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Abstract
The paper introduces the Seesaw algorithm, which explores the Pareto frontier of two given functions.
The algorithm is complete and generalizes the well-known implicit hitting set paradigm. The
first given function determines a cost of a hitting set and is optimized by an exact solver. The
second, called the oracle function, is treated as a black-box. This approach is particularly useful
in the optimization of functions that are impossible to encode into an exact solver. We show the
effectiveness of the algorithm in the context of static solver portfolio selection.

The existing implicit hitting set paradigm is applied to cost function and an oracle predicate.
Hence, the Seesaw algorithm generalizes this by enabling the oracle to be a function. The paper
identifies two independent preconditions that guarantee the correctness of the algorithm. This opens
a number of avenues for future research into the possible instantiations of the algorithm, depending
on the cost and oracle functions used.
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1 Introduction

Given a set of constraints, solving MaxSAT means finding a subset of given constraints
under two different criteria: 1) the set must be the smallest possible 2) removing these
constraints makes the whole set satisfiable. These two criteria go against each other because
the fewer constraints we remove, the less likely we are to obtain satisfiability. In their
seminal work, Davies and Bacchus [4] observe that MaxSAT can be solved by gradually
enumerating the sets that any solution must intersect with, i.e., the solution is a hitting set
of the enumerated sets. To guarantee that the smallest possible set is found, the algorithm
only considers the smallest hitting sets. This style of solving is called the implicit hitting
set algorithm. Implicit Hitting Set solving approaches have their roots in the 1980s in the
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2 Seesaw algorithm

theory of diagnosis [32,33]. Since then, implicit hitting set solving and hitting set duality
have been successfully applied to many different problems including problems that are not
necessarily in NP [6, 8, 15–17, 26, 27, 31, 35, 38]. Implicit hitting set approaches follow the
common pattern: find a set of the minimal cost that satisfies a certain predicate. In the
case of MaxSAT, the cost is the cardinality of the removed set and the predicate is the
satisfiability of its complement.

This paper makes a crucial observation: It is possible to extend the implicit hitting set
algorithm beyond predicates.

We show that it is possible to generalize the algorithm to minimize the cost under an
objective function. We call this function the oracle function. This means that we are
facing a multi-objective optimization problem with two objectives: cost and oracle. Since
the objectives typically go against each other, it is generally impossible to point to a single
best solution. However, we focus on Pareto-optimal solutions, which are solutions where
improving either of the objectives requires worsening the other. The existing framework
defined over predicates [16,17,27, 35] is subsumed by our approach because a predicate can
be cast as a function that only returns either 0 or 1. Note that in the predicate-setting there
are at most two Pareto-optimal solutions.

Why is this generalization useful? Consider the problem of selecting a good set of solvers,
henceforth a solver-portfolio, for a given set of benchmarks. The selection of this set is guided
by two criteria:
1. The solver-portfolio must be as small as possible, i.e., we want to use the minimum

possible set of solvers.
2. The solver-portfolio’s runtime in the benchmarks must be the best possible, i.e., the

inclusion of more solvers means better runtime of the portfolio.
Again we have two optimization criteria going against each other and that is why our
framework becomes useful in this context. In practice, we are mainly interested in the best
portfolio of fixed size k; this can be tackled by the Seesaw algorithm. The fact that the
oracle function in the algorithm is treated in a black-box fashion is also important in this
context. This is because the possible ways of measuring the runtime of a solver-portfolio can
typically be complex and inconvenient, or even impossible, to encode in traditional exact
solvers within available resources. While this alone is already an important example, similar
problems often appear in practice, e.g. selecting a good set of tests for a particular software
system.

The paper has the following main contributions.
The Seesaw Algorithm is introduced, which extends the implicit hitting set paradigm
to calculate Pareto-optimal solutions over given cost and oracle functions.
Two independent preconditions for the algorithm’s correctness are identified.
The algorithm is implemented and evaluated on optimization of solver portfolios and
strategies of real-world portfolio systems.

2 Preliminaries

Standard notions and notation for propositional logic are assumed [37]. A literal is a Boolean
variable (x) or its negation (denoted ¬x); a clause is a disjunction of literals. A formula is in
conjunctive normal form (CNF) if it is a conjunction of clauses.

