
Symmetries for Cube-and-conquer1

in Finite Model Finding2

João Araújo Ï3

Universidade Nova de Lisboa, Lisbon, Portugal4

Choiwah Chow !5

Universidade Aberta, Lisbon, Portugal6

Mikoláš Janota !Ï7

Czech Technical University in Prague, Czechia8

Abstract9

The cube-and-conquer paradigm enables massive parallelization of SAT solvers, which has proven10

to be crucial in solving highly combinatorial problems. In this paper, we apply the paradigm in11

the context of finite model finding, where we show that isomorphic cubes can be discarded since12

they lead to isomorphic models. However, we are faced with the complication that a well-known13

technique, the Least Number Heuristic (LNH), already exists in finite model finders to effectively14

prune (some) isomorphic models from the search. Therefore, it needs to be shown that isomorphic15

cubes still can be discarded when the LNH is used. The presented ideas are incorporated into the16

finite model finder Mace4, where we demonstrate significant improvements in model enumeration.17

2012 ACM Subject Classification Computing methodologies; Theory of computation → Constraint18

and logic programming19

Keywords and phrases finite model enumeration, cube-and-conquer, symmetry-breaking, parallel20

algorithm, least number heuristic21

Digital Object Identifier 10.4230/LIPIcs.CP.2023.122

Funding João Araújo: Fundação para a Ciência e a Tecnologia, through the projects UIDB/00297-23

/2020 (CMA), PTDC/MAT-PUR/31174/2017, UIDB/04621/2020 and UIDP/04621/2020.24

Mikoláš Janota: The results were supported by the Ministry of Education, Youth and Sports within25

the dedicated program ERC CZ under the project POSTMAN no. LL1902. This article is part of26

the RICAIP project that has received funding from the European Union’s Horizon 2020 research27

and innovation programme under grant agreement No 857306.28

1 Introduction29

An important tool that working algebraists need in their research is libraries of the algebras30

they are interested in. These libraries allow them to get intuitions, test or refute hypotheses31

and conjectures, and gain insights into the properties of the algebras (see examples on p. 289132

of [30]). Many libraries of algebraic models of small orders, such as the smallsemi package [14]33

for semigroups and the loops package [36] for quasigroups, are available in the GAP [16]34

system. A lot more such libraries are needed, but they often take an inordinate amount of35

time and computing resources to generate.36

First-order logic (FOL) has been the most popular language to define algebras. There are37

two major resource-intensive steps in generating non-isomorphic models from FOL [27]. The38

first step is to generate models according to the laws specified by the FOL formula. This39

step often generates a huge number of isomorphic models. For example, given the first-order40

formula for semigroups, which is (x ∗ y) ∗ z = x ∗ (y ∗ z), Mace4 [35] generates 1,021,120,19841

models of order 7, out of which only 1,627,672 (≈ 0.16%) [44] are pairwise non-isomorphic.42

The second step is to eliminate the isomorphic models generated in the first step. In this43

© João Araújo, Choiwah Chow, and Mikoláš Janota;
licensed under Creative Commons License CC-BY 4.0

29th International Conference on Principles and Practice of Constraint Programming (CP 2023).
Editor: Roland H. C. Yap; Article No. 1; pp. 1:1–1:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://docentes.fct.unl.pt/jj-araujo
https://orcid.org/0000-0001-6655-2172
mailto:1702603@estudante.uab.pt
https://orcid.org/0000-0002-2067-0568
mailto:mikolas.janota@cvut.cz
http://people.ciirc.cvut.cz/~janotmik/
https://orcid.org/0000-0003-3487-784X
https://doi.org/10.4230/LIPIcs.CP.2023.1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

1:2 Symmetries for Cube-and-conquer in Finite Model Finding

paper, we propose a novel efficient and scalable parallel algorithm that not only speeds up44

the first step but also generates fewer isomorphic models. Suppressing the generation of45

isomorphic models in the first step reduces the workloads of both the first and the second46

steps. Not only does it make the whole process much faster, but the required computing47

resources (disk space, etc.) are also reduced.48

While modern-day general-purpose computers are predominantly multi-core, harnessing49

parallelism for combinatorial search is surprisingly difficult. Consequently, there are few50

parallel algorithms in constraints programming in general, and in finite model enumeration51

in particular. Indeed, in satisfiability modulo theories (SMT), even negative results are52

concluded for cube-and-conquer [23]. A recent literature review concludes that “there is little53

overall guidance that can be given on how best to exploit multi-core computers to speed up54

constraint solving” [18]. We aim to help close this gap by devising new parallel algorithms55

for finite model enumeration.56

This paper advances finite model enumerators toward the following two objectives:57

1. Mathematicians can use the tool to quickly generate all models (up to isomorphism) of58

the classes of algebras of their interests on their multi-core computers.59

2. The tool can also take advantage of massively parallel computing architectures to pre-60

generate models (up to isomorphism) of the classes of algebras of general interest.61

We find inspiration in the well-established cube-and-conquer approach introduced for62

SAT [20]. In SAT this means splitting the search space by mutually exclusive conjunctions of63

propositional literals (cubes). In the context of finite model finding, the structure is richer—a64

decision of the solver corresponds to inserting a point into the graph of one of the considered65

functions, e.g., f(0, 1) = 3. We comment on cube-and-conquer in more detail in Section 6.66

We show that a cube can be excluded from the search if it is isomorphic to an existing one.67

Effectively, this is breaking symmetries in the search space. However, the task is nontrivial68

because finite model finders already contain a technique, called the least number heuristic69

(LNH), to exclude some isomorphic models. The LNH1 enables the solver to consider only70

certain values from the co-domain for a given decision point. Therefore, we show that71

isomorphic cubes can be pruned in the presence of the LNH. Like so, we can take advantage72

of the two powerful and complementary techniques and ultimately suppress the generation73

of a large number of isomorphic models.74

This paper’s contributions are the following:75

1. Devise a low runtime overhead parallel algorithm based on the cube-and-conquer approach76

for finite model enumeration. This scalable algorithm divides finite model enumeration77

into many independent non-overlapping search jobs to make full use of the available78

resources.79

2. We show that isomorphic cubes can be discarded without losing isomorphic models even80

in the presence of the well established symmetry breaking technique already present in81

finite model finders—the least number heuristic (LNH).82

3. We extend the model finder Mace4 with the proposed techniques and evaluate it on a83

large number of problems, where significant speed-up is observed.84

1 Despite the technique being called a heuristic, it does not sacrifice the completeness of the solver.

J. Araújo et al. 1:3

2 Preliminaries85

Familiarity with the general notions of abstract algebra such as groups, semigroups, and86

quasigroups is assumed, and so is general knowledge about functions and isomorphisms. A87

good reference is Chapters 2 and 5 of [9].88

In this paper, the domain of the search space is denoted by the set D = {0, . . . , n− 1},89

where n ≥ 2, That is, we exclude the trivial case of searching on domains of size 1.90

Let π denote an arbitrary permutation on D, πid denote the identity permutation, and91

π(a,b) denote the permutation cycle (a, b). For example, π(0,1) is the permutation cycle (0, 1).92

2.1 Finite Model Enumeration93

For a signature Σ and a FOL formula F on Σ, a traditional finite model finder first expands94

the FOL formula to its ground representation by its domain elements in D, then searches for95

models by backtracking to exhaustively explore the search space [49]. The domain elements96

in D are seen as special constants not appearing in the original F , c.f. [40].97

Following the terminology of [49], a value assignment (VA) clause is a term f(a1, . . . , ak) =98

v, where f is a k-ary function symbol in Σ and aj , v ∈ D. We refer to the term f(a1, . . . , ak)99

as the cell term (or simply cell) since conceptually the search fills the operation table of f .100

To search for finite models in F , the finite model finder employs a cell selection strategy101

to pick cell terms successively, without duplicates, to assign values from D to form VA102

clauses. If a newly formed VA clause causes any failure in the axioms in F , then a new103

value will be tried for that cell term. If no value can be assigned to that cell term without104

failing the axioms in F , then the model finder backtracks to the previous cell term to try to105

assign another value to it. When all cell terms in F are assigned values without violating106

the axioms in F , a model, as represented by its VA clauses, is found. After a model is found,107

the process can continue with backtracking to find more models.108

A set of models can be partitioned into equivalence classes by isomorphisms. Intuitively,109

a model can be transformed into any other model in the same equivalence class by renaming110

its domain elements. Two models are said to be isomorphic to each other if an isomorphism111

exists from one model to the other.112

The search space can be organized as a search tree in which nodes are VA clauses and113

edges join successive nodes with cell terms in the search order. The root node is an empty114

