach will help82

mathematicians on two levels: first, it provides them with a tool on their desktop that quickly83

produces a library for the algebra they are working with; second, the tool may be run on a84

cluster of computers to pre-compute libraries for the most famous classes of algebras, and85

add them to GAP [8] or a similar system.86

Our contributions to the area of isomorphic model elimination are (see Section 3):87

J. Araújo, C. Chow, M. Janota 3

Devise an invariant-based algorithm that can be applied to algebras defined in FOL and88

containing at least one binary operation.89

Design a small set of invariant properties that in practice have high discriminating power,90

and yet are inexpensive to compute.91

Use a hash-map to store models partitioned by the invariant-based algorithm to allow92

fast storage and retrieval of models in the same block.93

We apply the proposed partitioning technique to Mace4’s isomorphic model filtering94

programs, and observe orders of magnitude speed-up in its isomorphic model elimination95

step (see Section 4).96

2 Mathematical Background97

Algebra is a pair (A, Ω), where A is a set and Ω is a set of operations, that is, functions98

f : An → A (in this case f is said to be an operation of arity n). Let A = (D, ∗A) and99

B = (D, ∗B) be two algebras, each with one binary operation on a finite domain (or universe)100

D. An isomorphism of these two algebras is a bijective function f : A → B such that101

f(a ∗A b) = f(a) ∗B f(b), for all a, b ∈ A. Two models are said to be isomorphic if there exists102

an isomorphism between them. The relation A is isomorphic to B is clearly an equivalence103

relation and hence induces a partition of the algebras considered. Only one representative104

algebra in each block is needed.105

The definition of isomorphism can easily be extended to cover algebras with multiple106

binary operations. Formally, suppose A and B are algebras of type (2m, 1n), where m, n107

are non-negative integers; then we can assume that the binary operations are (∗1, . . . , ∗m)108

and the unary operations are (g1, . . . , gn). An isomorphism between them is a bijection109

f : A→ B such that f(a ∗i b) = f(a) ∗i f(b), for all a, b ∈ D and every binary operation ∗i,110

and for any unary operation gi, we have f(gi(a)) = gi(f(a)), for all a ∈ D.111

3 Invariant-based Algorithm112

Let A and B be two algebras and f : A → B an isomorphism between them; in addition,113

suppose e2 = e ∈ A is an idempotent. Then f(ee) = f(e) implies that f(e)f(e) = f(e), that114

is, f(e) under an isomorphism is also an idempotent. As isomorphisms map idempotents onto115

idempotents, it follows that the number of idempotents in A must be smaller or equal to the116

number of idempotents on B. Since the inverse of an isomorphism is an isomorphism, A and117

B must have the same number of idempotents. We call these properties that are preserved118

by isomorphisms (such as the number of idempotents) invariant properties or invariants for119

short. These invariant properties are the basis of our proposed algorithm.120

Guided by fundamental concepts heavily appearing in different parts of mathematics,121

we design 10 invariant properties that collectively have high discriminating powers, and yet122

are inexpensive to compute. For a binary operation in a model with finite domain D, we123

compute the invariant properties for each domain element x as:124

1. The smallest integer n such that xn = xk, n > k >= 1 where we define xn to be125

(. . . (x ∗ x) ∗ x) ∗ x) . . . for n x’s (periodicity).126

2. The number of y ∈ D such that x = (xy)x (number of inverses).127

3. The number of distinct xy for all y ∈ D (size of right ideal).128

4. The number of distinct yx for all y ∈ D (size of left ideal).129

5. 1 if xx = x, 0 otherwise (idempotency).130

6. The number of y ∈ D such that x(yy) = (yy)x (number of commuting squares).131

4 Filtering Isomorphic Models by Invariants2

7. The number of y ∈ D such that x = yy (number of square roots).132

8. The number of y ∈ D such that x(xy) = (xx)y (number of square associatizers).133

9. The number of pairs of y, z ∈ D such that zy = yz = x (number of symmetries).134

10. The number of y ∈ D such that there exists pairs of s, t ∈ D where x = st and y = ts135

(number of conjugates).136

Invariant 5 is the idempotent property of the domain element and is preserved by137

isomorphisms as discussed before. The correctness of invariants in general hinges on the138

following lemma (folklore). Let F be a FOL formula on the signature of the algebra and139

