Symmetries for Cube-and-conquer in Finite Model Finding

#### João Araújo Choiwah Chow Mikoláš Janota

Universidade Nova de Lisboa, Lisbon, Portugal Universidade Aberta, Lisbon, Portugal Czech Technical University in Prague





#### 27 August 2023, Toronto, CP 2023

## First Order Logic for Algebra

 First Order Logic: a language to represent classes of algebras
 Example: Semigroups

$$(\forall xyz)((x*y)*z=x*(y*z))$$

but also more complicated expressions:

$$(\exists xy)(x * y \neq y * x)$$
$$(\forall xz)((x * r(x)) * z = z)$$

## Finiteness and Orders

**Example:** Binary operation \*on domain  $\{0, 1\}$ (a semigroup of order 2):

Some FOL formulas only have infinite models

$$(\forall xy)(g(x) = g(y) \Rightarrow x = y) (\exists x \forall y)(g(y) \neq x)$$

Given: A FOL  $\phi$ Given: Fixed order  $n \in \mathbb{N}^+$ Calculate: An algebra of order *n* satisfying  $\phi$ *Or* Calculate: All non-isomorphic algebras of order *n* satisfying  $\phi$ 

### Isomorphism

Operations \* and  $\diamond$  are isomorphic iff there is a bijection *f*, s.t.

 $f(x * y) = f(x) \diamond f(y)$ equivalently:  $x * y = f^{-1}(f(x) \diamond f(y))$ 

Example

$$f(x) = 1 - x$$

$$\bigvee \begin{array}{c|c} 0 & 1 \\ \hline 0 & 0 & 1 \\ 1 & 1 & 1 \end{array} \xrightarrow{\land} \begin{array}{c|c} 0 & 0 & 1 \\ \hline 0 & 0 & 0 \\ 1 & 0 & 1 \end{array}$$

# Searching for Finite Models

Convert to SAT/CP (Paradox)

#### Dedicated solver (Mace4)

- Skolemize
- Ground
- Backtracking + propagation
- Symmetries? Least Number Heuristic
- Dedicated solvers especially good for enumerating all solutions

### The Least Number Heuristic (LNH)



## Isomorphism Inherent Issue in Search

- For semigroups order 7, Mace4 generates 1,021,120,198 models,
- with 1,627,672 non-isomorphic  $\approx 0.16\%$
- How to reduce amount of isomorphic models?
- How to parallelize?

# Cube and Conquer on SAT



- $F_i$  partition F.
- $F_i \equiv I_1 \wedge I_2 \cdots \wedge I_{k_i}$  (a cube)
- Different solver may be used for finding *F<sub>i</sub>*.

# Cube and Conquer for Finite Models



- $\langle 0*0=0 \rangle$  isomorphic to  $\langle 1*1=1 \rangle$
- $\langle 8*2=7\rangle$  isomorphic to  $\langle 0*1=2\rangle$
- $\langle 0 * 0 = 0; 1 * 1 = 0 \rangle$  isomorphic to  $\langle 0 * 0 = 1; 1 * 1 = 1 \rangle$ .
- $\langle 0 * 0 = 0; 1 \diamond 1 = 0 \rangle$  isomorphic to  $\langle 0 \diamond 0 = 1; 1 * 1 = 1 \rangle$ .

## LNH Meets Cube Isomorphism

Can we use LNH with cube pruning?

#### Prove:

- For any isomorphic  $B_1$  and  $B_2$  ...
- for any search strategy of the solver ...
- LNH search on B<sub>1</sub> gives only models isomorphic to the LNH search on B<sub>2</sub>.
- Remark: Since we also care about enumeration, equisatisfiability is not enough.

- On top of Mace4
- Work stealing re-distribute workload
- Isomorphic cubes removal
  - at fixed lengths  $(k, 2^k, 3^k, \cdots)$
  - invariants divide cubes into buckets
  - rest, brute-force isocheck

## Experiments Isomorph Reduction



## **Experiments** Time Reduction



### Summary

• Cube and conquer for finite model finding:

- Parallelization
- Removal of isomorphic cubes
- Without sacrificing existing breaker LNH
- Significant speed up and model reduction

#### What next?

- Better isomorphic cube removal?
- Optimal cube length?
- Optimal cube contents?