
Computing Generating Sets

of Minimal Size in Finite Algebras?

Mikoláš Janotaa,∗, António Morgadob, Petr Vojtěchovskýc

aCzech Technical University, Jugoslávských partyzán̊u 1580/3, Prague, 160 00, Czechia
bINESC-ID, Portugal

cUniversity of Denver, USA

Abstract

We present an algorithm for calculating a minimal generating set of a finite
algebra. Despite the fact that the problem is in NP, a single call to a SAT
solver is impractical since the encoding is cubic. Instead, the proposed al-
gorithm solves a series of smaller subproblems. The individual subproblems
are formulated as integer linear programs (ILP) that are solved by an off-
the-shelf solver. Our implementation shows that the proposed algorithm is
highly efficient and is able to compute minimal generators for algebras of
orders approximately 2000.

In our experiments we focus on Moufang loops, a variety of loops with
properties close to groups. For Moufang loops of prime power order, we
are able to calculate a minimal generating set by another method, using
theoretical results on the Frattini subloop and algorithms for permutation
groups, of which some are reported here for the first time. This second
method does not cover all cases, but in the covered cases it serves as a check
of correctness of the ILP-based algorithm.

?The results were supported by the MEYS within the dedicated program ERC CZ
under the project POSTMAN no. LL1902, This article is part of the RICAIP project
that has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 857306. This work was supported by national funds
through FCT, Fundação para a Ciência e a Tecnologia, under project UIDB/50021/2020,
the project INFOCOS with reference PTDC/CCI-COM/32378/2017. P. Vojtěchovský
supported by the Simons Foundation Mathematics and Physical Sciences Collaboration
Grant for Mathematicians no. 855097 and by the PROF grant of the University of Denver.

∗Corresponding author
Email address: mikolas.janota@cvut.cz (Mikoláš Janota)

Preprint submitted to ... September 2, 2022

Keywords: computational algebra, generators, rank, integer linear
programming

1. Introduction

For a subset S of an algebra A, let 〈S〉 be the subalgebra of A generated
by S, that is, the smallest subalgebra of A containing S. Note that 〈S〉 is
the subset of A obtained iteratively from S by applying the operations of A.
We say that S is a generating set of A if 〈S〉 = A. A generating set of A of
the smallest possible cardinality is called a minimal generating set. The rank
r(A) of A is the cardinality of a minimal generating set of A.

Finding small and minimal generating sets is of importance in algebra,
both theoretically and for the purposes of computations. For instance, a
vector space over a fixed underlying field is completely characterized by its
rank (that is, dimension) and computational complexity of linear algebraic
algorithms depends on the rank. Groups with a single generator (aka cyclic
groups) are easy to understand, while groups with two generators can already
be arbitrarily complicated in some sense [1]. The efficiency of algorithms in
computational group theory depends heavily on the number of generators
given [2, Thm 2.1.1]. As a final example, alternative algebras with two gen-
erators are associative [3, Thm 3.1] and hence relatively easy to understand
compared to general alternative algebras.

In this paper we present an algorithm for calculating minimal generating
sets in magmas (sets with a single binary operation) by means of SAT solvers
and integer linear programs. Our method cannot compete with specialized
algorithms in highly structured magmas, such as groups, but it performs well
in less structured magmas where efficient rank algorithms are not available.

According to our best knowledge, there are no existing algorithms for the
calculation of the smallest generating sets in the general case. Papadimitriou
and Yannakakis introduce a complexity class allowing to classify the com-
plexity of the task for quasigroups [4] (this is possible because quasigroups
always have a rank in O(log n)). Generating sets have been heavily studied
for groups, cf. [5, 6, 7, 8, 9]. In particular, Lucchini and Mengazzo introduce
dedicated algorithms for calculating a set of generators of minimal cardinality
for finite solvable groups [10].

As a case study, we focus on Moufang loops, a generalization of groups
related to alternative algebras [3] and octonions [11]. Moufang loops are a
good test candidate for the algorithm for the following reasons:

2

• The minimal generating set problem is not interesting for random mag-
mas which are typically of rank one. Moufang loops are far from being
random magmas.

• The problem is hopelessly difficult for magmas A in which the rank
r(A) is comparable to the size of A, such as for some semigroups. In
Moufang loops, like in groups, the rank r(A) is bounded above by
log2(|A|).

• Unlike in groups, no efficient minimal generating set algorithm is known
for Moufang loops.

• On the other hand, there exist classes of Moufang loops where the rank
and a minimal generating set can be calculated by group-theoretical al-
gorithms running on a (much) larger permutation group associated with
the Moufang loop. This allows us to check our method for correctness.

• The rank of a Moufang loop can be increased and controlled within a
certain range by simple constructions, such as the direct product. This
allows us to construct test examples of desired size and (approximately
controlled) rank.

• Moufang loops of certain orders, such as 26 or 35, have been classified
up to isomorphism. By using such an ensemble of algebras for testing,
it is demonstrated that the algorithm performs well in most cases, not
just in carefully constructed examples.

2. Background on Quasigroups and Loops

An algebra is a set A with a collection of We start with some background
on quasigroups and loops, cf. [12]. Readers interested only in the algorithm
can skip ahead to Section 4.

A set A with three binary operations ·, \, / is a quasigroup if the following
axioms hold: x · (x\y) = y, x\(x · y) = y, (x · y)/y = x and (x/y) · y = x.
The three binary operations in quasigroups are referred to as multiplication,
left division and right division, respectively.

Equivalently, a quasigroup is a set A with a single binary operation ·
(that is, a magma) such that all left translations Lx : A→ A, y 7→ x · y and
all right translations Rx : A→ A, y 7→ y · x are permutations of A.