VA clause. The cell term in each node is selected by the cell selection strategy. A search path115

in a search tree is a path from the root to a node in the search tree. It can be represented by116

a sequence of VA clauses 〈t0 = v0; t1 = v1; · · ·〉, where ti is the cell term in the ith position117

of the sequence and vi ∈ D, and ti 6= tj when i 6= j. Furthermore, a search path will be118

terminated at the first VA clause that results in a violation of any axiom of F .119

If the length of a search path is the same as the total number of cell terms in F , then it is120

a complete search path and its VA clauses represent a model. Otherwise, it is an incomplete121

search path representing partial assignments of cell values in F .122

The backtracking algorithm in its simplest form is to try every possible value assignment123

for every cell. For example, to search an FOL formula F with just one binary operation,124

there are nn2 possible combinations (n2 cells with n possible values each). Even the very125

small domain size of 4 gives over 4 billion combinations of cell values. However, in practice,126

the number of viable combinations to check is much smaller than the theoretically maximum127

number because of the constraints imposed by F . Furthermore, a finite model finder may128

infer new VA clauses from existing ones by propagation.129

CP 2023

1:4 Symmetries for Cube-and-conquer in Finite Model Finding

I Example 1. Suppose the FOL formula contains only the equation f(x, y) = f(y, x), that130

is, the operation f is commutative. After the assignment f(0, 1) = 0, the finite model finder131

can infer f(1, 0) = 0. This is referred to as positive propagation.132

On the other hand, if the FOL formula contains the inequality f(x, y) 6= f(y, x), then133

after the assignment f(0, 1) = 0, the finite model finder can exclude 0 from the list of possible134

values for the cell f(1, 0). This is referred to as negative propagation. J135

2.2 Least Number Heuristic136

The least number heuristic (LNH) [4, 50, 51] is a very effective symmetry-breaking algorithm137

widely implemented in model finders/enumerators such as Mace4. The main idea of the LNH138

is that all domain elements that have not yet appeared in any VA clauses and the current139

cell term in the search are indistinguishable to each other and therefore only one of them,140

say, the smallest one, needs to be considered in a cell value assignment.141

To ease discussions of the LNH, we introduce the notation Vals(P) to denote the set of all142

domain elements appearing in P , where P can be a search path, a VA clause, or a cell term.143

I Example 2. For the cell term f(1, 1): Vals(f(1, 1)) = {1}. For the VA clause f(1, 1) = 0:144

Vals(f(1, 1) = 0) = {0, 1}. For the partial search path S = 〈f(0, 0) = 0; f(1, 1) = 0〉:145

Vals(S) = {0, 1}. J146

The LNH can now be stated precisely: In adding a VA clause, t = v, to extend a search147

path S, the possible choices of v allowed under the LNH are Vals(S)∪Vals(t)∪{s} where s is148

the smallest domain element in D\(Vals(S)∪Vals(t)), and they are D if Vals(S)∪Vals(t) = D.149

Strictly speaking, it is not necessary to set s to be the smallest domain element not seen150

so far, it could as well be the biggest one, for example. But the rule to set s must be151

unambiguous - only one value is consistently picked by the rule each time. In this paper, we152

always set s to be the the smallest domain element not seen so far.153

Furthermore, we say a search path is LNH-compliant if it respects the LNH restrictions154

on the choices of values assigned to its VA clauses.155

I Example 3. Suppose the domain size, |D|, is 4. Then the complete search path 〈f(1) =156

0; f(0) = 3; f(3) = 1; f(2) = 1〉 is not LNH-compliant.157

For the first VA clause in the search path, S = ∅ and t = f(1). So, Vals(S) ∪Vals(t) =158

∅ ∪ {1} = {1}, and therefore D \ (Vals(S)∪Vals(t)) = {0, 2, 3}. Thus, s = min({0, 2, 3}) = 0.159

The LNH limits the choices of the value for f(1) to Vals(S) ∪ Vals(t) ∪ {s} = {0, 1}. So160

the first VA clause f(1) = 0 is LNH-compliant. However, for the second VA clause in the161

search path, S = {f(1) = 0} and t = f(0). So, Vals(S) ∪Vals(t) = {0, 1} ∪ {0} = {0, 1}, and162

therefore D \ (Vals(S) ∪Vals(t)) = {2, 3}. Thus, s = min({2, 3}) = 2. The LNH limits the163

choices of the value for f(0) to Vals(S) ∪Vals(t) ∪ {s} = {0, 1, 2}, so f(0) = 3 is not allowed164

under the LNH. Therefore, the whole search path is not LNH-compliant. J165

The LNH does not impose any restrictions on the order of the cell terms in the search166

path2. It speeds up the search by limiting the choices of the values for the cell terms.167

Therefore, its effectiveness decreases with the increase in the length of the search path as168

more domain elements are used when more VA clauses are added to the search path.169

2 In practice, a number called the maximal designated number (mdn) is often used to partition the domain
into 2 subsets so that {0, . . . ,mdn} are domain elements already seen, and {mdn + 1, . . . , n− 1} are
domain elements not seen so far [49]. In this case, cell selection strategies that keep the mdn small are
preferred because the search tree will be kept narrower.

J. Araújo et al. 1:5

I Example 4. The concentric cell selection strategy is a simple cell selection strategy to170

minimize the growth of choices of values in the finite model search with the LNH. This171

strategy picks the cell f(a0, . . . , ak−1) with the least r = max(a0, . . . , ak−1) from all available172

cells. Any fixed tie-breaker can be used in case of a tie. For example, one of the possible173

orders of the cells by this cell selection strategy for a binary operation is f(a0, a1) < f(b0, b1)174

if a0 = a1 ∨ a0 + a1 < b0 + b1 ∨ (a0 + a1 = b0 + b1 ∧ a0 < b0). This gives the sequence f(0, 0),175

f(1, 1), f(0, 1), f(1, 0), f(2, 2), f(0, 2), f(2, 0), f(2, 1), f(1, 2), f(3, 3) J176

2.3 Cube177

A cube is a prefix of a search path, and as such, it can be specified by a sequence of VA178

clauses. Permutations and isomorphisms can be applied to a cube by applying them to179

its VA clauses. Specifically, if π is a permutation on D and B is a cube, then π(B) :=180

{f(π(a1), . . . , π(ak)) = π(v) | f(a1, . . . , ak) = v is a VA clause in B}. Observe that πid(B)181

is the (unordered) set of all individual VA clauses in the cube B.182

Note that predicates in an FOL formula can be implemented as functions with two values,183

T (true) and F (false), which do not affect the LNH because they are not domain elements.184

For convenience, we consider I(T) = T and I(F) = F for any isomorphism I so that the185

same terminology is used for both relations and functions.186

Cubes are said to be isomorphic if their VA clauses are isomorphic. In particular, two187

cubes B0 and B1 are isomorphic if there is a permutation π on D such that π(B0) = πid(B1).188

189

I Example 5. If B0 = 〈f(0) = 0; g(0, 0) = 0; f(1) = 0; g(1, 1) = 0〉 and B1 = 〈f(0) =190

1; g(0, 0) = 1; f(1) = 1; g(1, 1) = 1〉, then B0 and B1 are isomorphic because π(0,1)(B0) =191

{f(1) = 1, g(1, 1) = 1, f(0) = 1, g(0, 0) = 1} = πid(B1). J192

3 Isomorphic Cubes Redundancy193

The main objective of this section is to show that isomorphic cubes can be removed from194

the search. More formally, if cubes B0 and B1 are isomorphic, then it is sufficient to explore195

assignments extending B0 and ignore all assignments extending B1. We need to prove that196

any model lost by discarding B1 must necessarily be isomorphic to some model obtained197

from extending B0 under the LNH. This statement is intuitive, but the proof requires some198

care as effectively, we are dealing with a combination of two symmetry-breaking techniques:199

LNH and isomorphic cube pruning, under an arbitrary search strategy.200

As a motivational example, consider the cube 〈f(0, 0) = 0〉, which states that f is201

idempotent in 0. But because 0 does not appear in the original FOL formula, intuitively, the202

constant 0 cannot play a special role in the formula. Consequently, this cube searches all203

interpretations of f that have at least one idempotent. For instance, the cube 〈f(1, 1) = 1〉204

will search the same interpretations, up to isomorphism. Now, we need to show this property205

formally and that it holds when the solver searches with the LNH restriction.206

The key idea of the proof is that given a model B1 with VA clauses A, any cube that is207

isomorphic to a subset of A can be gradually extended to be a model isomorphic to B1. Each208

extension step of the cube must uphold the following properties: (1) The cube is isomorphic209

to some subset of A. (2) The cube is LNH-compliant. The extension step is illustrated210

in Figure 1. We are given a cube B0 that is isomorphic to an A0 ⊆ A. When the finite211

model finder decides on some empty cell t, we need to show that it is possible to find a212

CP 2023

1:6 Symmetries for Cube-and-conquer in Finite Model Finding

value according to the LNH such that the extended cube is isomorphic to some subset of A213

containing A0.214

t0 = v0· · ·
tm = vm

t = ?