For a CNF ϕ a subset of its clauses ψ ⊆ ϕ is called a maximal satisfiable set (MSS) of ϕ
if ψ is satisfiable and there is no ψ′ such that ψ ⊊ ψ′ and ψ′ is satisfiable. Conversely, ψ ⊆ ϕ
is called a minimal correction set (MCS) of ϕ if ϕ∖ ψ is satisfiable and there is no ψ′ such
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that ψ′ ⊊ ψ and ϕ∖ ψ′ is satisfiable. For a CNF ϕ a subset of its clauses ψ ⊆ ϕ is called a
minimal unsatisfiable set (MUS) of ϕ if ψ is unsatisfiable and there is no ψ′ such that ψ′ ⊊ ψ

and ψ′ is unsatisfiable.
The Maximum Satisfiability (MaxSAT) problem is the task of finding the smallest possible

correction set, or, equivalently finding the largest maximum satisfiable set, of a given ϕ.

2.1 Functions and Predicates
▶ Definition 1 (monotone). A function f : 2U → R is monotone if and only if for any
S ⊆ S′ ⊆ U it holds that f(S) ≤ f(S′).

▶ Definition 2 (anti-monotone). A function f : 2U → R is anti-monotone if and only if for
any S ⊆ S′ ⊆ U it holds that f(S) ≥ f(S′).

▶ Definition 3 (strictly (anti-)monotone). A function f : 2U → R is strictly (anti-)monotone
if and only if for any S ⊊ S′ ⊆ U it holds that f(S) < f(S′). (respectively, f(S) > f(S′)).

For the purpose of this paper, we treat a predicate as a special case of a function that always
returns either 0 or 1 representing false and true, respectively. In the context of propositional
satisfiability, two predicates have special importance. Given a set of clauses S, the predicate
SAT(S) is true, if and only if S is satisfiable. Conversely, the predicate UNSAT(S) is true, if
and only if S is unsatisfiable. The predicate SAT is monotone and the predicate UNSAT is
anti-monotone, but the predicates are not strictly monotone/anti-monotone. The cardinality
function, |S| is strictly monotone.

▶ Definition 4 (Hitting sets). Let Γ ⊆ 2U be a set of sets over some universe U . A set H ⊆ U
is called a hitting set of Γ if H has a nonempty intersection with every set of Γ. We write
HS(Γ) for the set of all hitting sets of Γ.

For an objective function f : 2U → R, a hitting set is f-minimal if it minimizes f over
the set of all hitting sets.

2.2 Multi-objective Optimization
Throughout the paper we assume that any optimization function should be minimized. Under
multiple optimization criteria, Pareto optimal solutions are such that improving any criterion
means worsening some other. This idea is formalized by the following definitions.

▶ Definition 5 (dominates). Let O = {f1, . . . , fl} be a set of functions with domain D and
range R. We say that x ∈ D dominates x′ ∈ D, if and only if for all f ∈ O it holds that
f(x) ≤ f(x′), and, there exists an f ∈ O such that f(x) < f(x′). If x dominates x′, we write
x ≺ x′.

▶ Definition 6 (Pareto-optimal). Let O = {f1, . . . , fl} be a set of functions with domain D

and range R. We say that x ∈ D is Pareto optimal if and only if there does not exist any
other x′ ∈ D dominating x.

▶ Definition 7 (Pareto frontier). For some set of optimization functions O, the Pareto frontier
is the set of all Pareto-optimal individuals.

Note that even though this section refers to multi-objective optimization on a set of l
functions, in this paper we consider optimizing 2 objective functions.
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Figure 1 Phases of the seesaw movement

3 The Seesaw Algorithm

We are given two objective functions cost and oracle, denoted as g and f , respectively. Both
functions are defined over sets of sets of some universe U . We assume that we are able to
minimize the cost function g using a dedicated solver, such as MaxSAT, or Integer Linear
Programming (ILP) solver. The oracle function f is used as a black box.

The overall objective is to find the Pareto frontier of {g, f}. For this purpose we introduce
the Seesaw Algorithm. The algorithm enables exploring the Pareto frontier using the implicit
hitting set paradigm, as long as the functions fulfill certain properties, which are investigated
later on. The algorithm is any-time in the sense that it may be stopped before the whole
Pareto frontier is explored. The stopping criterion depends on the concrete problem at hand.

As a visual aid consider a seesaw where the middle is not completely rigid (Figure 1).
This means that it is sometimes possible to push down one of the ends without the other
one going immediately up. The height of each of the two ends represents the value of the
two respective objective functions. Our algorithm traces the movement of this seesaw and
we are at the liberty of stopping whenever we like.