3

A loop is a quasigroup A with identity element 1 satisfying x·1 = x = 1·x
for every x ∈ A. A Moufang loop is a loop satisfying additionally the identity
x · (y · (x · z)) = ((x · y) · x) · z, a weakening of the associative law.

A nonempty subset S of a quasigroup (loop)A is a subquasigroup (subloop)
if it is a quasigroup (loop) in its own right. The following result shows that
divisions play no role in finite quasigroups and loops as far as subalgebras
are concerned.

Lemma 2.1. Let S be a nonempty subset of a finite quasigroup (loop) A.
Then S is a subquasigroup (subloop) if and only if it is closed under multi-
plication.

Proof. It suffices to show that if S is closed under multiplication then it is
also closed under divisions and, in the case of loops, it contains the identity
element.

Let x, y ∈ S. The left quotient x\y can be expressed as L−1x (y). Since A
is finite, the permutation Lx has finite order, say n. Then Ln−1

x = L−1x and
x\y = L−1x (y) = Ln−1

x (y). We conclude that x\y ∈ S since S is closed under
multiplication. Dually, x/y ∈ S.

If A is a loop with identity element 1 and x ∈ S, then 1 = x\x ∈ S.

Proper subquasigroups cannot be too large, cf. Proposition 2.2. This
imposes a logarithmic upper bound on the rank of a quasigroup in terms of
its order, cf. Corollary 2.3, which allows us to test Algorithm 1 on relatively
large algebras. On the other hand, the complements of proper subalgebras
are then large, which potentially adds to the running time of the algorithm.

Proposition 2.2. Let A be a finite quasigroup and let S be a proper sub-
quasigroup of A. Then |S| ≤ |A|/2.

Proof. Let x ∈ A r S. We show that the right coset Sx = {sx : s ∈ S} is
disjoint from S and of the same size as S. The fact that |Sx| = |S| follows
from the fact that Sx = Rx(S) and Rx is a permutation. Suppose, for a
contradiction, that y ∈ S ∩ Sx. Then y = s1 = s2x for some s1, s2 ∈ S and
therefore x = s2\s1 ∈ S, a contradiction.

Corollary 2.3. Let A be a finite quasigroup. Then r(A) ≤ log2(|A|).

For general quasigroups and loops, Proposition 2.2 is best possible.
We can use the direct product construction to bring the order of the

magma to the desired size and the expected rank to a predictable range,

4

cf. Lemma 2.4. The output of Algorithm 1 demonstrates that the entire
range of possible ranks r(A×B) from Lemma 2.4 is attained in examples.

Lemma 2.4. Let A and B be finite magmas with identity elements. Then

max(r(A), r(B)) ≤ r(A×B) ≤ r(A) + r(B).

Proof. The first inequality is clear: If S is a generating set of A × B then
{a : (a, b) ∈ S} is a generating set of A, and similarly for B.

For the second inequality, consider X ∈ {A,B}, let 1X be the identity
element of X and let SX be a minimal generating set of X. Then

S = ({1A} × SB) ∪ (SA × {1B})

is a generating set of A × B, since the identity elements allow us to inde-
pendently obtain any element of A from SA in the first coordinate and any
element of B from SB in the second coordinate. This shows that r(A×B) ≤
|S| = |SA|+ |SB| = r(A) + r(B).

In some situations the rank r(A×B) can be predicted from r(A) and r(B).
For instance, if A, B are loops in which powers of elements are well-defined,
the order of every element divides the order of the loop and gcd(|A|, |B|) = 1,
then r(A×B) = max(r(A), r(B)), attaining the lower bound of Lemma 2.4.
But in general, it is difficult to predict the rank of r(A× B) from r(A) and
r(B) without explicitly calculating it. Our algorithm does not take advantage
of any theoretical results concerning the rank r(A×B).

3. Results on Frattini Subalgebras and Moufang Loops

In this section we gather results on the Frattini subalgebra that is highly
relevant to the problem of minimal generating sets, and also on Moufang
loops, our case study. Theorem 3.4 due to Gábor P. Nagy appears in the
literature for the first time here; its proof will be presented elsewhere [13].

An element x of an algebra A is said to be a nongenerator if for every
subset S of A satisfying 〈S, x〉 = A we already have 〈S〉 = A. In other words,
an element x ∈ A is a nongenerator if it can be removed from any generating
set of A without impacting its generating property. The Frattini subalgebra
Φ(A) of A is the set of all nongenerators of A, and it is indeed a subalgebra
of A by Lemma 3.1.

The following two results are an easy generalization of the results from [12,
Section VI.2].

5

Lemma 3.1. Let A be an algebra. Then Φ(A) is a subalgebra of A.

Proof. Let f be any n-ary operation ofA and suppose that x1, . . . , xn ∈ Φ(A).
We will show that f(x1, . . . , xn) is a nongenerator. Let S ⊆ A be such that
〈S, f(x1, . . . , xn)〉 = A. Since f(x1, . . . , xn) ∈ 〈S, x1, . . . , xn〉, we have

〈S, x1, . . . , xn〉 ≥ 〈S, f(x1, . . . , xn)〉 = A.

Since xn is a nongenerator, we conclude that 〈S, x1, . . . , xn−1〉 = A. Proceed-
ing similarly for the nongenerators x1, . . . , xn−1, we reach 〈S〉 = A.

A subalgebra M of A is said to be maximal if M < A and whenever
M ≤ B ≤ A for some subalgebra B then either M = B or B = A.