B0
A0 A \A0

R

Figure 1 Extension of a cube according to the VA clauses A

I Notation 1. For a mapping R from D to D and a value d ∈ D we write Ed
R for a mapping215

that maps d to R(d) if d ∈ dom(R) and otherwise maps d to min(D \ rng(R)). We further216

write Ed1,...,dk

R for successive extensions by d1, . . . , dk, i.e. Ed1,d2
R = Ed2

Ed1
R

etc. J217

I Example 6. Suppose D = {1, 2, 3} and R : {1} → {2} s.t. R(1) = 2 and R−1(2) = 1218

(so, R is a bijection). Then E2
R s.t. R(2) = E2

R(2) = 1 is a valid extension of R because219

min(D \ {2}) = 1. Furthermore, E2,1
R s.t. E2,1

R (1) = 2 is a valid (but trivial) extension of220

E2
R. J221

I Lemma 7. If R is a bijection between some D0, D1 ⊆ D and d ∈ D then Ed
R is well-defined222

and also a bijection.223

Proof. If d ∈ D0, then Ed
R = R and there is nothing to proof. If d ∈ D \ D0, then by224

definition, Ed
R = R ∪ {(d, p)} for some p ∈ D \D1. Since R is a bijection from D0 to D1,225

d /∈ dom(R), and p /∈ rng(R), so Ed
R is well-defined, one-one, and onto. That is, it is a226

bijection. J227

I Notation 2. B ⊕ 〈t = u〉 is the new cube formed by extending the cube B with the VA228

clause t = u. J229

The following lemma is the core of our proof. We have a cube B isomorphic to some230

partial assignment A0 and now we need to prove that for any model A completing A0 and any231

search strategy, we are able to extend B while observing the LNH. Then, the lemma is used232

to prove that isomorphic cubes can be discarded by induction on cube length (Theorem 9).233

I Lemma 8. Let B be an LNH-compliant cube and A a model s.t. B is isomorphic to some234

A0 ⊆ A. Then for any cell term t not appearing in B, there exists a value u and a VA clause235

t′ = u′ ∈ A \A0, s.t. B ⊕ 〈t = u〉 is LNH-compliant and isomorphic to A0 ∪ {t′ = u′}.236

Proof. Let R be an isomorphism mapping B to A0 and let t be a cell term f(a1, . . . , ak).237

Define R1 as Ea1,...,ak

R , and let t′ denote the cell term f(R1(a1), . . . , R1(ak)), i.e., map the238

cell that the solver searches on into a cell in the prescribed model A.239

Since A is a model, there must exist a value u′ ∈ D with (t′ = u′) ∈ A, i.e. u′ can be240

found by a lookup of t′ in A. Since t is not a cell term in B and R1 is a bijection, so t′ is not241

a cell term in A0 and must therefore be in A \A0. Thus, t′ = u′ is a VA clause in A \A0.242

To obtain u (a value for cell t), define R2 as Eu′

R−1
1
, i.e. map u′ back into the search by243

extending the inverse. Then, set u = R2(u′). By Lemma 7, R2 is bijection and it is therefore244

an isomorphism from A0 ∪ {t′ = u′} to B ⊕ 〈t = u〉. Finally, by definition of R2, u either245

already appears in B or otherwise is the smallest domain element not in B. Therefore, the246

extension of the cube B by the VA clause t = u is LNH-compliant. J247

J. Araújo et al. 1:7

I Theorem 9. Suppose we are searching under the LNH with any cell selection strategy on248

a signature Σ and a FOL formula, F , on Σ. If B0 and B1, of length l ≥ 0, are isomorphic249

cubes, and if M1 is a model obtained by completing (not necessarily under the LNH) the250

search path in B1, then B0 can be extended by a search path S under the said LNH and cell251

selection strategy to a model M0 which is isomorphic to M1.252

Proof. We will use mathematical induction on the length of the extension, m, on S to prove253

the theorem. Let A denote the VA clauses of M1, and A0 denote the VA clauses of B1.254

Base case is trivial as B0 and B1 are given as isomorphic when m = 0.255

Induction step: Suppose the search path S is extended m times, where m > 1, so that256

Sm is LNH-compliant and isomorphic to a subset Am ⊆ A. Then by Lemma 8, Sm can be257

extended by one VA clause with the cell term tm+1, chosen by the said cell selection strategy,258

to Sm+1 which is LNH-compliant and isomorphic to Am+1 ⊆ A.259

Note that a model finder may do propagations after a cell value assignment. That is,260

some cell terms can be assigned values inferred from existing VA clauses. Propagations can261

be viewed as part of the cell selection strategy and be handled the same way as regular cell262

value assignments.263

We can therefore conclude by mathematical induction that S can be extended to a264

complete search path when all cell terms in F are filled with values such that S represents265

the model M0, is LNH-compliant, and is isomorphic to As ⊆ A. Since M0 and M1 are of266

the same size, so As and A must necessarily be of the same size and hence must be equal.267

Therefore, M0 is isomorphic to M1. J268

Theorem 9 shows that isomorphic cubes always extend to isomorphic models. So, one of the269

isomorphic cubes may be discarded without losing any non-isomorphic model.270

I Corollary 10. On searching under the LNH with any cell selection strategy on a signature271

Σ and an FOL formula F on Σ, if M1 is a model in F , then there is a complete search path272

S under the said LNH that results in a model M0 which is isomorphic to M1.273

Corollary 10 proves the completeness of the LNH in that every model in any search is274

isomorphic to some model found by searching under the LNH. An alternative proof of the275

corollary is given in [50].276

4 Searching with Cubes277

Cubes can be constructed to partition the search space into non-overlapping subtrees that278

can be processed in parallel. It is not necessary to search all the subtrees that originate279

from the collection of cubes that span the entire search space because isomorphic cubes in280

the same collection can be eliminated without losing non-isomorphic models. For example,281

suppose we want to search for models of order 3 or more on a function f : D2 → D under282

the LNH with a cell selection strategy that selects f(0, 0) then f(1, 1) as the first 2 cell terms283

in the search process. There are at most 6 cubes of length 2 (listed below) under the said284

LNH and cell selection strategy, so together they must span the whole search space in the285

sense that every search path that starts with the cell terms f(0, 0) then f(1, 1) in the search286

tree must include one of the 6 cubes in it.287

1. 〈f(0, 0) = 0; f(1, 1) = 0〉.288

2. 〈f(0, 0) = 0; f(1, 1) = 1〉.289

3. 〈f(0, 0) = 0; f(1, 1) = 2〉.290

4. 〈f(0, 0) = 1; f(1, 1) = 0〉.291

CP 2023

1:8 Symmetries for Cube-and-conquer in Finite Model Finding

root

t0 = 0 t0 = 1

• • •

t0 = 2 t0 = n−1• • •

• • •
• • •

t1 = 0 t1 = 1 t1 = 2 t1 = 3 t1 = n−1

t1 = 0 t1 = 1 t1 = 2 t1 = 3 t1 = n−1

• • •

• • •

Note: t0 denotes f(0, 0) and t1 denotes f(1, 1). A dotted line with a cross is a branch
pruned by the LNH, except for the branch ending on the VA clause t1 = 1 (the shaded
node), which is pruned by the isomorphic cubes removal algorithm.

Figure 2 Partial Search Tree Showing Cubes of Length 2

5. 〈f(0, 0) = 1; f(1, 1) = 1〉.292

6. 〈f(0, 0) = 1; f(1, 1) = 2〉.293

Since π(0,1)(Cube 1) = {f(1, 1) = 1, f(0, 0) = 1} = πid(Cube 5), so Cubes 1 and 5 are294

isomorphic and one of them can thus be discarded without losing non-isomorphic models per295

Theorem 9. This example demonstrates the importance of keeping the LNH in the search —296

it cuts the search space from potentially n2 cubes down to 6. Theorem 9 allows us to further297

cut the number of cubes down to 5 (see Figure 2 for illustration). More isomorphic cubes298

can be removed with longer cubes (see Table 2).299

The procedure of removing isomorphic cubes starts with generating a set of short cubes300