Since the preference is to minimize both functions, we can imagine that there is a child
sitting on either of the ends being pulled down towards the optimum by gravity. The
movement is such that first there is only a child on the cost-end (g), and then someone places
a heavier child on the oracle-end (f).

Figure 1 illustrates some notable phases of the movement. In the beginning, the cost
function g is all the way down at its absolute minimum (Figure 1a). After that, the oracle
function f starts being pushed down, which eventually causes f to reach its minimum point
provided that g is maintained at its minimum (Figure 1b). This is the first Pareto-optimal
point that the algorithm visits. After this phase, the cost function g leaves the ground and
starts increasing, while the oracle function f continues to decrease. The movement terminates
once f reaches its absolute minimum, meaning the seesaw hits the ground on the right-hand
side (Figure 1c). This is the last Pareto-optimal point that the algorithm visits.

Let us look at a concrete example. Consider a MaxSAT problem defined by some
unsatisfiable CNF ϕ. The objective is to find a smallest S ⊆ ϕ such that ϕ ∖ S becomes
satisfiable. On the left-hand side of the seesaw we have the cost function g = |S|, and on the
right-hand side we have the oracle function as the unsatisfiability predicate over ϕ∖ S (i.e.,
f = UNSAT(ϕ∖ S)). This means that if the cost g is all the way down, S is necessarily the
empty set, which sends the f side to its maximum value, value 1, because UNSAT(ϕ ∖ ∅)
is true. Since the oracle f can only give two possible values (0 and 1), the initial phase
coincides with the middle phase. The last phase corresponds to the solution of the MaxSAT
problem: The unsatisfiability predicate became false and the size of S is the smallest possible
under this condition, i.e. for this problem, the solution is obtained once Phase 3 is reached.
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Algorithm 1 The Seesaw Algorithm

1 Hbest ← ⊥ // best candidate so far
2 Γ← ∅ // set of collected cores
3 while true do
4 H ← argminH∈HS(Γ)g(H) // find g-minimal hitting set
5 if H = ⊥ or stopping criterion then
6 return Hbest

7 if f(H) < f(Hbest) then // f upper bound bound improvement
8 Hbest ← H

9 Γ← Γ ∪ {extractCore(H, f(Hbest), f)} // calculate new core

Let us highlight several important properties of this concrete example. The cost-side g
of the seesaw is easy to optimize (push down), because we have good solvers to optimize
for cardinality. However, the oracle-side f represents some complex problem (satisfiability)
over which we have lesser control. We follow this pattern for the rest of the paper, the cost
function g may be optimized by a dedicated solver, e.g. MaxSAT, whereas the oracle function
f is only queried for its value in a black-box fashion. In practice, however, for concrete
applications, it of course makes sense to take advantage of whatever we know about the
problem and try to steer the algorithm towards a faster improvement of the value of the
oracle.

3.1 Formalizing the Algorithm
Algorithm 1 shows the pseudocode for the algorithm. The algorithm goes through a sequence
of sets called candidates, which determine the current values of the objectives g and f . The
essence of the algorithm is to improve the value of the oracle f while at the same time
maintaining the smallest possible cost g. This is done by adding necessary conditions for the
value of the oracle f to improve. Each of these conditions is recorded in the form of a set
called core.

Throughout the course of the algorithm, all the cores are being accumulated in the
variable Γ and the candidate is always chosen to be a hitting set of Γ. Hence, a core is
defined as a set that any candidate improving on the value of f must necessarily intersect
with, i.e., we say that the candidate “hits” all the accumulated cores.

▶ Definition 8 (core). Given an upper bound v ∈ R, a set κ ⊆ U is called a core if all
H ′ ⊆ U with f(H ′) < v intersect with κ.

In each iteration of the algorithm, first a new candidate (a hitting set of Γ) is calculated
and a new core is added by invoking a dedicated function extractCore. New candidates are
calculated by taking some g-minimal hitting set of Γ. Since this alone is NP-hard, a dedicated
solver for the task is applied.

The concrete implementation of the function extractCore depends on the task at hand.
However, two important properties need to be guaranteed by the function: 1) The returned
set must prevent the current candidate solution from being found again. 2) The returned set
must be a core. The first property guarantees termination and the second property guarantees
that the algorithm does not exclude from search any candidates that might improve on the
current value of the oracle function f .
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Let us introduce definitions formalizing these properties. For the current candidate be
excluded from further search, the set returned by extractCore must be a complement of the
current candidate; otherwise, the current candidate continues to hit all cores of Γ.