Proposition 3.2. If A is an algebra that contains at least one maximal
subalgebra then Φ(A) is the intersection of all maximal subalgebras of A, else
Φ(A) = A.

Proof. First suppose that A has at least one maximal subalgebra and let
F < A be the intersection of all maximal subalgebras of A. If x ∈ A \ F
then there is a maximal subalgebra M of A such that x 6∈ M , but then
〈M,x〉 = A > M = 〈M〉 by maximality, proving that x 6∈ Φ(A).

Conversely, if x 6∈ Φ(A), let S ⊆ A be such that 〈S〉 < 〈S, x〉 = A.
By Zorn’s Lemma, there exists a subalgebra M ≤ A that is maximal with
respect to the property that S ⊆ M and x 6∈ M . Clearly, M < A. Consider
any B ≤ A such that M < B. Since S ⊆ B and M < B we must also have
x ∈ B and thus B ≥ 〈S, x〉 = A. Hence M is in fact a maximal subalgebra
of A. Then x 6∈ F ≤M .

Now suppose that A has no maximal subalgebras. If x 6∈ Φ(A) then the
above paragraph shows that A has a maximal subalgebra M , a contradiction.
Hence Φ(A) = A.

Note that the assumption of Proposition 3.2 is satisfied in nontrivial finite
loops.

The following result of Bruck describes the rank and all minimal gener-
ating sets in nilpotent loops of prime power order.

The center Z(Q) of a loop is the set of all elements of Q that commute
and associate with all elements of Q. The iterated centers are then defined
by Z0(Q) = 1, Zi+1(Q) = π−1i (Z(Q/Zi(Q))), where πi : Q→ Q/Zi(Q) is the
canonical projection x 7→ xZi(Q). A loop Q is nilpotent if Q = Zm(Q) for

6

some m. For a prime p, a group G is an elementary abelian p-group if it is a
commutative group such that xp = 1 for every x ∈ G. In additive notation,
an elementary abelian p-group (G,+) of size pd can be seen as a vector space
of dimension d over the field of order p.

Theorem 3.3 ([12, Theorem VI.2.3]). Let p be a prime and Q a nilpotent
loop of order pn > 1. Then the Frattini subloop Φ(Q) is normal in Q and
Q/Φ(Q) is an elementary abelian group of order pd for some d > 0. The
rank of Q is then equal to d and {x1, . . . , xd} ⊆ Q generates Q if and only if
{x1Φ(Q), . . . , xdΦ(Q)} is a basis of the vector space Q/Φ(Q).

To calculate the rank and a minimal generating set in a nilpotent loop
Q of prime power order by Theorem 3.3, we therefore need to calculate the
Frattini subloop Φ(Q). The following recent result shows that this can be
done by transferring the calculation to the multiplication group

Mlt(Q) = 〈Lx, Rx : x ∈ Q〉

of Q, as long as Mlt(Q) is itself nilpotent. This might seem counterproductive
since Mlt(Q) is typically much larger than Q, but it is a group, and standard
algorithms from computational group theory apply.

Theorem 3.4 (Gábor P. Nagy). Let Q be a finite loop such that Mlt(Q) is
nilpotent. Consider the natural permutation action of Mlt(Q) on Q. Then
Φ(Q) is equal to the orbit of the group Φ(Mlt(Q)) containing 1.

Let us now turn attention to Moufang loops, one of the most investigated
varieties of loops.

Glauberman and Wright proved that every Moufang loop of prime power
order is nilpotent [14, 15]. Bruck showed that a nilpotent loop of prime
power order has a nilpotent multiplication group, cf. [12, Lemma VI.2.2].
Theorems 3.3 and 3.4 therefore apply to Moufang loops of prime power order.
(However, we stress that they do not apply to general Moufang loops, much
less to general magmas, and hence the orbit computation of Theorem 3.4
does not supersede Algorithm 1.)

Moufang loops of order n < 64 were classified by Goodaire, May and
Raman [16], of order n ∈ {64, 81} by Nagy and Vojtěchovský [17], and of
order n = 243 by Slattery and Zenisek [18]. Libraries of Moufang loops are
available in the GAP [19] package LOOPS [20].

7

Example 3.5. Let Q be the 100th Moufang loop of order 64 in the LOOPS

package, i.e., MoufangLoop(64,100). Then G = Mlt(Q) is a nilpotent group
of order 4096. The Frattini subgroup Φ(G) of G has order 64. The Frat-
tini subloop Φ(Q) of Q is the orbit of Φ(G) containing 1, a set with 8 ele-
ments. Thus Q/Φ(Q) is an elementary abelian group of size 64/8 = 8 =
23, Q has rank 3, and any 3-element subset {x1, x2, x3} of Q such that
{x1Φ(Q), x2Φ(Q), x3Φ(Q)} forms a basis of the vector space Q/Φ(Q) is a
minimal generating set of Q.

We conclude with another observation for Moufang loops that impacts
Algorithm 1.

As in the case of groups, the Lagrange Theorem holds for Moufang
loops [21, 22], but unlike in the case of groups, no elementary proof of La-
grange Theorem is known for Moufang loops; all known proofs rely on the
classification of finite simple groups.

Theorem 3.6 (Gagola-Hall, Grishkov-Zavarnitsine). Let A be a finite Mo-
ufang loop and let S be a subloop of A. Then |S| divides |A|.

Corollary 3.7. Let A be a finite Moufang loop and let p be the smallest
prime dividing |A|. If S is a proper subloop of A then |S| ≤ |A|/p.