(typically of length 2 for a binary operation) that spans the entire search space. The model301

finder takes short cubes as inputs and runs with them as if they are generated by itself to302

generate longer cubes of predefined length l. Specifically, the model finder runs as usual,303

except that it emits the cubes of length l when the depth of the search tree reaches l. After304

outputting the cube, the model finder backtracks as if it has reached the bottom of the search305

tree, and runs on a new branch as usual until all cubes of length l are generated. Some306

models may be generated in this process due to propagation, and they are kept as part of307

the final outputs. Next, the cubes are compared for isomorphism and only one of any pair of308

isomorphic cubes is kept. This new set of non-isomorphic cubes of length l will be used as309

inputs to the model finder in the next round of generation of longer cubes. The process is310

repeated until the desired length of cubes is reached.311

For searching models defined by one operation of arity k, we use the sequence of lengths312

l: k, 2k, 3k, 4k, This is to match the concentric cell selection strategy (see Example 4 for313

its definition) of the finite model finder such as Mace4. We will discuss the best cube length314

to use in Section 5.3.315

Finally, non-isomorphic cubes of the target length can then be processed independently316

in parallel and their output models collected separately.317

J. Araújo et al. 1:9

4.1 Invariants318

To speed up the isomorphic cubes removal process, the same invariant-based algorithm319

described in [2] to remove isomorphic models can be applied to cubes. Invariants, such320

as number of distinct domain elements, are properties that must be identical for cubes to321

be isomorphic. For example, the cubes A = 〈f(2, 2) = 2; f(2, 3) = 4〉 and B = 〈f(3, 3) =322

2; f(1, 2) = 2〉 cannot be isomorphic because A contains an idempotent 2 but B does not.323

Powerful and inexpensive invariants for binary operations include:324

1. Number of y such that x = (x ∗ y) ∗ x.325

2. Number of y such that y = x ∗ z for all z ∈ D.326

3. Number of y such that y = z ∗ y for all z ∈ D.327

4. Number of idempotents x (i.e. x ∗ x = x) for all x ∈ D.328

5. Number of y such that y ∗ y = x for each x ∈ D.329

First, invariant vectors (i.e. ordered lists of invariants) for cubes are calculated and used330

as hash keys to group cubes having the same invariant vectors into hash buckets. Then, cubes331

within the same bucket are tested for isomorphism. There is no need to test for isomorphism332

across buckets because isomorphic cubes must have the same invariant vectors. This saves333

tremendous amounts of testing time. Furthermore, buckets can be processed independently334

and in parallel to further speed up the process.335

4.2 Work Stealing336

In the basic form of this cube-based parallel algorithm, cubes are statically generated before337

the model enumeration process begins. It has the advantage of low runtime overheads as no338

synchronization among running finite model finders is needed. The preprocessing time for339

generating the cubes is also small for short to medium-length cubes. The disadvantage is340

that the workload may be uneven among the parallel processes. Some jobs may take a long341

time to finish when free workers sitting idle after finishing their jobs.342

This problem can be solved with work stealing algorithms (also used in SAT [26]) in343

which a busy finite model searcher releases cubes that are not currently being worked on.344

For example, suppose a running model searcher is working on a cube B0 = 〈f(0, 0) = 0〉, and345

its cell selection strategy picks the cell f(1, 1) to assign value next. Under the LNH, f(1, 1)346

may be assigned a value from {0, 1, 2}. If the model searcher is requested to spin out some347

work for other free workers, then it generates three cubes, B0 = 〈f(0, 0) = 1; f(1, 1) = 0〉,348

B1 = 〈f(0, 0) = 1; f(1, 1) = 1〉, and B2 = 〈f(0, 0) = 1; f(1, 1) = 2〉. It continues to work on349

the cube B0 and releases B1 and B2 to other free workers.350

5 Experimental Results351

We integrate the cube-based algorithms into the finite model enumerator Mace4, which sup-352

ports searching on FOL with the LNH and many cell selection strategies [35]. Parallelization353

is controlled outside Mace4. Only minor changes are made to Mace4 to354

1. Accept cubes as inputs and continue searching for longer cubes or models from them.355

2. Periodically check for signal for work stealing to spin off cubes for other workers.356

The model searching logic in Mace4 remains intact. The concentric cell selection strategy357

(see Example 4 for its definition) is used in the experiments. A separate program removes358

isomorphic cubes by separating the cubes with equal invariants then check for isomorphisms359

(two cubes are isomorphic if one can be transformed to the other by a permutation).360

CP 2023

1:10 Symmetries for Cube-and-conquer in Finite Model Finding

We run the experiments on an Intel® Xeon®Silver 4110 CPU 2.0 GHz ×32 computer,361

with 64 GB of random access memory (RAM), using 30 parallel processes unless otherwise362

stated. All times reported are wall clock times.363

We pick many disparate and challenging problems from the MarcieX database [3], which364

contains a collection of 158 most popular algebras. We also draw an example of semigroup365

subvariety from [1]. The definitions of the algebras used in the experiments in this section366

are listed in Table 1, in which all clauses are implicitly universally quantified.367

Table 1 Definitions of Algebras Used in Experiments

Algebra FOL Definition

Semigroups x ∗ (y ∗ z) = (x ∗ y) ∗ z.

Loops x ∗ y = x ∗ z → y = z. y ∗ x = z ∗ x→ y = z. x ∗ 0 = x. 0 ∗ x = x.

var{N1
2∩ [x2 = y2]} x ∗ (y ∗ z) = (x ∗ y) ∗ z. (x ∗ x) ∗ x = x ∗ x. x ∗ y = y ∗ x. x ∗ x = y ∗ y.

Tarski Algebras (x ∗ y) ∗ y = (y ∗ x) ∗ x. x ∗ (y ∗ z) = y ∗ (x ∗ z). (x ∗ y) ∗ x = x.

Quasi-ordered Set x < y ∧ y < z → x < z. x < x.

Involutive Lattices (x ∗ y) ∗ z = x ∗ (y ∗ z). x ∗ y = y ∗ x. (x + y) + z = x + (y + z).
x + y = y + x. (x ∗ y) + x = x. (x + y) ∗ x = x.

−(x + y) = −x ∗ −y. −− x = x.

In the tables showing experimental results in this section, the rows with cube length 0368

show the results of running Mace4 in a single thread without the cube-based algorithms.369

Table 2 shows the results of applying Theorem 9 to remove isomorphic cubes for the370

binary operation of the semigroups of order 7. Observe that the percentage reduction of371

the number of cubes increases as the cube length increases. The isomorphic cubes removal372

algorithm is therefore complementary to the LNH because the LNH removes a lot of short373

cubes but loses its effectiveness as the length of the cubes grows.374

Table 2 #Cubes for Semigroups of Order 7

Cubes

Cube
Length

w/o Removal of
Isomorphic Cubes

w/ Isomorphic
Cubes Removed

Reduction
(%)

2 6 5 16.7
4 34 28 17.6
9 1,568 888 43.4

16 56,206 12,036 78.2
25 1,028,171 59,056 94.3

We run Mace4 to enumerate semigroups defined by a single binary operation. The results375

show a speedup of over 100 times when cubes of length 25 are used, with over 96% of the376

isomorphic models suppressed (see Table 3). The results on semigroups are indicative of377

the algorithm’s usefulness in general to the computational algebraists because algebraic378

structures related to semigroups are ubiquitous in algebra. Not only are there many well-379

known semigroup-related algebras, but also many semigroup varieties and subvarieties that380

are of high research interests [1].381

Table 4 shows the results for loops (a quasigroup-related class of algebra) defined by a382

single non-associative binary operation. Here the reduction in the number of the output383

J. Araújo et al. 1:11

isomorphic models is not as pronounced. This is expected because the LNH works very well384

with the Latin square and removes a high percentage of the isomorphic models [48] before the385

isomorphic cubes removal takes place. For example, while only 0.16% of semigroups of order386

7 generated by the LNH are non-isomorphic, 8.7% (106,228,849 out of 1,216,226,816) of the387

models generated for the loops of order 8 under the LNH are non-isomorphic. Nevertheless,388

the parallel algorithm provides 15 times improvement in speed for cube length of 16.389

Table 3 Running Cubes on Semigroups of
Order 7

Time in min.

Cube
Length

#Cubes #Models
(Millions)

Gen.
Cubes

Total

0 1,021.1 235.2
2 5 717.7 0.0 12.5
4 28 611.1 0.1 9.4
9 888 360.2 0.1 5.2

16 12,036 158.2 0.2 2.8
25 59,056 39.5 0.9 1.7

Table 4 Running Cubes on Loops of Order
8

Time in min.

Cube
Length

#Cubes #Models
(Millions)

Gen.
Cubes

Total

0 1,216 564.0
2 1 1,216 0.0 47.4
4 2 1,216 0.1 47.3
9 18 1,216 0.1 46.2
16 3,583 1,214 0.1 45.3

Table 5 shows the results of running the algorithms on the semigroup subvariety var{N1
2∩390

[x2 = y2]} (see p. 40 of [1] for its definition and discussions). With longer cubes, the391

algorithms speed up the process by 26 times with 30 threads. The results confirm that the392

proposed algorithms work remarkably well with semigroup-related algebras.

Table 5 Running Cubes on var{N1
2∩ [x2 =

y2]} of Order 9

Time in min.

