
How to Approximate Leximax-optimal Solutions

Miguel Cabral1, Mikoláš Janota2, and Vasco Manquinho3

1 IST - Universidade de Lisboa, Portugal
miguel.cabral@tecnico.ulisboa.pt

2 Czech Technical University Prague, Czechia
mikolas.janota@gmail.com

3 INESC-ID, IST - Universidade de Lisboa, Portugal
vasco.manquinho@tecnico.ulisboa.pt

Abstract

Many real-world problems can be modelled as Multi-Objective Combinatorial Opti-
misation (MOCO) problems. In the multi-objective case, there is not a single optimum
value but a set of optima known as Pareto-optima. However, the number of Pareto-optima
can be too large to enumerate. Instead, one can compute a minimum Pareto-optimum
according to an order. The leximax order selects a Pareto-optimum such that the objec-
tive functions with the worst values are penalised the least. Unlike other orders, such as
the lexicographic order or the weighted sum order, the leximax order does not favour any
objective function at the expense of others. Also, the leximax-optimum has a guaranteed
small trade-off between the objective functions.

In some real-world MOCO problems, the time to find a solution may be limited and
computing a leximax-optimal solution may take too long. In such problems, we search for
solutions that can be computed in the given admissible amount of time and that are as
close to the leximax-optimum as possible. In other words, we approximate the leximax-
optimum.

In this paper, we present and evaluate SAT-based algorithms and heuristics for ap-
proximating the leximax-optimum of Multi-Objective Boolean Satisfiability problems. The
evaluation is performed in the context of the package upgradeability problem, on the set
of benchmarks from the Mancoosi International Solver Competition, with combinations of
up to five different objective functions.

1 Introduction

In Boolean Satisfiability (SAT) and Pseudo-Boolean Satisfiability (PBS), the goal is to find
an assignment to binary variables (assuming one of two possible values) such that a set of
constraints is satisfied. In SAT, the constraints are clauses, whereas in PBS the constraints
are linear inequalities. Maximum Satisfiability (MaxSAT) and Pseudo-Boolean Optimisation
(PBO) are the optimisation versions of the SAT and PBS problems, respectively. In these
problems, the goal is to find a satisfying assignment that minimises the value of the objective
function. The objective function is a weighted sum of the variables. Combinatorial Optimisa-
tion is used to refer to any kind of problem where the goal is to find an assignment to variables
that satisfies constraints and minimises the value of an objective function. The type of con-
straints and the domain of the variables is left unspecified. Thus, both MaxSAT and PBO are
Combinatorial Optimisation problems. A satisfying assignment is also called feasible solution
or just solution. A satisfying assignment that minimises the objective function is called optimal
solution. Multi-Objective Combinatorial Optimisation (MOCO) is the extension of Combina-
torial Optimisation, with multiple objective functions to minimise. The problem with having
more than one objective function is that the objective functions may be conflicting. Decreas-
ing one objective function may lead to an increase of another objective function. Despite this

How to Approximate Leximax-optimal Solutions Cabral, Janota and Manquinho

trade-off, if, for a solution, there exists another solution that decreases the value of all objective
functions, then the second solution should clearly be preferred. This leads to the well-known
basic notion of Pareto-optimality. A Pareto-optimal solution is such that there does not exist
another solution that decreases all objective functions at the same time.

When solving a MOCO problem, one possibility is to try to enumerate the set of Pareto-
optima and leave it to an expert to choose one of those solutions. Another approach is to choose
an order to compare objective vectors and then minimise according to that order. For example,
there is the lexicographic order and the leximax order. The lexicographic-optimum corresponds
to minimising the highest priority objective function, then the second highest priority objective
function, and so on. For instance, the vector (20, 50) is lexicographically better than the vector
(40, 30), assuming the first coordinate is the priority. On the other hand, the leximax-optimum
corresponds to minimising the maximum of the objective functions, then the second maximum
of the objective functions, and so on. For instance, the vector (40, 30) is leximax-better than
the vector (20, 50), since the maximum 40 is smaller than the maximum 50. The lexicographic-
optimum and the leximax-optimum are both a Pareto-optimum.