4. Algorithm

In this section we present an algorithm for finding a minimal generating
set of a general finite algebra A. The decision version of the problem is
in NP because verifying that a set of elements is generating can be done
in polynomial time.1 One could therefore find a rank of a finite algebra
by a series of SAT calls. Encoding the problem into SAT is essentially a
reachability problem, where we introduce Boolean variables six representing
that an element x is generated by applying i-times the operations of A. For
finite magmas, this results in a polynomial encoding because we only need to
consider at most |A| applications of the binary operation of multiplication.
Unfortunately, since the whole multiplication table needs to be considered in
each step, the resulting encoding is cubic, which renders it impractical.

Rather than solving the problem by a single SAT call, we propose to apply
the counterexample guided abstraction refinement paradigm (CEGAR) [23].

1We conjecture that it is also NP-hard but this is out of the scope of the paper.

8

S
〈S〉

C A

Figure 1: Illustration of the concept of a subcomplement C = Ar 〈S〉

This enables us to translate the problem into a sequence of sub-problems,
which are substantially easier than the whole problem.

If S is a subset of the algebra A, then C(S) = Ar 〈S〉 will be called the
subcomplement of S.2 The concept is illustrated by Figure 1. The terminol-
ogy is supposed to indicate that C(S) is a complement of the subalgebra 〈S〉,
as well as that C(S) is a subset of the complement Ar S.

Subcomplements are crucial to the presented algorithm for two reasons:
(i) the subcomplement C(S) is empty if and only if the set S is a generating
set, (ii) if a subcomplement is nonempty, every generating set must intersect
with it, cf. Proposition 4.1.

Proposition 4.1. Let A be an algebra, S a subset of A and C(S) = Ar〈S〉.
If C(S) is nonempty (that is, S does not generate A), then every generating
set of A has a nonempty intersection with C(S).

Proof. Suppose that T ⊆ A satisfies 〈T 〉 = A and T ∩ C(S) = ∅. Since
T ∩ (A r 〈S〉) = ∅ and T ⊆ A, it follows that T ⊆ 〈S〉. As 〈T 〉 is the
smallest subalgebra of A containing T , we deduce that A = 〈T 〉 ⊆ 〈S〉 6= A,
a contradiction.

Given a collection Γ of subsets of A, a subset H ⊆ A is a hitting set of Γ
if for every C ∈ Γ we have H∩C 6= ∅. By Proposition 4.1, any generating set
of A must be a hitting set of any collection Γ of nonempty subcomplements.

This enables us to invoke the implicit hitting set paradigm where new
sets C are gradually generated; interested reader is referred to relevant lit-
erature [24, 25, 26, 27, 28]. Here we focus on the specific algorithm for
generating sets inspired in this paradigm.

Algorithm 1 shows the overall structure of the computation. The algo-
rithm maintains a set of subcomplements Γ and in each iteration it calculates
a smallest hitting set S of Γ. If this hitting set is a generating set of A, the

2Note that in the case of finite quasigroups, the closure 〈S〉 in Algorithm 1 can be
calculated by closing the set S under multiplications only, cf. Lemma 2.1.

9

Algorithm 1: Minimal Generating Set

input : finite algebra A
output: minimal subset S of A s.t. 〈S〉 = A

1 Γ← ∅ // collected subcomplements

2 while true do
3 S ← minimal hitting set of Γ
4 if 〈S〉 = A then
5 return S // S is generating

6 Γ← Γ ∪ {extractSubcomplement(A, S)}

algorithm stops and we are done. Otherwise, we construct a new subcom-
plement (see below) and add it to the set Γ.

The minimum hitting set problem for a set of sets Γ is readily translated
into an integer linear program (ILP) as follows.

min
∑
x∈A

x subject to

x ∈ {0, 1} for every x ∈ A,∑
x∈C

x ≥ 1 for every C ∈ Γ.

We remark that calculating the smallest hitting set is a well-known NP-
complete problem [29], which warrants the use of ILP. Also observe that the
ILP program is always feasible since setting all x ∈ A to 1 trivially satisfies
all the constraints. Due to Proposition 4.1, any generating set of A must be
a hitting set of Γ and the fact that it is a smallest hitting set guarantees that
it is a minimal generating set, once found.

An important ingredient of Algorithm 1 is how to enlarge the set Γ of
subcomplements while S ⊆ A is under consideration. In the pseudocode,
this is encapsulated by the routine extractSubcomplement.

The most direct approach is to add the subcomplement A r 〈S〉 to Γ.
However, to speed up the algorithm, we attempt to calculate a smaller sub-
complement instead. Adding a smaller subcomplement to Γ restricts more
strongly future hitting sets S and therefore increases our chance of finding a
generating set or may speed up the demonstration of non-existence thereof.

10

Algorithm 2: Subcomplement minimization

input : finite algebra A and S ⊆ A
output: subcomplement C ⊆ Ar 〈S〉

1 E ← Ar 〈S〉 // possible extensions

2 while E 6= ∅ do
3 x← arbitrary element of E
4 if 〈S ∪ {x}〉 = A then
5 E ← E r {x} // S ∪ {x} already generating

6 else
7 S ← S ∪ {x}
8 E ← Ar 〈S〉

9 return Ar 〈S〉

A smaller subcomplement can be found by trying to extend the set S
by some element x ∈ A r 〈S〉 and check that it still does not generate the
whole of A. And if it does not, we use the subcomplement of this extended
S instead. This process is repeated until there are no more elements to try.
This procedure is summarized in Algorithm 2.

In essence, Algorithm 2 is greedy and does not guarantee to produce the
smallest possible subcomplement but it does guarantee that it is irreducible
in the sense that removing any element from it makes the extended S already
generating.