Cube
Length

#Cubes #Models
(Millions)

Gen.
Cubes

Total

0 313.0 72.0
2 1 156.5 0.0 2.9
4 1 156.5 0.1 2.8
9 2 156.5 0.1 2.8

16 5 120.9 0.1 2.3
25 16 55.5 0.2 1.3
36 70 13.0 0.3 0.8
49 331 1.5 1.0 1.1

Table 6 Running Cubes on Tarski Algeb-
ras of Order 13

Time in min.

Cube
Length

#Cubes #Models
(Millions)

Gen.
Cubes

Total

0 379.6 1,949.9
2 3 189.8 0.0 70.2
4 1 189.8 0.1 69.9
9 3 183.3 0.1 67.7
16 11 158.8 0.1 58.1
25 55 111.9 0.2 40.1
36 157 62.1 0.2 21.8
49 174 24.9 0.5 8.8
64 171 6.6 1.0 3.7

393

The Tarski algebras are unlike both the semigroups and the quasigroups in that its394

multiplication table is not associative and is not a Latin square [3]. It shows the cube-based395

algorithms perform better and better as the length of the cube increases (see Table 6).396

The quasi-ordered set is defined by one binary relation. The isomorphic cubes algorithms397

work well on relations just as it works well on functions. As shown in Table 7, when cubes398

of length 36 are used, over 99% of the isomorphic models are suppressed, and the search399

process is sped up by over 200 times.400

CP 2023

1:12 Symmetries for Cube-and-conquer in Finite Model Finding

Table 7 Running Cubes on Quasi-ordered
Set of Order 8

Time in min.

Cube
Length

#Cubes #Models
(Millions)

Gen.
Cubes

Total

0 642.8 59.9
2 1 642.8 0.0 4.2
4 3 474.6 0.1 3.2
9 9 209.5 0.1 1.7

16 33 61.3 0.1 0.8
25 139 12.6 0.2 0.3
36 713 2.0 0.3 0.3

Table 8 Running Cubes on Involutive Lat-
tices of Order 13

Time in min.

Cube
Length

#Cubes #Models
(Millions)

Gen.
Cubes

Total

0 423.0 4,719.7
3 2 423.0 0.0 432.5
6 3 423.0 0.1 432.8
10 6 263.9 0.1 270.0
21 23 178.6 0.1 180.9
36 108 84.9 0.2 88.3
55 555 46.0 0.3 46.2
78 1,710 19.8 0.5 20.6

105 5,048 8.7 4.9 14.3

As an example to demonstrate the effectiveness of the algorithms on more complex401

algebras, consider the Involutive Lattice [3], which is defined by two associative binary402

operations and one unary operation. For Involutive Lattices of order 13, the search tree has403

a maximum depth of 351. Using cubes of length of 105, we obtain a speedup of 300 times,404

with almost 98% of the isomorphic cubes suppressed (see Table 8). The results show that405

the isomorphic cubes algorithms are highly effective for both simple and complex algebras.406

The reductions in time and number of models (on top of the LNH) are summarized in407

Figures 3 and 4. Note that the reduction in total time is over 90% even for short cubes.408

However, the biggest gain in both reduction in time and in isomorphic models is when409

longer cubes are used. Reduction in isomorphic models also helps tremendously in the post410

processing step to extract non-isomorphic models.

0 2 4 6 9 16 21 25 30 36 49 55 640

10

20

30

40

50

60

70

80

90

100

Semigroups
Tarski Algebra
Loops
var{N1

2∩ [x2 = y2]}
Quasi Ordered
Involutary Lattices

Cube Length

R
ed

uc
tio

n
in

O
ut
pu

t
M
od

el
s
(%

)

Figure 3 Reduction in Number of Output
Models

0 2 4 6 9 16 21 25 30 36 49 55 6490

92

94

96

98

100

Semigroups
Tarski Algebra
Loops
var{N1

2∩ [x2 = y2]}
Quasi Ordered
Involutary Lattices

Cube Length

R
ed

uc
tio

n
in

R
un

T
im

e
(%

)

Figure 4 Reduction in Total Time with
30 Parallel Processes

411

5.1 Speedup of Finite Model Enumeration with Parallelization412

As discussed, the cubes algorithms allow low-cost parallelization of the finite model enumera-413

tion process. Figure 5 and Table 9 show the performance of the parallel cubes algorithms with414

J. Araújo et al. 1:13

Table 9 Performance w/ Multiprocessing

Time in seconds

Algebra Order Cube
Length

1
Process

2
Processes

4
Processes

8
Processes

16
Processes

Semigroups 7 25 6,626 3,397 1,757 940 425
Loops 7 16 202 108 50 35 21
Tarski algebras 13 64 1,766 973 552 273 250
var{N1

2∩ [x2 = y2]} 9 49 130 84 80 57 53
Quasi Ordered 8 36 123 77 51 37 25
Involutive Lattices 12 105 1,496 794 480 378 320

1 to 16 parallel processes. Here, the reported times do not include isomorphic mode filtering;415

they are for Mace4 to generate models only. Note that when many processes compete for416

limited amount of RAM, swapping could slow down the processes substantially. This helps417

to explain why larger algebras, such as the Involutive Lattice of order 13, have their curves418

flattened out much faster than small algebras, such as the Semigroups of order 7. More419

processes also mean more work-stealing and higher overheads.420

1 2 4 8 16101

101.5

102

102.5

103

103.5

103.8 Semigroups
Loops
Tarski Algebra
var{N1

2∩ [x2 = y2]}
Quasi Ordered
Involutary Lattices

#Parallel Processes

T
im

e
(s
)
in

Lo
g
Sc

al
e

Figure 5 Performance w/ Multiprocessing

5.2 Isomorphic Cubes Removal Speeds up Isomorphic Models Filtering421

As pointed out Section 1, reducing the number of Mace4 outputs also reduces the efforts422

needed to filter out isomorphic models. Table 10 shows, using involutive lattices as an423

example, the out-sized effect of the reduction of Mace4 outputs on the time to filter out the424

isomorphic models using the invariant-based isomorphic model filtering algorithm [2], with425

30 parallel processes. With the reduction in number of Mace4 models, the isomorphic model426

filtering process is sped up by 2 orders of magnitude. The improvement in speed is observed427

to be better with models of higher orders. We would also point out that the isomorphic428

model filter generates the same non-isomorphic models with or without the cubes algorithms.429

5.3 Optimal Cube Length430

In general, the search process using longer cubes finishes earlier with fewer isomorphic models.431

However, we observe that there are three limiting factors on the lengths of the cubes.432

CP 2023

1:14 Symmetries for Cube-and-conquer in Finite Model Finding

Table 10 Running Invariant-based Isomorphic Models Filter on Involutive Lattices

w/o Cubes w/ Cubes

Order #Non-iso
Models

#Mace4
Output

Isomorphic Model
Filter Time (s)

Cube
Length

#Mace4
Output

Isomorphic Model
Filter Time (s)

9 122 72,470 29 78 3,670 1
10 389 575,463 496 105 13,789 4
11 906 4,771,035 28,424 105 97,680 135
12 3,047 43,851,030 N/A 105 971,416 2,802

First, as the length of the cubes gets longer, more and more models are generated as a433

result of propagations. This reduces the impact of removing isomorphic cubes because they434

represent a progressively smaller proportion of the isomorphic models. It is observed that435

when more than n− 2 symbols out of the n domain elements are used in the cell terms, the436

number of (isomorphic) models will be substantial and extending the cube length does not437

bring enough reduction in isomorphic models to justify the increase in processing time.438

Second, the isomorphic cubes removal time grows quite fast as the length of the cube439

grows. When the isomorphic cubes removal process takes more than a few minutes, further440

lengthening of the cubes will result in prohibitive overheads in the search process.441

Lastly, when the final number of cubes is more than tens of thousands, the overheads442

in processing them becomes so high that the search becomes slower. This factor depends443

heavily on the number of processors available. More processors mean more parallel processes444

can be run without slowing down the whole search process.445

One heuristic is to run cube generation until the number of cubes reaches some threshold446

or the runtime exceeds some threshold, then switch to model generation. The thresholds are447

system-dependent and can further be fine-tuned by experiments with algebras of interest.448

6 Related Work449

There is extensive research on paralyzing SAT solving, where the predominant approaches are450

search space partitioning and portfolios, c.f. [33]. We find inspiration in the cube-and-conquer451

approach proposed by Heule and colleagues [20–22], where the search space is partitioned452

by a lookahead solver into (many) cubes and then each subspace is solved by a CDCL453

SAT solver. In SAT, partitioning by a CDCL solver is nontrivial [32] and that is why the454

lookahead solver is useful for this task. Nevertheless, the use of the lookahead solver is not455

seen as an indispensable feature of the cube-and-conquer, as noted by Subercaseaux and456