M and M ′ two isomorphic models. It holds that the sets S and S′ defined by F in M and140

M ′, respectively, are of the same cardinality. This is because the isomorphism induces a141

bijection between the two sets (cf. Theorem 1.1.10 in [12]). In other words, invariants based142

on solution counting are guaranteed to be correct.143

We call the ordered list of invariant properties so calculated the invariant vector of that144

domain element. Each model with n domain elements will be associated with n invariant145

vectors. Isomorphic models must have the same set of invariant vectors.146

To facilitate comparisons of invariant vectors, we sort the invariant vectors by the147

lexicographical order of their elements (see the example below for more explanations). It148

follows that models isomorphic to each other must have the same sorted invariant vectors. If149

the model has multiple binary operations, then invariant vectors are calculated for each of the150

binary operations, and all the invariant vectors of the same domain element are concatenated151

to form a combo invariant vector for that domain element. The combo invariant vectors will152

then be sorted to yield the final ordered list of invariants.153

Often we are not only to compare 2 models for isomorphism, but to extract all non-154

isomorphic models from a list of models. In that case, we set up a hash map to store the155

blocks of the models. We use the invariant vectors for each model to send the model quickly156

to the block (in the hash map) to which it belongs. That is, the keys in this hash map157

are the invariant vectors, and the values are the blocks of the models. After all models are158

hashed into the hash map, the blocks stored in the hash map can be processed separately,159

and possibly in parallel, to extract one representative model from each isomorphism class.160

Note that our invariant-based algorithm does not compare models for isomorphism. It161

only cuts down the size of the problem to improve the speed of existing isomorphism filters162

such as Mace4’s isofilter.163

As an example to show how invariant vectors are constructed and used, suppose we want164

to find all non-isomorphic models in a list of 3 quasigroups, A, B, and C, of order 4. Suppose165

further that their domain is D = {0, 1, 2, 3} and their operation tables are given in Table 1.

Table 1 Operation tables of Quasigroups A, B and C

∗A 0 1 2 3
0 0 1 2 3
1 1 0 3 2
2 2 3 1 0
3 3 2 0 1

∗B 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

∗C 0 1 2 3
0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0

Model A Model B Model C

166

The 10 invariant properties can easily be calculated for each of the domain elements of167

these models. Note that while the invariant vector for each domain element is calculated168

separately, it is not important exactly which domain element gives a particular invariant169

vector. It is the set of invariant vectors as a whole that matters.170

J. Araújo, C. Chow, M. Janota 5

Invariant vectors of Model A

0: 2 1 4 4 1 4 2 4 4 1
1: 3 1 4 4 0 4 2 4 4 1
2: 5 1 4 4 0 4 0 4 4 1
3: 5 1 4 4 0 4 0 4 4 1

Invariant vectors of Model B

0: 2 1 4 4 1 4 2 4 4 1
2: 3 1 4 4 0 4 2 4 4 1
1: 5 1 4 4 0 4 0 4 4 1
3: 5 1 4 4 0 4 0 4 4 1

Invariant vectors of Model C

0: 2 1 4 4 1 4 4 4 4 1
1: 3 1 4 4 0 4 0 4 4 1
2: 3 1 4 4 0 4 0 4 4 1
3: 3 1 4 4 0 4 0 4 4 1

Figure 1 Lexicographically sorted invariant vectors with discerning properties highlighted.