Note that Algorithm 2 requires O (|Ar 〈S〉|) tests 〈S ∪ {x}〉 6= A. Since
〈S〉 6= A is anti-monotone with respect to S, more advanced procedures can
be considered [30].

Example 4.2. As a toy example consider the Klein four-groupA = {e, a, b, c},
which is abelian and has rank 2. The product is defined by the following rules:
ex = xe = x, xx = e, and in other cases yz = w with w 6= y, w 6= z, w 6= e.

Calling the ILP solver on the initial empty Γ yields empty S as the mini-
mal hitting set, i.e. its subcomplement is the whole of A. Algorithm 2 reduces
the subcomplement’s size as follows. Suppose Algorithm 2 attempts to ex-
tend S with elements of A in the order e, a, b, c. Since 〈S∪{e}〉 = 〈{e}〉 = {e},
the element e is kept. Analogously, a is also kept. Extending with either of
b, c already gives a generating set and therefore these will not be inserted into
S. Hence, we are left with the subcomplement A \ 〈{e, a}〉 = {b, c}. This

11

means that after the 1st iteration of Algorithm 1, the set Γ is {{b, c}}.
Suppose that in the 2nd iteration the ILP solver returns S = {b} with

〈S〉 = {b, e}. In this case, Algorithm 2 is unable to extend S because adding
any element already generates A. Hence, after the 2st iteration of Algo-
rithm 1, the set Γ is {{b, c}, {a, c}}.

In the 3nd iteration, the ILP solver necessarily returns S = {c}. Sim-
ilarly as before, Algorithm 2 does not extend S. The set Γ increases to
{{b, c}, {a, c}, {a, b}}. At this point, at least 2 elements are necessary to
construct a hitting set of Γ, i.e., the lower bound on the rank of A is 2.

Suppose that the solver picks the hitting set S = {a, b}, which is gen-
erating and we have an answer. In this example, any hitting set will be
generating but this might not be true in general.

5. Experimental Evaluation

We consider the problem of computing the generating set of smallest
cardinality for a finite magma. As such, Algorithm 1 was implemented in
the tool mgens. Two versions of mgens were considered. The first version
computes the minimal hitting set on line 3 of Algorithm 1 iteratively using a
SAT solver together with encodings of cardinality constraints into CNF. The
SAT solver used was the CaDiCaL [31] solver using the library PBLIB [32]
to encode the cardinality constraints into CNF. The second version of mgens
takes advantage of the capabilities of an ILP solver to natively optimize a
cost function to compute the minimal hitting set. The ILP solver used was
the Gurobi [33] solver. In the experiments, we refer to the version of mgens
using the SAT solver with cardinality constraints as mgens-iter, while the
version using the ILP solver as mgens-opt.

Additionally, we have implemented a brute-force search that exhaustively
tests for each subset of the elements whether it is generating or not. The
search goes systematically from smallest to largest subsets and terminates
once a generating set is found. In the experiments, we refer to the brute-
force search as mgens-bf.

The experiments were run on a set of Moufang loops (see Section 3) and
products of Moufang loops with the groups of order 8 and 9. We considered
all Moufang loops from the package LOOPS [20] of GAP. The package contains
all nonassociative Moufang loops of order n ≤ 64 = 26 and of orders n =
81 = 34 and n = 243 = 35. Note that no efficient methods for calculating
the rank of (general) Moufang loops are known. A total of 4497 Moufang

12

loops were used. There are 5 groups of order 8 and 2 groups of order 9. The
total number of products between Moufang loops and groups, order 8 and 9,
amounts to 31479. We divided the benchmarks into four sets as follows:

• Moufangs — all the considered Moufang loops (4497 instances),

• Moufangs × G8.1 — the product between the Moufang loops and
the cyclic group of order 8 denoted as 8.1 (4497 instances),

• Moufangs × G8 — the product between the Moufang loops and the
groups of order 8 (22485 instances),

• Moufangs × G9 — the product between the Moufang loops and the
groups of order 9 (8994 instances).

Note that the set Moufangs × G8 includes the instances Moufangs ×
G8.1. Nevertheless we present the results for the set Moufangs × G8.1 in
order to be able to compare the different implementations. Given the large
number of benchmarks in Moufangs × G8, we obtain results for this set of
benchmarks using only our best implementation, that is mgens-opt.

All the experiments were performed on servers with Intel(R) Xeon(R)
CPU at 2.60GHz, 24 cores, 64GB RAM with a timeout of 600 seconds.

Table 1 presents the number of solved instances by each of the versions of
mgens grouped by the reported rank. The table suggests several interesting
observations. When multiplying the Moufang loops by the cyclic group of
order 8, the rank of the loops almost always goes up (by 1). For instance,
there are 780 Moufang loops of rank 3 but only 100 of the products have
rank 3. Notably, all of the loops of rank 5 lead to a product of rank 6.

Since the rank of the considered Moufang loops is at most 5, the maximum
possible rank is 8, which is obtained in products with the elementary abelian
group of order 8 (rank 3). Table 1 shows that this happens in all 80 cases.

As can be seen from the table, mgens-opt solves the largest number of
benchmarks, being able to solve instances with bigger ranks. On the other
hand, the brute-force search algorithm mgens-bf solves the least number of
instances, having difficulties solving instances with rank 4 or higher. Ad-
ditionally, we can also see from the table that all the versions are able to
solve all the Moufang loop benchmarks, while for product benchmarks, only
mgens-opt is able to solve the majority of the benchmarks followed by mgens-
iter.