Heule [46]. In our approach, we have a tight control over the decisions of the solver and we457

do not need a separate solver to perform the splitting. Additionally, we invest extra effort458

into search space splitting by identifying symmetries in the cubes.459

The adaptive prefix-assignment technique [25] is a symmetry reduction algorithm used460

in SAT. The prefix is equivalent to a propositional cube, and the algorithm also tries to461

eliminate isomorphic cubes. In our case, we exploit symmetries specific to FOL—LNH and462

isomorphism at FOL level, which is absent in their algorithm (and in SAT in general).463

Parallel algorithms can be characterized by how the search is done. There are two main464

search methods: embarrassingly parallel search (EPS) and work stealing search [7, 10,26, 33,465

41,42]. In the former method, the task is decomposed into many sub-tasks that are queued466

up to be processed by free worker threads/processes. In the latter method, when a worker467

J. Araújo et al. 1:15

completes its task, it asks other workers for more work. The busy workers may split their468

tasks into smaller sub-tasks and pass some of them to the free workers. The main focus of469

this method is to keep all the CPUs running until all jobs are done, although for some cases,470

the work stealing scheme can affect efficiency [10]. The EPS method is a natural choice for471

the cube-based parallelization scheme because preprocessing can be performed to generate472

numerous non-isomorphic cubes by splitting the search space. However, a work-stealing473

procedure is essential in supplementing the EPS to balance uneven workloads [33].474

Parallel algorithms can also help select the best strategy in solving a problem with the475

EPS method [39]. After a problem is decomposed into a large number of sub-tasks, a small476

number (e.g., 1%) of these sub-tasks are run in parallel using different strategies of the same477

solver or different solvers. The strategy that gives the best performance on the subset of478

sub-tasks will be used to run all sub-tasks. The same idea is used in the invariant-based479

isomorphic models removal algorithm [2]: it randomly generates a large number of invariants,480

then applies them to a small percentage of models to pick the best performing random481

invariants to apply to the whole set of models. This idea can be applied to the finite model482

finders that support multiple cell selection strategies to pick the best function order and cell483

selection strategy for any specific problem.484

Finite model enumeration can be posed as a constraint programming (CP) task [27].485

Some CP solvers, e.g., Minion [17] and Gecode [37], support parallelization [31]. In CP, the486

search space can be partitioned by adding constraints to rule in and/or out partitions. Each487

partition can be processed by a separate worker thread/process. Minion further implements488

a work stealing search scheme that also partitions the search space dynamically by splitting489

the existing constraint model after the search has started [15, 29]. However, to effectively490

add symmetry-breaking constraints such as lex-leaders to a CP solver often requires deep491

knowledge of the solver and the problem at hand (e.g., the semigroups in [15]) which may492

not be available when mathematicians first define and study a new algebraic structure.493

Moreover, to use traditional CP solvers for finite model enumerations, mathematicians494

need to learn a new CP-specific language such as CHR [45] and Savile Row [38]. It is possible495

to use a translator to translate between languages, but that adds uncertainties to the fidelity496

and the optimality of the translated specifications. FOL remains one of the most popular497

languages among mathematicians due to its simple and intuitive syntax. Moreover, a popular498

automatic theorem prover, Prover9 [34], shares the same input language with Mace4. This499

adds more than just convenience to the process, as it also reduces the chances of discrepancies500

between Prover9 and Mace4 on the same problem.501

A well-known issue with enumerating models defined with FOL are the isomorphic502

models included in the outputs. This is an inherent symmetry property of FOL [40]. There is503

extensive research on symmetry-breaking [4,11–13,28,40,43,47]. Although complete symmetry-504

breaking is known to be computationally challenging [13,47], many useful algorithms, such505

as the LNH and the XLNH [4,5], have emerged in partial symmetry-breaking. The LNH can506

be considered a symmetry-breaking with interchangeable values in constraint satisfaction507

problems (CSP) [19]. The XLNH is more restrictive as it only works on unary operations.508

The LNH is implemented in many systems such as Falcon [50], SEM [51], FMSET [6], and509

Mace4. The isomorphic cubes algorithm, which removes more cubes as the cube length510

grows, complements the LNH.511

Another important symmetry-breaking strategy is to steer the search engine away from the512

fruitless exploration of sub-search space by adding symmetry-breaking input clauses [13, 47].513

The cube-based parallel algorithms are compatible with algorithms of this kind of strategy514

as long as they do not break the LNH.515

CP 2023

1:16 Symmetries for Cube-and-conquer in Finite Model Finding

Some finite model finders, such as SEMK [8] and SEMD [24], try to completely suppress516

isomorphic models in the search process. However, these isomorph-free algorithms are not517

easy to parallelize as global information is generated and consumed in many steps, requiring518

high-cost synchronizations between cooperating workers, especially when they run on different519

computers. The cube-based parallel algorithm, on the other hand, is an EPS method that520

requires no synchronizations between workers. The static removal of isomorphic cubes done521

in a preprocessing step is shown to be effective in suppressing isomorphic models even522

before the actual search begins. The augmented work stealing algorithm is not high in523

synchronization costs because it does not involve communications between running jobs. The524

remaining isomorphic models from the cube-based algorithms can be efficiently removed by525

the invariant-based isomorphic model filtering algorithm as a postprocessing step.526

Another algorithm, DSYM [4], exploits local symmetries by finding symmetries (synonym527

to isomorphisms in their terminology) under invariant partial interpretations (which are528

invariant cubes) and without parallelism. It also works with the LNH and XLNH. DSYM is529

a predictive algorithm that works at the parent level and predicts which of its immediate530

children will be isomorphic cubes. It can be seen as a special case of the isomorphic cube531

algorithm because it removes isomorphic cubes having the same immediate parents, while532

the isomorphic cube algorithm removes all isomorphic cubes, irrespective of their parents.533

Nevertheless, for the cases that DSYM covers, it does so right before the cubes are generated,534

while the isomorphic cube algorithm only detects the symmetries right after the cubes are535

generated. A disadvantage of DSYM is that it is not clear how it can be effectively parallelized.536

Furthermore, DSYM only detects symmetries under the same subtree. The isomorphic cubes537

removal algorithm, on the other hand, detects both global and local symmetries the same538

way, and hence detects and removes more symmetries than DSYM. Moreover, DSYM uses539

only two invariants in testing isomorphism between cubes, while we use many invariants540

that are proven successful in the invariant-based isomorphic model removal algorithm in541

our isomorphic cubes removal process. Nevertheless, DSYM can be applied to the cube542

generation process as well as the final model generation process. That is, the isomorphic543

cube removal algorithm is compatible with DSYM, as with any other symmetry-breaking544

algorithm that works with the LNH.545

7 Conclusions and Future Work546

In this paper, we introduce an efficient parallel algorithm together with a novel symmetry-547

removal mechanism for enumerating finite models. The approach is inspired by the cube-and-548

conquer paradigm, successfully used in SAT solving, which partitions the search space into549

cubes and then massively paralyzes. In contrast, our approach applies symmetries specific to550

finite model finding.551

In conclusion, this paper fulfills an important unmet need for an efficient algorithm for552

enumerating finite algebraic models in computational algebra by enhancing the existing553

finite model enumeration process with the parallel cubes algorithm and the isomorphic cubes554

removal algorithm that reduce both the runtime and the number of output isomorphic models.555

These new algorithms are so scalable that they can be used on a laptop as well as on a cluster556

of powerful computers, and they require minimal efforts to safely integrate into existing557

finite model finders. Very importantly, these algorithms can be used as a black-box without558

requiring the users to have any knowledge about the way they work.559

Future research will focus on improving isomorphic cube removal, on best cell selection560

strategy, and on predicting of optimal cube length.561

J. Araújo et al. 1:17

References562

1 João Araújo, João Pedro Araújo, Peter J. Cameron, Edmond W. H. Lee, and Jorge Raminhos.563

A survey on varieties generated by small semigroups and a companion website, 2019. arXiv:564

1911.05817.565

2 João Araújo, Choiwah Chow, and Mikoláš Janota. Boosting isomorphic model filtering with566

invariants. Constraints, 27(3):360–379, Jul 2022. doi:10.1007/s10601-022-09336-x.567

3 João Araújo, David Matos, and João Ramires. MarcieDB: a model and theory database.568

https://marciedb.pythonanywhere.com, 2022.569

4 Gilles Audemard, Belaid Benhamou, and Laurent Henocque. Predicting and detect-570

ing symmetries in FOL finite model search. J. Autom. Reason., 36(3):177–212, 2006.571

doi:10.1007/s10817-006-9040-3.572

5 Gilles Audemard and Laurent Henocque. The eXtended least number heuristic. In Rajeev Goré,573

Alexander Leitsch, and Tobias Nipkow, editors, Automated Reasoning, First International574

Joint Conference, IJCAR, volume 2083 of Lecture Notes in Computer Science, pages 427–442,575