Next we sort the invariant vectors of each model by their elements lexicographically.171

Invariant vectors of models A and C need no change as they are already in the desired sort172

order. Invariant vectors of model B will be in sort order by interchanging the invariant173

vectors of elements 1 and 2, which are the second and third row. The final invariant vectors174

are shown in the Figure 1. Note that the first column in the tables is the domain element,175

and the next 10 columns are its invariant properties.176

The highlighted numbers in the figure are the discerning invariant properties in the177

example. All other invariant properties are the same from domain element to domain element.178

For example, Invariant properties 3, size of right ideal, and 4, size of left ideal, always equal179

to the size of the domain D because the operation table of a quasigroup is a Latin square.180

This highlights the need for multiple invariant properties targeting different areas of algebraic181

structures to increase their collective discriminating powers. In fact, our algorithm depends182

more on the orthogonality of the invariants than on the splitting power of any one individual183

invariant. See Table 2 for the top invariants in different algebras.184

It should be easy to see that models A and B have the same sorted invariant vectors,185

and thus are possibly isomorphic to each other. They are indeed isomorphic to each other186

because applying the permutation (1, 2) to model B will give model A. However, invariant187

vectors alone cannot prove that they are isomorphic models. It is also easy to see that the188

invariant vectors of model C are different from those of the other 2 models, and from this189

fact alone, we can conclude that model C is not isomorphic to any of A and B.190

Finally, for ease of comparison and hashing, we concatenate the sorted invariant vectors191

into a single string. The string representation of the invariant vectors for the models are:192

A, B: 2,1,4,4,1,4,2,4,4,1,3,1,4,4,0,4,2,4,4,1,5,1,4,4,0,4,0,4,4,1,5,1,4,4,0,4,0,4,4,1193

C: 2,1,4,4,1,4,4,4,4,1,3,1,4,4,0,4,0,4,4,1,3,1,4,4,0,4,0,4,4,1,3,1,4,4,0,4,0,4,4,1194

Since we are to extract all non-isomorphic models from this list of models, we use the string195

representations of the invariant vectors as the keys for the hash map. Both models A and B196

will therefore go to the same block in the hash map, but C will go to a different block. Now197

that all 3 models are deposited in their blocks in the hash map, each block can be processed198

separately in parallel as we only need to compare models in the same block for isomorphism.199

This step can be performed by many existing programs such as Mace4’s isomorphism filters200

(see Section 4).201

Finally, if the models have multiple binary operations, we compute the unsorted invariant202

vectors for each binary operation as described above, then concatenate the invariant vectors203

of the same domain element into one combo invariant vector, sort these combo invariant204

vectors in lexicographical order, and finally concatenate the sorted invariant vectors into205

their string format.206

It is important to note that the hash map in our algorithm obviates the need to compare207

invariant vectors among the models during the partitioning process. If we do pairwise208

6 Filtering Isomorphic Models by Invariants3

comparison of models by their invariant vectors in any step, we would end up with a O(n2)209

worst-case scenario.210

4 Experimental Results211

We have implemented an invariant-based pre-processor to the Mace4’s isomorphic models212

filters. We run the experiments on a 6-core Intel®Core™ i7-9850H CPU computer. We213

shall show results of tests on 3 algebraic structures, namely, quasigroup, inverse semigroup,214

and quandle [1]. They are chosen because of their importance in the mathematical world.215

Quasigroup is the most prominent non-associative algebra, inverse semigroup is probably216

the most studied associative algebra with a unary operation, and quandles is probably most217

important algebra with 2 binary operations.218

The results show that when the size of the output models is more than just a few hundreds219

of thousands, the invariant vectors often give an order or two magnitudes of improvements in220

the speed of the isomorphism elimination process even without running them in parallel. A221

very desirable feature of our algorithm is that the improvement increases dramatically as the222

size of the problem grows. Furthermore, Mace4’s isofilter2 is not able to handle input size223

beyond a few million quasigroups of order 6 (see Table 2), but our invariant-based algorithm224

can partition the models into smaller blocks of sizes within Mace4’s limits.225

Table 2 Isomorphism Eliminations

Time (s)

Order # of Mace4 Outputs With Invariants Without Invariants

Quasigroups 5 10,944 1 1
6 11,543,040 1,182 N/A

Inverse Semigroups 5 2,151 <1 <1
6 38,828 3 2
7 929,923 73 81
8 28,947,734 2,873 150,703