13

Benchmark set Rank Total mgens-opt mgens-iter mgens-bf

Moufangs 3 780 780 780 780
4 3637 3637 3637 3637
5 80 80 80 80

Moufangs × G8.1 3 100 100 100 100
4 698 698 646 45
5 3619 3619 4 0
6 80 80 0 0

Moufangs × G8 3 361 361 n/a n/a
4 875 875 n/a n/a
5 5693 5634 n/a n/a
6 11616 11441 n/a n/a
7 3860 3832 n/a n/a
8 80 79 n/a n/a

Moufangs × G9 3 1440 1440 1440 1440
4 7300 7300 6927 34
5 237 237 0 0
6 17 17 0 0

Table 1: Number of instances solved per solver with the corresponding rank.

Figure 2 offers a more detailed presentation of the results, where the re-
sults are presented as cactus plots. A cactus plot shows how many instances
are solved within a specific timeout. The plot is obtained by ordering prob-
lem instances by CPU-time needed to solve the instance (in increasing order).
Then, each point in the plot corresponds to a problem instance where the
horizontal coordinate is its position in this sequence and the vertical coor-
dinate is CPU-time. Additionally, each of the points in the cactus plots is
colored according to the rank of the instance.

Figure 2 (a) confirms that all the versions of mgens are able to solve all
the Moufang loop benchmarks. Nevertheless, mgens-opt is able to solve all
the benchmarks in less than 10 seconds while, mgens-iter takes less than 40
seconds, and mgens-bf requires slightly more than 100 seconds.

From Figure 2 (b) and (d), we can see that mgens-opt is the fastest version

14

with the highest number of benchmarks solved, solving the majority of these
instances in less than 100 seconds, followed by the version mgens-iter. The
slowest version is mgens-bf that is able to solve less than a quarter of the
benchmarks within the timeout.

Finally, from Figure 2 (c) we can see that mgens-opt is able to solve the
majority of the benchmarks with less than 100 seconds each, many of them
with rank 7. The plots confirm that loops with higher rank are more difficult
to calculate, which is only natural since for a loop A of order n, the algorithm
needs to rule out

∑
k∈1..r(A)−1

(
A
k

)
possible candidates for a generating set.

In our experiments, ILP clearly outperforms SAT. Possible justification
for this might be that modern SAT solvers are anchored in propositional
resolution [34] and proving the optimality of a hitting set in propositional
resolution may lead to exponential refutations [35].

5.1. Difficult Instances

Out of the 35976 instances considered in the evaluation we were left with
263 unsolved. We tackled these instances as follows. Recall that Algorithm 2
is used to minimize a subcomplement in every iteration of the principal algo-
rithm (Algorithm 1). Algorithm 2 has a random component because exten-
sion elements can be tried in an arbitrary order. We reran the algorithm with
randomly shuffled order of elements, which have solved new 193 instances,
leaving 66 unsolved. This observation gives us a simple way of tackling a
hard instance by trying different random orders—controlled by a seed for
the pseudorandom generator.

For the 66 unsolved instances we tried 10 different seeds with a 60 second
timeout, resolving further 46 instances. So in the end, we were left with 20
instances not solved by our algorithm. However, since they were all of order
512 = 29 we were able to apply Theorems 3.3 and 3.4 (applicable to Moufang
loops of order that is a power of some prime number).

All the instances that required solving by hand had rank 7 except in one
case where the rank was 6 and one case of 8. Further, all these instances
resulted from a product of a Moufang loop of order 64 with the elementary
Abelian group of order 8. This is not surprising because this group has
rank 3 and therefore has the potential of substantially increasing the rank of
the product. We have also tested running our algorithm on these instances
with an enforced lower bound 7 on the rank and then the algorithm always
terminated, i.e., providing a witness for the generating set whose size we have
determined theoretically.

15

0 1000 2000 3000 4000

0

20

40

60

80

100 mgens-opt
mgens-iter
mgens-bf

1

2

3

4

5

6

7

8

(a) Moufangs

0 1000 2000 3000 4000

0

100

200

300

400

500

600 mgens-opt
mgens-iter
mgens-bf

1

2

3

4

5

6

7

8

(b) Moufangs × G8.1

0 5000 10000 15000 20000

0

100

200

300

400

500

mgens-opt

1

2

3

4

5

6

7

8

(c) Moufangs × G8

0 2000 4000 6000 8000

0

100

200

300

400

500

600 mgens-opt
mgens-iter
mgens-bf

1

2

3

4

5

6

7

8

(d) Moufangs × G9

Figure 2: Cactus plots for different sets of instances using the solvers mgens-iter,
mgens-opt and mgens-bf

16

6. Conclusions

The article tackles the problem of calculating the rank of a given magma,
which translates to calculating the smallest generating set of the magma. To
the best of our knowledge, no other algorithm for this problem is known.

It is easy to see that the problem is in NP but converting it to SAT is
impractical because we are unaware of an encoding better than cubic. Rather
than converting to a single NP-hard problem, we propose an algorithm that
solves a series of (easier) NP-hard problems.

As a case study, we have considered a set of Moufang loops as well as their
products with groups. In this way, we have obtained algebraically interesting
magmas. Random magmas typically have rank 1 and therefore would not be
interesting for our study.

The experimental results show that this approach is surprisingly effective.
We are able to solve instances with magmas of order 512 and rank 8. Since(
512
8

)
≈ 1017, any brute-force approaches are ruled out for such cases. On the

theoretical side, we have also shown that for Moufang loops of prime power
order it is possible to convert the problem to a calculation of the Frattini
subgroup of a larger permutation group.