▶ Definition 9 (H-blocking set). Given H ⊆ U a set κ ⊆ U is called H-blocking if
κ ⊆ (U ∖H).

Whenever the current candidate is being blocked, we have to take some care as not to
also block future candidates that improve the value of the oracle f . How can it happen that
a future candidate is excluded from future search even if it improves on the value of f? Each
candidate is a hitting set of the current set of cores Γ and once a candidate stops being a
hitting set of Γ, immediately, any subset of the candidate also stops being a hitting set of Γ.
This is an inherent property of hitting sets and it fundamentally influences the properties
and requirements of the algorithm and therefore we note this in the following observation.

▶ Observation 10. If H is not a hitting set of some set Γ, then any subset H ′ ⊆ H is also
not a hitting set of Γ.

Due to this property of hitting sets, we may only block a candidate if we are sure that
none of its subsets improve on the value of the oracle function f . We refer to this as careful
blocking, anchored in the following definition.

▶ Definition 11 (careful blocking). Given a candidate H ⊆ U , with v = f(H), a set κ carefully
blocks H, if and only if, κ ⊆ (U ∖H) and for all H ′ ⊆ U ∖κ it holds that f(H ′) ≥ v.

▶ Observation 12. Given a candidate H ⊆ U , any set κ that carefully blocks H is a core.

To summarize the discussion so far, in each iteration of Algorithm 1 the new set added
to Γ must be chosen as a complement of the current candidate but at the same time, this
can only be done if it is guaranteed that no subset of the current candidate improves on the
value of the oracle function. In general, such a core may not exist. The following section
investigates two separate sufficient conditions for this existence.

3.2 Conditions for Careful Blocking
We identify two independent and sufficient conditions.

1. g is strictly monotone, or
2. f is anti-monotone

This means that the algorithm behaves correctly if the cost function g strictly prefers
smaller sets, or, if the oracle function f prefers larger sets (non-strictly). We remark that
Saikko et al. [35] only identifies the first of the two conditions in the context of oracles being
predicates; since our framework is more general, both conditions apply also to predicates.

While either of the condition is sufficient, both may hold in some instantiations of the
framework. For instance, in the case of MaxSAT, the function |H| is strictly monotone, and
UNSAT(ϕ∖H) is anti-monotone.

In contrast, let us consider the task of finding an unsatisfiable set of some fixed cardinality
k ∈ N. This implies minimizing the cost function g(H) ≜ (k ̸= |H|) (effectively maximizing
k = |H|). The oracle function is SAT(H) (effectively maximizing UNSAT(H)). In this
situation, the cost function (predicate) is neither monotone nor anti-monotone, whereas the
oracle function is anti-monotone.
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Under either of the conditions, the weakest possible way of extracting cores is to calculate
the complement of the current candidate hitting set, i.e.,

extractCorew(H, v, f) ≜ U ∖H

Such a set is blocking the candidate H and we will also see that it is blocking the candidate
carefully (Definition 11) whenever either of the two above conditions is satisfied. However,
this default version of core extraction is way too weak since it effectively enumerates all
possible sets. In the case of anti-monotone oracles, we show that we can significantly improve
on that. Let us now look at these two conditions separately.

3.2.1 Strictly monotone cost g

▶ Proposition 13. If g is strictly monotone and H is some candidate calculated throughout
the course of the algorithm as a hitting set of Γ. Then any H ′ ⊊ H is not a hitting set of Γ.

Proof. By contradiction assume that H ′ is a hitting set of Γ. Since g is strictly monotone,
g(H ′) < g(H), which is a contradiction because H is a g-minimal hitting set of Γ. ◀

▶ Corollary 14. If g is strictly monotone, then any H can be carefully blocked.

We observe that the requirement of strict monotonicity is tight. The requirement of g
being monotone does not constitute a sufficient condition as shown by the following example.

▶ Example 15. Let U = {a} and f(∅) = 1, f({a}) = 3. Let g be constantly 0. Hence, both
g and f are monotone. Since the algorithm may choose the first candidate arbitrarily, let us
assume that it is {a}, the complement of which is the empty set and therefore the algorithm
terminates even though the optimum of g has not been reached.

3.2.2 Anti-Monotone oracle f

For an anti-monotone f core extraction extractCoream is calculated as follows:

1. Non-deterministically choose H ′ a subset-maximal such that H ⊆ H ′ and f(H ′) ≥ v
2. return κ ≜ U ∖H ′.

To calculate subset maximal H ′ we refer to the monotone predicates framework [34].