Quandles 6 1,833 2 1
7 22,104 6 374
8 359,859 450 267,463

We show the results of the non-parallel runs to demonstrate the improvements due solely226

to the invariant vectors. The performance can be improved further if the blocks are processed227

in parallel. For example, the processing time for the biggest block for quandles of order 8 is228

only 20 seconds, so if we have enough processors to process all the blocks in parallel, then229

the processing time can theoretically be cut down close to 24 + 19.937 ≈ 44 seconds from230

450 seconds, more than 90% reduction (see Table 3).231

One reason for the dramatic improvement in the run-time by our invariant-based algorithm232

is that the invariant vectors chosen have great discriminating power as shown by the fact233

that the average number of non-isomorphic models per block is very close to 1 (see Table 4).234

The top 4 contributing invariants for the highest order of each class are also listed in Table 4.235

236

J. Araújo, C. Chow, M. Janota 7

Table 3 Isomorphism Eliminations in Parallel

Time (s)

Order #Blocks Generating Invariants Processing Biggest Block

Quasigroups 6 1,129,129 265 0.0106132
Inverse Semigroups 8 4,582 1,031 2.807
Quandles 8 1,143 24 19.937

Table 4 Discriminating Power of Invariant Vectors

Non-isomorphic Models

Order #Blocks Total Avg per Block Top 4 Invariants

Quasigroups 5 1,402 1,411 1.01
6 1,129,129 1,130,531 1.00 6, 1, 8, 10

Inverse Semigroups 5 52 52 1.00
6 208 208 1.00
7 908 911 1.02
8 4,582 4,637 1.01 9, 3, 2, 1

Quandles 6 66 73 1.11
7 250 298 1.19
8 1,143 1,581 1.38 8, 3, 6, 10

5 Related Work237

The proposed approach falls into the class of divide-and-conquer algorithms; most notably238

Heule et al. [10] recently applied the cube-and-conquer approach [9] to solve the Boolean239

Pythagorean triples problem.240

There are a large number of techniques to break symmetries during the search phase [5],241

such as the Least Number Heuristic (LNH) [18] and the eXtended LNH (XLNH) [2]. The242

LNH, for example, is a very popular dynamic symmetry breaker implemented in Mace4,243

FALCON [18], and SEM [19], etc., to help reduce the number of isomorphic models. However,244

these techniques do not guarantee isomorph-freeness. Systems that try to generate isomorph-245

free models, such as SEMK [3, 14] and SEMD [11], are either yet to be complete, or are246

better off allowing some isomorphic models in the outputs for some problem sets. Thus, post-247

processing tools such as our invariant-based algorithm have an important role in isomorphism248

elimination as total elimination of isomorphism in the model search phase may not always249

be the best option.250

Invariants are widely used under different guises in many branches of mathematics. For251

example, in graph theory, node invariants can be used to help detect isomorphic graphs [15].252

Interestingly, similar ideas can be seen in Mace4’s isomorphism filters. Indeed, Mace4’s253

isofilter uses the numbers of occurrences of domain elements in the operation tables as the254

lone invariant that serves 2 purposes: First is to do quick checks for non-isomorphism, as255

models having different occurrences of domain elements cannot be isomorphic. Second is256

to guide the construction of isomorphic functions between potential isomorphic models, as257

domain elements can only map to domain elements having the same occurrences in the258

operation tables. This reduces the number of permutations to try in the search of isomorphic259

8 Filtering Isomorphic Models by Invariants4

functions. However, the lone invariant in isofilter would fail miserably if the models are260

quasigroups for which each domain element would appear the same of times in the operation261

table. To mitigate this problem, Mace4 provides another isomorphism filter, isofilter2, which262

transforms the models to their canonical forms based on the same algorithm [14] given by263

McKay as mentioned above in SEMK. Compared to isofilter, isofilter2 performs much better264

for quasigroups, but worse on other algebraic structures such as semigroups due to its high265

overheads in computing canonical forms. Nevertheless, both filters compare every model266

against the list of non-isomorphic models found so far, and hence their performances degrade267

rapidly as the number of models increases. Therefore, both filters benefit immensely from268

the reduced number of models in the blocks created by our invariant-based algorithm.269