It is an open problem why the algorithm performs so well on the consid-
ered instances. In particular, despite the problem being in NP, it is practically
efficient to solve it by Algorithm 1, which may require exponential number
of calls to an NP oracle. One may therefore ask, if there is a theoretical
justification why our algorithm works so well. Such justification cannot be
entirely trivial because the subcomplements are necessarily large in our case
(see Corollary 3.7).

We believe that the results themselves will be interesting for algebraists.
For instance, the rank of a product of two magmas is upper bounded by the
sum of the ranks of the operands. However, in some cases the rank of the
product is lower than the sum. This behavior is not characterized and our
results provide data to help forming new hypotheses in that direction.

References

[1] A. Shalev, Asymptotic group theory, Notices Amer. Math. Soc. 48 (4)
(2001) 383–389.

[2] A. Seress, Permutation group algorithms. Cambridge Tracts in Mathe-
matics, Vol. 152, Cambridge University Press, Cambridge, 2003.

17

[3] R. D. Schafer, An introduction to nonassociative algebras. Pure and Ap-
plied Mathematics, Vol. 22, Academic Press, New York-London, 1966.

[4] C. H. Papadimitriou, M. Yannakakis, On limited nondeterminism and
the complexity of the V-C dimension, Journal of Computer and System
Sciences 53 (2) (1996) 161–170. doi:https://doi.org/10.1006/jcss.
1996.0058.

[5] F. D. Volta, A. Lucchini, Finite groups that need more generators than
any proper quotient, Journal of the Australian Mathematical Society.
Series A. Pure Mathematics and Statistics 64 (1) (1998) 82–91. doi:

10.1017/s1446788700001312.

[6] V. Arvind, J. Torán, The complexity of quasigroup isomorphism and
the minimum generating set problem, in: T. Asano (Ed.), Algo-
rithms and Computation, 17th International Symposium, ISAAC 2006,
Kolkata, India, December 18-20, 2006, Proceedings, Vol. 4288 of Lec-
ture Notes in Computer Science, Springer, 2006, pp. 233–242. doi:

10.1007/11940128_25.

[7] L. Halbeisen, M. Hamilton, P. Růžička, Minimal generating sets of
groups, rings, and fields, Quaestiones Mathematicae 30 (3) (2007) 355–
363. doi:10.2989/16073600709486205.

[8] F. Mengazzo, The number of generators of a finite group, Irish Math.
Soc. Bulletin 50, http://www.irishmathsoc.org//bull50/ (2003).

[9] A. Lucchini, The largest size of a minimal generating set of a finite
group, Archiv der Mathematik 101 (1) (2013) 1–8. doi:10.1007/

s00013-013-0527-y.

[10] A. Lucchini, F. Menegazzo, Computing a set of generators of minimal
cardinality in a solvable group, Journal of Symbolic Computation 17 (5)
(1994) 409–420. doi:10.1006/jsco.1994.1027.

[11] J. C. Baez, The octonions, Bull. Amer. Math. Soc. (N.S.) 39 (2) (2002)
145–205. doi:10.1090/S0273-0979-01-00934-X.

[12] R. H. Bruck, A survey of binary systems. Gruppentheorie Ergebnisse der
Mathematik und ihrer Grenzgebiete, Vol. 20, Springer Verlag, Berlin-
Göttingen-Heidelberg, 1958.

18

https://doi.org/https://doi.org/10.1006/jcss.1996.0058
https://doi.org/https://doi.org/10.1006/jcss.1996.0058
https://doi.org/10.1017/s1446788700001312
https://doi.org/10.1017/s1446788700001312
https://doi.org/10.1007/11940128_25
https://doi.org/10.1007/11940128_25
https://doi.org/10.2989/16073600709486205
http://www.irishmathsoc.org//bull50/
https://doi.org/10.1007/s00013-013-0527-y
https://doi.org/10.1007/s00013-013-0527-y
https://doi.org/10.1006/jsco.1994.1027
https://doi.org/10.1090/S0273-0979-01-00934-X

[13] A. Drápal, M. Kinyon, P. Vojtěchovský, Loop theory, in preparation.

[14] G. Glauberman, On loops of odd order. II, J. Algebra 8 (1968) 393–414.
doi:10.1016/0021-8693(68)90050-1.

[15] G. Glauberman, C. R. B. Wright, Nilpotence of finite Moufang 2-loops,
J. Algebra 8 (1968) 415–417. doi:10.1016/0021-8693(68)90051-3.

[16] E. G. Goodaire, S. May, M. Raman, The Moufang loops of order less
than 64, Nova Science Publishers, Inc., Commack, NY, 1999.

[17] G. P. Nagy, P. Vojtěchovský, The Moufang loops of order 64 and 81, J.
Symbolic Comput. 42 (9) (2007) 871–883. doi:10.1016/j.jsc.2007.

06.004.

[18] M. C. Slattery, A. L. Zenisek, Moufang loops of order 243, Comment.
Math. Univ. Carolin. 53 (3) (2012) 423–428.

[19] The GAP Group, GAP – Groups, Algorithms, and Programming, Ver-
sion 4.11.1 (2021).
URL https://www.gap-system.org

[20] G. Nagy, P. Vojtěchovský, LOOPS, a package for GAP 4.3, download
GAP at https://www.gap-system.org/. (2006).

[21] S. G. III, J. Hall, Lagrange’s theorem for Moufang loops, Acta Sci. Math.
(Szeged) 71 (1–2) (2005) 45–64.

[22] A. N. Grishkov, A. V. Zavarnitsine, Lagrange’s theorem for Moufang
loops, Mathematical Proceedings of the Cambridge Philosophical Soci-
ety 139 (1) (2005) 41–57. doi:10.1017/s0305004105008388.