▶ Proposition 16. Let f be anti-monotone and κ ≜ extractCoream(H, v, f). Then κ carefully
blocks H.

Proof. Since f is anti-monotone, any subset of D ⊆ H ′ will either have the same value of
f or worse. Hence, it cannot possibly improve f . This means that any solution strictly
improving f is not be a subset of H ′, i.e. it must have an intersection with U ∖H ′. ◀

▶ Corollary 17. If f is anti-monotone, then any H can be carefully blocked for any given
upper bound v.



8 Seesaw algorithm

f

g

infeasible

not visited
limbo candidate
candidate
Pareto-optimal

limbo

H1H2H3

H4
H5

H6

H7H8

H9

Figure 2 Behavior of the algorithm with respect to the Pareto frontier

3.3 Properties
Figure 2 illustrates how the algorithm behaves in relation to the Pareto frontier of the two
functions g and f . Most notably, the algorithm visits all the Pareto-optimal points in the
order of the g function. However, some non-Pareto points may be visited in between. After
the search has reached the optimal value of the oracle function, there are no guarantees on
the obtained values. All candidates obtained after this stage are said to be in limbo. Ideally,
we stop the algorithm before this stage, i.e., ideally, the limbo is empty.

Let us highlight some important properties of Figure 2. It starts with g being at the
absolute minimum and f at some arbitrary value. After two iterations the first Pareto-optimal
point is reached, where f is optimal under the condition that the cost is still minimal. Once
the cost worsens, the process starts again, by looking for the next Pareto-optimal point with
the smallest cost.

A special situation arises when the absolute minimum of f has been reached in the eighth
iteration. In terms of the seesaw paradigm, this means that the oracle-end of the seesaw has
hit the ground. After this happens, all bets are off because there are no more candidates
that could possibly improve on the value of the oracle function. This means that in fact,
any core is valid at this point. In particular, the algorithm may add the empty core and
immediately terminate. However, for general implementation of the function extractCore,
we do not know if such property is guaranteed. Hence, the algorithm may hopelessly try
to improve on the best possible value until it runs out of possible candidates (candidates
must necessarily run out because the space is finite). We show that for core extraction
extractCoream, for anti-monotone oracle, the limbo is empty.

In the remainder of the section we focus on proving these properties. The first observation
that we make is that the value of g cannot possibly improve over time because the set of
possible hitting sets gradually diminishes. This means that the value of g criterion behaves
anti-monotonically even if the function itself is not.

▶ Proposition 18 (worsening of g). Let H,H ′ be two candidates so that H was found in an
earlier iteration than H ′. Then, g(H ′) ≥ g(H).

Proof. Let Γ,Γ′ be the sets of cores used to calculate H,H ′, respectively. Since Γ only
grows over time, the set of possible hitting sets of Γ only diminishes. More precisely,
since Γ ⊊ Γ′, it must necessarily hold that HS(Γ′) ⊆ HS(Γ). From which, necessarily,
ming(HS(Γ′)) ≥ ming(HS(Γ)). ◀
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▶ Proposition 19. The Seesaw algorithm visits all the Pareto-optimal points of {g, f}.
Further, the points are visited in the increasing value of the function g.

Proof sketch. Let P be the set of all Pareto-optimal points that have not yet been visited
and let HP be the most recent Pareto-optimal point found. By induction we show that all
elements of P are hitting sets of the current Γ and we have g(H ′

P ) > g(HP ) for all H ′
P ∈ P.

The hypothesis is trivially true at the beginning because Γ is empty.
From the induction hypothesis and Proposition 18, all the points in P have a larger or

equal value of g than g(HP ). Consequently, they also have a lower value of f as otherwise
they would be dominated by HP , i.e., we have g(H ′

P ) > g(HP ), f(H ′
P ) < f(HP ) for H ′

P ∈ P .
Since the algorithm only carefully blocks candidates (Definition 11), none of the hitting sets
from P will be blocked from future search unless visited. Since candidates are always chosen
to be g-minimal, the point from P to be first visited must be the one with the lowest value
of g. ◀

▶ Proposition 20. For anti-monotone f and extractCoream defined as above, there are no
candidates in limbo.