Berlin, Heidelberg, 2001. Springer. doi:10.1007/3-540-45744-5_35.576

6 Belaid Benhamou and Laurent Henocque. A hybrid method for finite model search in equational577

theories. Fundam. Informaticae, 39(1-2):21–38, 1999. doi:10.3233/FI-1999-391202.578

7 R.D. Blumofe and C.E. Leiserson. Scheduling multithreaded computations by work stealing.579

In Proceedings 35th Annual Symposium on Foundations of Computer Science, pages 356–368,580

1994. doi:10.1109/SFCS.1994.365680.581

8 Thierry Boy de la Tour and Prakash Countcham. An isomorph-free SEM-like enumeration582

of models. Electronic Notes in Theoretical Computer Science, 125(2):91–113, 2005. Proceed-583

ings of the 5th International Workshop on Strategies in Automated Deduction (Strategies584

2004). URL: https://www.sciencedirect.com/science/article/pii/S1571066105000976,585

doi:https://doi.org/10.1016/j.entcs.2005.01.003.586

9 Stanley Burris and Hanamantagouda P. Sankappanavar. A course in universal algebra,587

volume 78 of Graduate texts in mathematics. Springer, New York, NY, 1981.588

10 Geoffrey Chu, Christian Schulte, and Peter J. Stuckey. Confidence-based work stealing589

in parallel constraint programming. In Ian P. Gent, editor, Principles and Practice of590

Constraint Programming - CP, volume 5732, pages 226–241. Springer, 2009. doi:10.1007/591

978-3-642-04244-7_20.592

11 Koen Claessen and Niklas Sörensson. New techniques that improve MACE-style finite model593

finding. In Proceedings of the CADE-19 Workshop: Model Computation - Principles, Al-594

gorithms, Applications, 2003.595

12 Michael Codish, Alice Miller, Patrick Prosser, and Peter James Stuckey. Breaking symmetries596

in graph representation. In Francesca Rossi, editor, IJCAI 2013, Proceedings of the 23rd597

International Joint Conference on Artificial Intelligence, pages 510–516. IJCAI/AAAI, 2013.598

URL: http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6480.599

13 James M. Crawford, Matthew L. Ginsberg, Eugene M. Luks, and Amitabha Roy. Symmetry-600

breaking predicates for search problems. In Luigia Carlucci Aiello, Jon Doyle, and Stuart C.601

Shapiro, editors, Proceedings of the Fifth International Conference on Principles of Knowledge602

Representation and Reasoning (KR), pages 148–159. Morgan Kaufmann, 1996.603

14 A. Distler and J. Mitchell. Smallsemi, a library of small semigroups in GAP, Version 0.6.12.604

https://gap-packages.github.io/smallsemi/, 2019. GAP package.605

15 Andreas Distler, Christopher Jefferson, Tom Kelsey, and Lars Kotthoff. The semigroups of606

order 10. In Michela Milano, editor, Principles and Practice of Constraint Programming - CP,607

volume 7514, pages 883–899. Springer, 2012. doi:10.1007/978-3-642-33558-7_63.608

16 The GAP Group. GAP – Groups, Algorithms, and Programming, Version 4.11.1, 2021. URL:609

https://www.gap-system.org.610

17 Ian P. Gent, Christopher Jefferson, and Ian Miguel. Minion: A fast scalable constraint solver.611

In Gerhard Brewka, Silvia Coradeschi, Anna Perini, and Paolo Traverso, editors, ECAI,612

17th European Conference on Artificial Intelligence, Including Prestigious Applications of613

CP 2023

http://arxiv.org/abs/1911.05817
http://arxiv.org/abs/1911.05817
http://arxiv.org/abs/1911.05817
https://doi.org/10.1007/s10601-022-09336-x
https://marciedb.pythonanywhere.com
https://doi.org/10.1007/s10817-006-9040-3
https://doi.org/10.1007/3-540-45744-5_35
https://doi.org/10.3233/FI-1999-391202
https://doi.org/10.1109/SFCS.1994.365680
https://www.sciencedirect.com/science/article/pii/S1571066105000976
https://doi.org/https://doi.org/10.1016/j.entcs.2005.01.003
https://doi.org/10.1007/978-3-642-04244-7_20
https://doi.org/10.1007/978-3-642-04244-7_20
https://doi.org/10.1007/978-3-642-04244-7_20
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6480
https://doi.org/10.1007/978-3-642-33558-7_63
https://www.gap-system.org

1:18 Symmetries for Cube-and-conquer in Finite Model Finding

Intelligent Systems (PAIS), Proceedings, volume 141 of Frontiers in Artificial Intelligence614

and Applications, pages 98–102, Amsterdam, Netherlands, 2006. IOS Press. URL: http:615

//www.booksonline.iospress.nl/Content/View.aspx?piid=1654.616

18 Ian P. Gent, Ian Miguel, Peter Nightingale, Ciaran McCreesh, Patrick Prosser, Neil C. A.617

Moore, and Chris Unsworth. A review of literature on parallel constraint solving. Theory618

Pract. Log. Program., 18(5-6):725–758, 2018. doi:10.1017/S1471068418000340.619

19 Pascal Van Hentenryck, Pierre Flener, Justin Pearson, and Magnus Ågren. Tractable sym-620

metry breaking for CSPs with interchangeable values. In Georg Gottlob and Toby Walsh,621

editors, IJCAI-03, Proceedings of the Eighteenth International Joint Conference on Artificial622

Intelligence, pages 277–284. Morgan Kaufmann, 2003. URL: http://ijcai.org/Proceedings/623

03/Papers/041.pdf.624

20 Marijn Heule, Oliver Kullmann, Siert Wieringa, and Armin Biere. Cube and conquer:625

Guiding CDCL SAT solvers by lookaheads. In Kerstin Eder, João Lourenço, and Onn626

Shehory, editors, Hardware and Software: Verification and Testing - 7th International Haifa627

Verification Conference, HVC, Revised Selected Papers, volume 7261, pages 50–65. Springer,628

2011. doi:10.1007/978-3-642-34188-5_8.629

21 Marijn J. H. Heule, Oliver Kullmann, and Armin Biere. Cube-and-conquer for satisfiability.630

In Youssef Hamadi and Lakhdar Sais, editors, Handbook of Parallel Constraint Reasoning,631

pages 31–59. Springer, 2018. doi:10.1007/978-3-319-63516-3_2.632

22 Marijn J. H. Heule, Oliver Kullmann, and Victor W. Marek. Solving and verifying the Boolean633

Pythagorean triples problem via cube-and-conquer. In Theory and Applications of Satisfiability634

Testing (SAT), 2016. doi:10.1007/978-3-319-40970-2_15.635

23 Antti E. J. Hyvärinen, Matteo Marescotti, and Natasha Sharygina. Lookahead in partitioning636

SMT. In Formal Methods in Computer Aided Design, FMCAD, pages 271–279. IEEE, 2021.637

doi:10.34727/2021/isbn.978-3-85448-046-4_37.638

24 Xiangxue Jia and Jian Zhang. A powerful technique to eliminate isomorphism in finite model639

search. In Ulrich Furbach and Natarajan Shankar, editors, Automated Reasoning, pages640

318–331, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.641

25 Tommi Junttila, Matti Karppa, Petteri Kaski, and Jukka Kohonen. An adaptive prefix-642

assignment technique for symmetry reduction. Journal of Symbolic Computation, 99:21–49,643

2020. URL: https://www.sciencedirect.com/science/article/pii/S0747717119300288,644

doi:https://doi.org/10.1016/j.jsc.2019.03.002.645

26 Bernard Jurkowiak, Chu Min Li, and Gil Utard. A parallelization scheme based on work646

stealing for a class of SAT solvers. J. Autom. Reason., 34(1):73–101, 2005. doi:10.1007/647

s10817-005-1970-7.648

27 Majid Ali Khan. Efficient enumeration of higher order algebraic structures. IEEE Access,649

8:41309–41324, 2020. doi:10.1109/ACCESS.2020.2976876.650

28 Markus Kirchweger and Stefan Szeider. SAT modulo symmetries for graph generation. In651

Laurent D. Michel, editor, 27th International Conference on Principles and Practice of652

Constraint Programming, CP, volume 210 of LIPIcs, pages 34:1–34:16. Schloss Dagstuhl -653

Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.CP.2021.34.654

29 Lars Kotthoff and Neil C. A. Moore. Distributed solving through model splitting. ArXiv,655

abs/1008.4328, 2010.656

30 Kenneth Kunen. The structure of conjugacy closed loops. Transactions of the American657

Mathematical Society, 352(6):2889–2911, 2000.658

31 Arnaud Malapert, Jean-Charles Régin, and Mohamed Rezgui. Embarrassingly parallel search659

in constraint programming. J. Artif. Intell. Res., 57:421–464, 2016. doi:10.1613/jair.5247.660