The loops package [16] in GAP [8] uses invariant vectors of 9 invariants in many of its270

isomorphism-related functions. Like Mace4’s isofilter, it uses invariant vectors to check for271

non-isomorphism, and to help guide the construction of isomorphic function between models272

using sophisticated algorithms that take advantage of other GAP functions. Their invariant273

vectors work on only one operation table, and exploit heavily specific properties of quasigroups274

and loops, which may be ineffective in other kinds of algebras. Our invariant-based algorithm275

targets different aspects of all algebraic structures including quasigroups, semigroups, and276

more. It also works with multiple binary operations, and does not rely on any built-in277

functionality of GAP. Moreover, given a list of models to find non-isomorphic models, the278

loops package would compare the invariant vector of every model against those of the list of279

all non-isomorphic models found so far to get the list of potential isomorphic models. Our280

hash map-based organization of models eliminates the need to compare invariant vectors281

repeatedly because all models having the same invariant vectors are already grouped into282

the same block in the hash map.283

6 Future Work and Conclusions284

Currently, we only compute invariants based on binary operations, which are by far the most285

prevalent operations in algebraic structures [4]. However, unary operations are also quite286

common, and may be even less expensive to manipulate. The discriminating power of the287

invariant vectors of the model can be enhanced with the addition of invariant vectors based288

on unary operations, and will be part of our future focus.289

The results of our research open a whole new line of research into using invariant properties290

to eliminate isomorphism in finite model enumeration:291

Identify more invariant properties and the cases for which each of them may be useful.292

Allow dynamic, and preferably automatic, selection of invariant properties to use in any293

given algebraic structure because different invariants work best for different algebraic294

structures (see example in Section 3, and also Table 4), so we need to allow dynamic,295

and preferably automatic, selection of invariant properties.296

Find the best sets of invariant properties to use for various sizes and types of models. A297

larger set of algebras (usually of higher orders) may need more invariants in the invariant298

vectors to provide enough discriminating power to separate the models into smaller blocks,299

but a smaller set of algebras may incur too much overhead in computing the invariant300

vectors with many invariant properties.301

We observe that the invariant-based algorithm is efficient, scalable, and parallelizable.302

It is also compatible with most, if not all, existing finite model enumerators. The focus of303

future research will be on finding more good invariant properties, in binary and in unary304

J. Araújo, C. Chow, M. Janota 9

operations, to be used as partitioning keys, and on adding the capability of dynamic and305

automatic selection of invariant properties to use.306

References307

1 João Araújo, David Matos, and João Ramires. Axiomatic library finder. https://308

axiomaticlibraryfinder.pythonanywhere.com/definitions.309

2 Gilles Audemard and Laurent Henocque. The extended least number heuristic. In Rajeev310

Goré, Alexander Leitsch, and Tobias Nipkow, editors, Automated Reasoning, pages 427–442,311

Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.312

3 Thierry Boy de la Tour and Prakash Countcham. An isomorph-free sem-like enumeration313

of models. Electronic Notes in Theoretical Computer Science, 125(2):91–113, 2005. Proceed-314

ings of the 5th International Workshop on Strategies in Automated Deduction (Strategies315

2004). URL: https://www.sciencedirect.com/science/article/pii/S1571066105000976,316

doi:https://doi.org/10.1016/j.entcs.2005.01.003.317

4 Stanley Burris and Hanamantagouda P. Sankappanavar. A course in universal algebra,318

volume 78 of Graduate texts in mathematics. Springer, 1981.319

5 James M. Crawford, Matthew L. Ginsberg, Eugene M. Luks, and Amitabha Roy. Symmetry-320

breaking predicates for search problems. In Luigia Carlucci Aiello, Jon Doyle, and Stuart C.321

Shapiro, editors, Proceedings of the Fifth International Conference on Principles of Knowledge322