Proof. Let H be such that the value of f reached its maximum, meaning that f(H) ≤ f(H ′)
for any f(H ′). The procedure extractCoream goes on adding elements to H while the value of
f does not improve but that never happens and therefore the procedure results in calculating
H ′ as U , whose complement is the empty core. Once the empty core is added to Γ, the
algorithm terminates because there are no more hitting sets. ◀

4 Experimental Evaluation

The presented Seesaw algorithm is particularly suitable for problems where the optimization
function (oracle) is difficult to encode into an exact optimization solver. The problem we
choose here is the selection of a portfolio of solvers, or configurations of solvers, out of a
large set. There exist approaches that apply machine learning to predict the best solver, or a
collection of solvers, per instance, e.g., SATzilla [42] or CPHydra [29], cf. [24]. In practice,
however, solvers often employ a static portfolio and this is also the setting we consider for
our experimental evaluation.

The problem is specified as a set of solvers U = S1, . . . , Sn and a set of instances I on
which the solvers were run. For an instance i ∈ I, we write S(i) for the runtime of the solver
S on this instance. If the solver does not solve the instance, S(i) is some fixed penalty. In
competitions, the penalty is typically chosen according to the PAR2 definition, which gives a
constant penalty equal to the double of the time limit [1]. We refer to the sum of the values
S(i) across all instances as the PAR2 score of the solver. The aim is to calculate a subset
of the solvers so that their PAR2 score is the smallest, when the solvers are run in parallel.
More specifically, for a set of solvers H ⊆ U the oracle value is defined as follows.

∑
i∈I

min
S∈H

S(i) (1)

The oracle function is anti-monotone. Indeed, since solvers are run in parallel, when a
new solver is added, the total score can only decrease or remain the same. The problem is
a generalization of the classical set-cover problem [9]. For the cost function, there are two
natural choices.
1. Define cost as the cardinality of the candidate, i.e., g(H) ≜ |H|.
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Figure 3 Pairs of values of g, f , for the SMT data set outlining a portion of the Pareto front.

2. Define cost as the predicate |H| = k for some fixed integer k ∈ 1..| U |,
i.e., g(H) ≜ (1 if |H| = k else 0).

In the case of cost function 1, the algorithm will explore all the Pareto front, given enough
resources (see Figure 2). In the case of cost function 2, the algorithm will search for the
optimal portfolio of cardinality k with respect to the PAR2 score as defined by equation (1).

Experimental Data
We use two data sets kindly provided by researchers in the corresponding field. The first
is collected when exploring strategies for quantifier handling in the satisfiability modulo
theories (SMT) solver CVC4 [2]. This exploration is motivated by the search for a set of
strategies that the solver is to use in the SMT competition. This data set counts 50 different
solvers and 75815 instances. We call this the SMT dataset.

The second data set is from the research on automated theorem provers (ATP), where
a large body of strategies was considered. These were collected as follows. The various
E Prover [36] configurations were invented specifically for first-order translation of Mizar
Mathematical Library [41] by various methods. Specifically, they come: (1) from the E’s
auto-schedule mode, (2) from the system BliStrTune [19] for targeted invention of theorem
proving strategies, and finally (3) from various experiments with clause selection guidance
system ENIGMA [18, 20] which is based on machine learning. This data set counts 156
different solvers and 57880 instances. We call this the ATP dataset.

Observe that both data sets have a large number of instances, which incurs a large
encoding of the oracle function if encoded explicitly. However, in the Seesaw framework, the
function is only calculated on demand programmatically.

Evaluation
We have implemented Seesaw (Algorithm 1) in C++, using the Gurobi [11] solver to solve
the integer linear programming subproblems. We considered two versions of the algorithm,
in one of the versions Gurobi is used incrementally and in the other non-incrementally,
which means all constraints need to be reloaded each time the solver is called. We also
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(a) Portfolio size 7, i.e. k = 7.
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(b) Portfolio size 16, i.e. k = 16.
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(c) Portfolio size 39, i.e. k = 39.
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(d) Portfolio size 78, i.e. k = 78.

Figure 4 Example runs of the Seesaw algorithm for fixed portfolio size for the ATP data set.

implemented a brute-force solution of the problem, which simply enumerates all possible
subsets of cardinality k. Further, we implemented a direct encoding into Gurobi. However,
the direct encoding into Gurobi reached memory limit in all the benchmarks and therefore
was not able to solve any of the considered problems.

As an additional optimization, when minimizing cores, we shuffle the elements randomly
as to increase diversity in cores and therefore increase the size of the minimal hitting set.
All the experiments were performed on servers with Intel(R) Xeon(R) CPU at 2.60GHz, 24
cores, 64GB RAM.