Because of prioritisation, the lexicographic-optimum will likely have a large trade-off between
the objective functions. That is, some objective functions will have very small values and other
objective functions will have very large values. On the other hand, the leximax-optimum tends
to have a small trade-off between the objective functions, meaning that all the objective values
are close.

The interest in the leximax order comes from the notion of fairness [8]. In some real-
world problems, namely in ones involving human agents, it is necessary to find fair solutions.
Fairness in this context means making “the worst-off as well-off as possible” [8], which means
minimising the maximum of the objective functions. Thus, while the lexicographic order is
suitable in problems with objective functions that should be prioritised, the leximax order is
suitable in problems with objective functions that should be treated equally and fairly.

The package upgradeability problem emerges in the context of package management systems
- tools that automate the installation, removal, and upgrade of software packages. Some exam-
ples of package managers are apt-get, used in the Debian Linux distribution, dnf, used in the
RedHat Linux distribution, pip, used in the programming language Python, and opam, used
in the programming language Ocaml. Every time a user makes a request to a package man-
ager to install, remove or upgrade some software packages, the package manager needs to solve
the package upgradeability problem: a set of packages to be installed, removed or upgraded
must be found to meet the user request and at the same time satisfy all dependencies and
conflicts between the installed packages. It is known that the package upgradeability decision
problem is NP-complete [9]. However, real upgradeability instances can be solved extremely
fast, by encoding the problem into a Propositional Satisfiability (SAT) formula and calling a
SAT solver. Moreover, in some cases it is possible to lexicographically optimise several objec-
tive functions in a few seconds. Some examples of interesting objectives are: minimising the
number of removed packages and minimising the number of not-up-to-date packages. In the
Mancoosi European research project1, a new generation of package upgradeability solvers was
developed with the goal of finding lexicographically optimal solutions to the package upgrade-
ability problem. These solvers relied on encodings to Answer Set Programming [12], Maximum
Satisfiability [15], Pseudo Boolean Optimisation [2] and Integer Linear Programming [20, 18].

The leximax order has not been vastly explored in package upgradeability. To our best
knowledge, there is only one package upgradeability solver that has implemented leximax opti-

1http://www.mancoosi.org

2

http://www.mancoosi.org

How to Approximate Leximax-optimal Solutions Cabral, Janota and Manquinho

misation, the mccs2 tool [20, 18]. Furthermore, in many benchmarks, these solvers are unable
to find a lexicographically optimal solution in an admissible amount of time. The user can not
wait for more than a few seconds for a solution. When there are time restrictions for solving a
problem, as is the case of package upgradeability, the focus shifts from optimisation to finding
a good enough approximation. When approximating an optimisation problem, the goal is to
find solutions as close to the optimum as possible in a short amount of time. In MaxSAT,
SAT-UNSAT search algorithms find the optimum by repeatedly obtaining a solution and then
searching for another solution with a smaller objective value [17]. Hence, intermediate solu-
tions of SAT-UNSAT algorithms can be used to approximate MaxSAT. It is well-known that
MaxSAT can also be approximated by finding a Maximal Satisfiable Subset (MSS). Hence, one
can enumerate multiple MSSes and output the best solution found in the allowed time inter-
val. The MSS enumeration approach usually obtains better quality solutions than a MaxSAT
SAT-UNSAT algorithm, when the computation time is very limited [19, 13].

In this paper, we propose two approaches to approximate the leximax optimum: MSS
enumeration and a modified Guided Improvement Algorithm [14]. The Guided Improvement
Algorithm is an algorithm for enumerating Pareto-optima. The modification that we propose
forces the algorithm to seek leximax-better solutions while still obtaining guaranteed Pareto-
optimal intermediate solutions. Moreover, we propose two heuristics in the search of a single
MSS that can guide the search towards leximax-better solutions. Although we focus on the
leximax optimisation of Boolean Satisfiability problems, the algorithms can be easily adapted
to Pseudo-Boolean Satisfiability.