Representation and Reasoning (KR), pages 148–159. Morgan Kaufmann, 1996.323

6 A. Distler and J. Mitchell. Smallsemi, a library of small semigroups in GAP, Version 0.6.12.324

https://gap-packages.github.io/smallsemi/, 2019. GAP package.325

7 John D. Dixon and Brian Mortimer. Permutation Groups. Springer, 1996.326

8 The GAP Group. GAP – Groups, Algorithms, and Programming, Version 4.11.1, 2021. URL:327

https://www.gap-system.org.328

9 Marijn Heule, Oliver Kullmann, Siert Wieringa, and Armin Biere. Cube and conquer:329

Guiding CDCL SAT solvers by lookaheads. In Kerstin Eder, João Lourenço, and Onn330

Shehory, editors, Hardware and Software: Verification and Testing - 7th International Haifa331

Verification Conference, HVC, Revised Selected Papers, volume 7261, pages 50–65. Springer,332

2011. doi:10.1007/978-3-642-34188-5_8.333

10 Marijn J. H. Heule, Oliver Kullmann, and Victor W. Marek. Solving and verifying the334

BooleanPythagorean triples problem via cube-and-conquer. In Theory and Applications of335

Satisfiability Testing (SAT), 2016. doi:10.1007/978-3-319-40970-2_15.336

11 Xiangxue Jia and Jian Zhang. A powerful technique to eliminate isomorphism in finite model337

search. In Ulrich Furbach and Natarajan Shankar, editors, Automated Reasoning, pages338

318–331, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.339

12 David Marker. Model Theory: An Introduction. Springer, 2002.340

13 William McCune. Mace4 reference manual and guide. Technical Report Technical Memorandum341

No. 264, Argonne National Laboratory, Argonne, IL, August 2003. URL: https://www.cs.342

unm.edu/~mccune/prover9/mace4.pdf.343

14 Brendan D McKay. Isomorph-free exhaustive generation. Journal of Algorithms, 26(2):306–324,344

1998. URL: https://www.sciencedirect.com/science/article/pii/S0196677497908981,345

doi:https://doi.org/10.1006/jagm.1997.0898.346

15 Brendan D. McKay and Adolfo Piperno. Practical graph isomorphism, II. J. Symb. Comput.,347

60:94–112, 2014. doi:10.1016/j.jsc.2013.09.003.348

16 Gábor Nagy and Petr Vojtěchovský. LOOPS, computing with quasigroups and loops in GAP,349

Version 3.4.1. https://gap-packages.github.io/loops/, Nov 2018. Refereed GAP package.350

17 Neil J. A. Sloane and The OEIS Foundation Inc. The on-line encyclopedia of integer sequences,351

2020. URL: http://oeis.org/?language=english.352

18 Jian Zhang. Constructing finite algebras with FALCON. Journal of Automated Reasoning,353

17:1–22, 08 1996. doi:10.1007/BF00247667.354

https://axiomaticlibraryfinder.pythonanywhere.com/definitions
https://axiomaticlibraryfinder.pythonanywhere.com/definitions
https://axiomaticlibraryfinder.pythonanywhere.com/definitions
https://www.sciencedirect.com/science/article/pii/S1571066105000976
https://doi.org/https://doi.org/10.1016/j.entcs.2005.01.003
https://www.gap-system.org
https://doi.org/10.1007/978-3-642-34188-5_8
https://doi.org/10.1007/978-3-319-40970-2_15
https://www.cs.unm.edu/~mccune/prover9/mace4.pdf
https://www.cs.unm.edu/~mccune/prover9/mace4.pdf
https://www.cs.unm.edu/~mccune/prover9/mace4.pdf
https://www.sciencedirect.com/science/article/pii/S0196677497908981
https://doi.org/https://doi.org/10.1006/jagm.1997.0898
https://doi.org/10.1016/j.jsc.2013.09.003
http://oeis.org/?language=english
https://doi.org/10.1007/BF00247667

10 Filtering Isomorphic Models by Invariants5

19 Jian Zhang and Hantao Zhang. SEM: a system for enumerating models. In IJCAI, pages355

298–303, 1995. URL: http://ijcai.org/Proceedings/95-1/Papers/039.pdf.356

http://ijcai.org/Proceedings/95-1/Papers/039.pdf

	1 Introduction
	2 Mathematical Background
	3 Invariant-based Algorithm
	4 Experimental Results
	5 Related Work
	6 Future Work and Conclusions