We first consider the setting where the cost function is simply the cardinality of the
selected portfolio, for the first data set (SMT). The algorithm was run for 5 hours, and the
worst cost reached was 7, i.e., the algorithm found all Pareto optimal points for cardinality 1..7.
The run of Seesaw is plotted in Figure 3. Each pair cost (g), oracle (f) is represented by a
point. Points marked with a star in dark red, correspond to Pareto points; Pareto sub-optimal
points are rendered as green circles. The faded grey line, connects the points by the order in
which the points are discovered (starting with a point in bottom, and stops in a point in the
upper side of the plot). Observe that this figure is analogous to Figure 2.

We consider the ATP data set for fixed cardinality of the portfolio. The time limit for
the algorithm was set to 600 seconds.

Since we were only able to prove optimal values for cardinalities 2 and 3, we focus here on
the best value obtained by the different approaches. Figures 4a–4d show the evolution of the
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Table 1 Best values achieved on samples of ATP for different cardinalities.

sample cardinality (k) seesaw-no-incr seesaw-incr brute-force

1 k = 5 2814287 2814191 2822009
1 k = 13 2764882 2764196 2760229
1 k = 25 2735018 2740535 2738386
2 k = 5 2821306 2823459 2824569
2 k = 13 2765332 2763383 2771172
2 k = 25 2730132 2729146 2732681
3 k = 5 2818798 2818174 2819918
3 k = 13 2765479 2763187 2767774
3 k = 25 2730116 2732724 2728360
4 k = 5 2827634 2830806 2825306
4 k = 13 2773371 2768368 2774381
4 k = 25 2737996 2738524 2745392
5 k = 5 2827598 2823750 2833257
5 k = 13 2756893 2763900 2775798
5 k = 25 2732700 2732124 2738979

objective value in time for 4 different cardinalities of the portfolio (7 ≈ 5%| U |, 16 ≈ 10%| U |,
39 ≈ 25%| U |, 78 ≈ 50%| U |). The red dashed line delimits the best value achieved amongst
the solvers.

First thing to observe is that there is a tendency of finding a good solution at the beginning
and only improve it a little bit in the long run. From an user perspective, it means that
running the algorithm longer has drastically diminishing returns.

This is quite noticeable in k = 78, where none of the approaches is able to improve on
the value found in the first 2 minutes. Even though the non-incremental version spends
much more time on reloading the constraints into Gurobi, it is not necessarily worse (see for
instance k = 39). This suggests that the right choice of cores is the crucial ingredient in the
algorithm. Indeed, in the case of k = 78, the incremental version found a better solution in
the first 50 iterations then the non-incremental version after 5000 iterations.

In k = 7 and k = 16 all the approaches are gravitating to the same value and therefore
it is possible that we are getting close to the optimal value. However, proving that the
value is optimal appears to be extremely hard. Note that already

(156
16

)
≈ 3 × 1021 and(156

78
)
≈ 6× 1045.

To complement these results, we also sample the ATP dataset into 5 different subsets
of size 50. The obtained results are presented in Table 1. For each considered sample and
cardinality of the portfolio, the table shows the best value found by the different approaches.
In the majority of cases, the Seesaw algorithm finds the best value. However, in some cases
it is outperformed by brute-force. This can be explained by the fact that brute-force is able
to explore much more many candidates and in some cases it may hit a good one by chance.
This suggests that it would be beneficial to design a hybrid approach in order to preserve
the intelligence of Seesaw but also cover more ground.
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5 Related Work

5.1 Implicit Hitting sets
The implicit hitting set (IHS) approach has been successfully used in the highly competitive
MaxSAT solver MaxHS [4,5]. The idea here stems from the fact that any minimal correction
set is a hitting set of all MUSes. Hence, if we enumerated all MUSes, the smallest corrections
set would be obtained by calculating the minimum hitting set of those. However, the number
of MUSes may be exponential and therefore rather than enumerating all of them, MaxHS
enumerates them one by one and it tests whether a correction set is obtained by picking one
of the minimum hitting sets of the MUSes enumerated so far.

From the point of view of complexity theory, solving the minimum hitting set problem
(MHSP) is as difficult as solving MaxSAT. However, in practice, it has been observed that
state-of-the-art integer linear programming solvers perform well on MHSP. This is supported
by theoretical results that show that MHSP is intractable for propositional resolution [23].