32 Ruben Martins, Vasco M. Manquinho, and Inês Lynce. Improving search space splitting661

for parallel SAT solving. In 22nd IEEE International Conference on Tools with Artificial662

Intelligence, ICTAI. IEEE Computer Society, 2010. doi:10.1109/ICTAI.2010.56.663

33 Ruben Martins, Vasco M. Manquinho, and Inês Lynce. An overview of parallel SAT solving.664

Constraints An Int. J., 17(3):304–347, 2012. doi:10.1007/s10601-012-9121-3.665

http://www.booksonline.iospress.nl/Content/View.aspx?piid=1654
http://www.booksonline.iospress.nl/Content/View.aspx?piid=1654
http://www.booksonline.iospress.nl/Content/View.aspx?piid=1654
https://doi.org/10.1017/S1471068418000340
http://ijcai.org/Proceedings/03/Papers/041.pdf
http://ijcai.org/Proceedings/03/Papers/041.pdf
http://ijcai.org/Proceedings/03/Papers/041.pdf
https://doi.org/10.1007/978-3-642-34188-5_8
https://doi.org/10.1007/978-3-319-63516-3_2
https://doi.org/10.1007/978-3-319-40970-2_15
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_37
https://www.sciencedirect.com/science/article/pii/S0747717119300288
https://doi.org/https://doi.org/10.1016/j.jsc.2019.03.002
https://doi.org/10.1007/s10817-005-1970-7
https://doi.org/10.1007/s10817-005-1970-7
https://doi.org/10.1007/s10817-005-1970-7
https://doi.org/10.1109/ACCESS.2020.2976876
https://doi.org/10.4230/LIPIcs.CP.2021.34
https://doi.org/10.1613/jair.5247
https://doi.org/10.1109/ICTAI.2010.56
https://doi.org/10.1007/s10601-012-9121-3

J. Araújo et al. 1:19

34 W. McCune. Prover9 and mace4. http://www.cs.unm.edu/~mccune/prover9/, 2005–2010.666

35 William McCune. Mace4 reference manual and guide, August 2003. URL: https://www.cs.667

unm.edu/~mccune/prover9/mace4.pdf.668

36 Gábor Nagy and Petr Vojtěchovský. LOOPS, computing with quasigroups and loops in GAP,669

Version 3.4.1. https://gap-packages.github.io/loops/, Nov 2018. Refereed GAP package.670

37 Morten Nielsen. Parallel search in gecode. Technical Report, Gecode, 2006.671

38 Peter Nightingale, Özgür Akgün, Ian P. Gent, Christopher Jefferson, Ian Miguel, and672

Patrick Spracklen. Automatically improving constraint models in savile row. Artificial673

Intelligence, 251:35–61, 2017. URL: https://www.sciencedirect.com/science/article/674

pii/S0004370217300747, doi:https://doi.org/10.1016/j.artint.2017.07.001.675

39 Anthony Palmieri, Jean-Charles Régin, and Pierre Schaus. Parallel strategies selection. CoRR,676

abs/1604.06484, 2016. URL: http://arxiv.org/abs/1604.06484, arXiv:1604.06484.677

40 Giles Reger, Martin Riener, and Martin Suda. Symmetry avoidance in MACE-style finite678

model finding. In Andreas Herzig and Andrei Popescu, editors, Frontiers of Combining679

Systems FroCoS, volume 11715, pages 3–21, Switzerland AG, 2019. Springer. doi:10.1007/680

978-3-030-29007-8_1.681

41 Jean-Charles Régin and Arnaud Malapert. Parallel constraint programming. In Youssef682

Hamadi and Lakhdar Sais, editors, Handbook of Parallel Constraint Reasoning, pages 337–379.683

Springer, 2018. doi:10.1007/978-3-319-63516-3_9.684

42 Jean-Charles Régin, Mohamed Rezgui, and Arnaud Malapert. Embarrassingly parallel search.685

In Christian Schulte, editor, Principles and Practice of Constraint Programming - 19th686

International Conference, CP 2013, Uppsala, Sweden, September 16-20, 2013. Proceedings,687

volume 8124 of Lecture Notes in Computer Science, pages 596–610, Berlin, Heidelberg, 2013.688

Springer Berlin Heidelberg. doi:10.1007/978-3-642-40627-0_45.689

43 Francesca Rossi, Peter van Beek, and Toby Walsh, editors. Handbook of Constraint690

Programming, volume 2 of Foundations of Artificial Intelligence. Elsevier, 2006. URL:691

https://www.sciencedirect.com/science/bookseries/15746526/2.692

44 Neil J. A. Sloane and The OEIS Foundation Inc. The on-line encyclopedia of integer sequences,693

2020. URL: http://oeis.org/?language=english.694

45 Jon Sneyers, Peter van Weert, Tom Schrijvers, and Leslie de Koninck. As time goes by:695

Constraint handling rules: A survey of chr research from 1998 to 2007. Theory and Practice696

of Logic Programming, 10(1):1–47, 2010. doi:10.1017/S1471068409990123.697

46 Bernardo Subercaseaux and Marijn Heule. Toward optimal radio colorings of hypercubes via698

SAT-solving. In Ruzica Piskac and Andrei Voronkov, editors, Proceedings of 24th International699

Conference on Logic for Programming, Artificial Intelligence and Reasoning, volume 94 of700

EPiC Series in Computing, pages 386–404. EasyChair, 2023. URL: https://easychair.org/701

publications/paper/b8Cn, doi:10.29007/qrmp.702

47 Toby Walsh. Symmetry breaking constraints: Recent results. In Jörg Hoffmann and Bart703

Selman, editors, Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence,704

July 22-26, 2012, Toronto, Ontario, Canada. AAAI Press, 2012. URL: http://www.aaai.org/705

ocs/index.php/AAAI/AAAI12/paper/view/4974.706

48 H. Zhang. Combinatorial designs by SAT solvers. Handbook of Satisfiability, pages 533–568,707

2009. URL: https://cir.nii.ac.jp/crid/1571980076163512448.708

49 Hantao Zhang and Jian Zhang. MACE4 and SEM: A comparison of finite model generators.709

In Maria Paola Bonacina and Mark E. Stickel, editors, Automated Reasoning and Mathematics710

- Essays in Memory of William W. McCune, volume 7788 of Lecture Notes in Computer711

Science, pages 101–130. Springer, 2013. doi:10.1007/978-3-642-36675-8_5.712

50 Jian Zhang. Constructing finite algebras with FALCON. Journal of Automated Reasoning,713

17:1–22, 08 1996. doi:10.1007/BF00247667.714

51 Jian Zhang and Hantao Zhang. SEM: a system for enumerating models. In IJCAI, pages715

298–303, 1995. URL: http://ijcai.org/Proceedings/95-1/Papers/039.pdf.716

CP 2023

https://www.cs.unm.edu/~mccune/prover9/mace4.pdf
https://www.cs.unm.edu/~mccune/prover9/mace4.pdf
https://www.cs.unm.edu/~mccune/prover9/mace4.pdf
https://www.sciencedirect.com/science/article/pii/S0004370217300747
https://www.sciencedirect.com/science/article/pii/S0004370217300747
https://www.sciencedirect.com/science/article/pii/S0004370217300747
https://doi.org/https://doi.org/10.1016/j.artint.2017.07.001
http://arxiv.org/abs/1604.06484
http://arxiv.org/abs/1604.06484
https://doi.org/10.1007/978-3-030-29007-8_1
https://doi.org/10.1007/978-3-030-29007-8_1
https://doi.org/10.1007/978-3-030-29007-8_1
https://doi.org/10.1007/978-3-319-63516-3_9
https://doi.org/10.1007/978-3-642-40627-0_45
https://www.sciencedirect.com/science/bookseries/15746526/2
http://oeis.org/?language=english
https://doi.org/10.1017/S1471068409990123
https://easychair.org/publications/paper/b8Cn
https://easychair.org/publications/paper/b8Cn
https://easychair.org/publications/paper/b8Cn
https://doi.org/10.29007/qrmp
http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/4974
http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/4974
http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/4974
https://cir.nii.ac.jp/crid/1571980076163512448
https://doi.org/10.1007/978-3-642-36675-8_5
https://doi.org/10.1007/BF00247667
http://ijcai.org/Proceedings/95-1/Papers/039.pdf

	1 Introduction
	2 Preliminaries
	2.1 Finite Model Enumeration
	2.2 Least Number Heuristic
	2.3 Cube

	3 Isomorphic Cubes Redundancy
	4 Searching with Cubes
	4.1 Invariants
	4.2 Work Stealing

	5 Experimental Results
	5.1 Speedup of Finite Model Enumeration with Parallelization
	5.2 Isomorphic Cubes Removal Speeds up Isomorphic Models Filtering
	5.3 Optimal Cube Length

	6 Related Work
	7 Conclusions and Future Work