[23] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith, Counterexample-
guided abstraction refinement for symbolic model checking, J. ACM
50 (5) (2003).

[24] J. Davies, F. Bacchus, Solving MAXSAT by solving a sequence of sim-
pler SAT instances, in: J. H. Lee (Ed.), Principles and Practice of
Constraint Programming - CP 2011 - 17th International Conference,
CP 2011, Perugia, Italy, September 12-16, 2011. Proceedings, Vol. 6876
of Lecture Notes in Computer Science, Springer, 2011, pp. 225–239.
doi:10.1007/978-3-642-23786-7_19.

19

https://doi.org/10.1016/0021-8693(68)90050-1
https://doi.org/10.1016/0021-8693(68)90051-3
https://doi.org/10.1016/j.jsc.2007.06.004
https://doi.org/10.1016/j.jsc.2007.06.004
https://www.gap-system.org
https://www.gap-system.org
https://www.gap-system.org
https://www.gap-system.org/
https://doi.org/10.1017/s0305004105008388
https://doi.org/10.1007/978-3-642-23786-7_19

[25] J. Davies, F. Bacchus, Exploiting the power of MIP solvers in MaxSAT,
in: M. Järvisalo, A. V. Gelder (Eds.), Theory and Applications of Sat-
isfiability Testing - SAT 2013 - 16th International Conference, Helsinki,
Finland, July 8-12, 2013. Proceedings, Vol. 7962 of Lecture Notes
in Computer Science, Springer, 2013, pp. 166–181. doi:10.1007/

978-3-642-39071-5_13.

[26] A. Ignatiev, M. Janota, J. Marques-Silva, Quantified maximum satisfi-
ability: A core-guided approach, in: Theory and Applications of Satisfi-
ability Testing - SAT, Vol. 7962 of Lecture Notes in Computer Science,
Springer, 2013, pp. 250–266. doi:10.1007/978-3-642-39071-5_19.

[27] E. Moreno-Centeno, R. M. Karp, The implicit hitting set approach
to solve combinatorial optimization problems with an application to
multigenome alignment, Oper. Res. 61 (2) (2013) 453–468. doi:10.

1287/opre.1120.1139.

[28] P. Saikko, J. P. Wallner, M. Järvisalo, Implicit hitting set algorithms for
reasoning beyond NP, in: C. Baral, J. P. Delgrande, F. Wolter (Eds.),
Principles of Knowledge Representation and Reasoning: Proceedings
of the Fifteenth International Conference, KR, AAAI Press, 2016, pp.
104–113.
URL http://www.aaai.org/ocs/index.php/KR/KR16/paper/view/

12812

[29] M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to
the Theory of NP-Completeness, W. H. Freeman, 1979.

[30] M. Janota, J. Marques-Silva, On the query complexity of selecting min-
imal sets for monotone predicates, Artif. Intell. 233 (2016) 73–83.
URL https://doi.org/10.1016/j.artint.2016.01.002

[31] A. Biere, CaDiCaL, Lingeling, PLingeling, Treengeling and YalSAT en-
tering the SAT competition 2017 (2017).

[32] T. Philipp, P. Steinke, PBLib – a library for encoding pseudo-boolean
constraints into CNF, in: M. Heule, S. Weaver (Eds.), Theory and Appli-
cations of Satisfiability Testing – SAT 2015, Vol. 9340 of Lecture Notes
in Computer Science, Springer International Publishing, 2015, pp. 9–16.
doi:10.1007/978-3-319-24318-4_2.

20

https://doi.org/10.1007/978-3-642-39071-5_13
https://doi.org/10.1007/978-3-642-39071-5_13
https://doi.org/10.1007/978-3-642-39071-5_19
https://doi.org/10.1287/opre.1120.1139
https://doi.org/10.1287/opre.1120.1139
http://www.aaai.org/ocs/index.php/KR/KR16/paper/view/12812
http://www.aaai.org/ocs/index.php/KR/KR16/paper/view/12812
http://www.aaai.org/ocs/index.php/KR/KR16/paper/view/12812
http://www.aaai.org/ocs/index.php/KR/KR16/paper/view/12812
https://doi.org/10.1016/j.artint.2016.01.002
https://doi.org/10.1016/j.artint.2016.01.002
https://doi.org/10.1016/j.artint.2016.01.002
https://doi.org/10.1007/978-3-319-24318-4_2

[33] L. Gurobi Optimization, Gurobi optimizer reference manual (2021).
URL http://www.gurobi.com

[34] J. Marques-Silva, I. Lynce, S. Malik, Conflict-driven clause learning
SAT solvers, in: A. Biere, M. Heule, H. van Maaren, T. Walsh (Eds.),
Handbook of Satisfiability - Second Edition, Vol. 336 of Frontiers in
Artificial Intelligence and Applications, IOS Press, 2021, pp. 133–182.
doi:10.3233/FAIA200987.

[35] S. Jukna, Exponential lower bounds for semantic resolution, in:
P. Beam, S. R. Buss (Eds.), Proof Complexity and Feasible Arith-
metics, Proceedings of a DIMACS Workshop, New Brunswick, New
Jersey, USA, April 21-24, 1996, Vol. 39 of DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, DIMACS/AMS, 1996,
pp. 163–172. doi:10.1090/dimacs/039/10.

21

http://www.gurobi.com
http://www.gurobi.com
https://doi.org/10.3233/FAIA200987
https://doi.org/10.1090/dimacs/039/10

	Introduction
	Background on Quasigroups and Loops
	Results on Frattini Subalgebras and Moufang Loops
	Algorithm
	Experimental Evaluation
	Difficult Instances

	Conclusions