Moreno-Centeno and Karp introduce a general framework for solving NP-complete
problems by the implicit hitting set paradigm and apply it to a number of problems [27].
Saikko et al. extend this framework further and observe that it is not limited to problems in
NP [35]. In both aforementioned frameworks, the search for the minimal hitting set is guided
by an oracle predicate, which effectively determines if the search should stop. The framework
presented here generalizes all of the above by considering an oracle function rather than just
a predicate. Predicates are seen as functions that either return 0 or 1. We further generalize
the precondition of the algorithm by demonstrating that the algorithm does not require the
cost function to be strictly monotone, as required by Saikko et al., as long as the oracle
predicate/function is anti-monotone.

There is a large body of research on the use of oracles and problem decomposition. We
highlight the most relevant works. The IHS-based approaches bear similarity with the
Bender’s decomposition [3] in the sense that the problem is decomposed in two different
functions. Moreover, Bender’s decomposition is not restricted to linear programming and it
has been generalized to other optimization problems [10,12]. Monotone predicates play a
special role in our framework, which have been studied extensively in the context of SAT [34].
Our generalization of the IHS paradigm is analogous to the generalization of decision problems
to function problems, such as NP to FNP [30]. Nadel employs SAT solver as an oracle in
approximate optimization, similar to Walk-SAT but using SAT in each step [28].

5.2 Quantified Boolean Formulas (QBF)
In parallel to IHS, similar approaches were developed in QBF based on the AReQS
paradigm [21, 22], which was further extended to QBF under optimization [14, 17]. It
can be shown that this approach in fact reduces to IHS for certain QBF problems.

For illustration, consider the smallest MUS problem. The problem is specified by a set of
clauses C1, . . . , Cn on variables from some set X. The QBF formulation introduces selector
variables s1, . . . , sn and the formula ∃s1, . . . , sn∀X

∨
i∈[n](si ∧ ¬Ci). The formula expresses

that there is a selection of clauses, determined by the selector variables, so that for any
assignment to the X variables there is at least one clause that is falsified.

The task is to find a satisfying assignment for this QBF that sets to true the fewest selector
variables. In the optimization AReQS paradigm, the solver collects assignments to X, each of
these assignments is substituted into the formula, which results in the disjunction of selector
variables of falsified clauses. Minimization is then performed gradually on the set of these
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disjunctions, which in fact correspond to cores in IHS. This was observed by Ignatiev et al.,
who carefully implement a specialized algorithm for the smallest MUS problem [16].

5.3 Multi-Objective Optimization

A large body of work exists on Multi-Objective Combinatorial Optimization (MOCO) and
Multi-Objective Mathematical Programming (MOMP) [13,40]. Multi-objective optimization
is typically concerned with different strategies of navigating the Pareto frontier based on
user preferences. In our setting, the way the Pareto frontier is navigated is implicit since we
treat the oracle function in a black-box fashion.

Multi-objective optimization has also been studied in the context of SAT. Dedicated
algorithms exist for solving MaxSAT under lexicographic preferences [25]. Pareto frontier
has been explored by calculating minimal correction sets (MCSes) [39]. These approaches,
however, are not immediately applicable if the functions are not encodable as propositional
constraints.

A large body of work exists on the invention of good solver portfolios. These techniques
rely on the combination of machine learning and constraints solving [24].

6 Conclusions and Future Work

The paper introduces and studies the Seesaw algorithm, which enables exploring the Pareto
frontier using the implicit hitting set paradigm. The main strength of the algorithm is that
it enables combining exact and black-box optimization. The algorithm receives as input two
functions (cost and oracle), where cost is optimized exactly by a dedicated solver (e.g. ILP,
MaxSAT), whereas the oracle is used in a black-box fashion.

The algorithm generalizes the existing implicit hitting set paradigm on predicates to
functions. Implicit hitting sets on predicates were extensively studied in the last decade [4,
14, 16, 27, 35]. Interestingly, the framework is known to be applicable in problems that go
beyond NP, which immediately implies that Seesaw algorithm also goes beyond NP; it is an
open question of how to precisely characterize the complexity of the algorithm depending on
the oracle used.

In our implementation we have used the commercial Gurobi solver [11]; in the future we
aim to evaluate a larger set of solvers, such as MaxSAT or modern pseudo-Boolean solvers [7].

The novel Seesaw framework opens a number of opportunities for exact specialized
optimization in various domains. We have demonstrated that the framework is readily usable
in the context of optimizing solver portfolios and strategies. Furthermore, we aim to apply
the algorithm to systematically explore the efficiency of test-quality measures.
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