This paper is organised as follows. In Section 2 we briefly review the fundamental concepts
and notation, as well as the definition of the package upgradeability problem. In Section 3
related work in multi-objective combinatorial optimisation is highlighted. In Section 4 we
explain the proposed algorithms and heuristics for approximating the leximax-optimum. In
Section 5 a detailed experimental evaluation is performed on a large set of benchmarks of the
multi-objective package upgradeability problem. Finally, Section 6 concludes the paper.

2 Preliminaries

Standard definitions and notation of Boolean variable, literal, clause, conjunctive normal form
(CNF) and the SAT problem are used [7]. The MaxSAT problem and its partial and weighted
variants are defined in [19], as well as Minimal Correction Subsets (MCSes) and Maximal
Satisfiable Subsets (MSSes). Pseudo-Boolean Satisfiability is defined in [22]. Some important
notions in Multi-Objective Combinatorial Optimisation are defined next.

Given a set of constraints, Single-Objective Combinatorial Optimisation consists in finding
a feasible solution (an assignment to the variables that satisfies the constraints) that minimises
the value of the objective function. We often refer to a feasible solution as just a solution.
A solution should not be confused with an optimal solution, which is a feasible solution that
minimises the objective function.

Definition 2.1. Given an assignment α and objective functions f1, . . . , fn, the vector

~f(α) = (f1(α), . . . , fn(α))

is called the objective vector. fi(α) is the value of objective function fi under α, for each
i = 1, . . . , n.

2https://www.i3s.unice.fr/~cpjm/misc/mccs.html

3

https://www.i3s.unice.fr/~cpjm/misc/mccs.html

How to Approximate Leximax-optimal Solutions Cabral, Janota and Manquinho

In Multi-Objective Combinatorial Optimisation we still want to obtain a feasible solution,
but the notion of minimum of an objective vector is not immediate.

The notion of Pareto optimality captures the idea of universal optimality - regardless of
the nature of the problem or whether some objective functions weigh more than others, a
Pareto-optimal solution should always be preferred to a non-Pareto-optimal solution.

Definition 2.2 (Pareto-optimal). Let ~a = (a1, . . . , an) ∈ Rn and ~b = (b1, . . . , bn) ∈ Rn. We

write ~a ≺Par
~b, if for all i ∈ {1, . . . , n}, ai ≤ bi and there exists j ∈ {1, . . . , n} such that aj < bj .

A feasible solution α is Pareto-optimal if there does not exist another feasible solution α′ such
that ~f(α′) ≺Par

~f(α).

Example 2.1. Given two objective vectors (20, 20, 20) and (40, 40, 40), we have

(20, 20, 20) ≺Par (40, 40, 40),

and we conclude that the second assignment is not Pareto-optimal. However, it is not the case
that

(20, 20, 20) ≺Par (10, 40, 40),

nor
(10, 40, 40) ≺Par (20, 20, 20).

Definition 2.3 (Lexicographically-optimal). Let ~a = (a1, . . . , an) ∈ Rn and ~b = (b1, . . . , bn) ∈
Rn. We define the lexicographic relation, ≺lexico, as follows. We write ~a ≺lexico

~b whenever
there exists i ∈ {1, . . . , n} such that ai < bi and, for all j ∈ {1, . . . , i − 1}, aj = bj . A feasible
solution α is lexicographically optimal if there does not exist a feasible solution α′ such that
~f(α′) ≺lexico

~f(α).

Example 2.2. We have that

(10, 40, 40) ≺lexico (20, 20, 20),

since 10 < 20.

Proposition 2.1. Every lexicographically-optimal solution is Pareto-optimal [10].

Definition 2.4 (Leximax-optimal). Let ~a = (a1, . . . , an) ∈ Rn and ~b = (b1, . . . , bn) ∈ Rn.
Let ~a↓ denote the n-tuple with the elements of ~a sorted in decreasing order. We call the i-th
component of ~a↓ the i-th maximum of ~a. The tuples ~a and ~b are leximax-indistinguishable
if ~a↓ = ~b↓. A tuple ~a is leximax-better than ~b, written ~a ≺leximax

~b, if ~a↓ ≺lexico
~b↓. A

feasible solution α is leximax-optimal if there does not exist a feasible solution α′ such that
~f(α′) ≺leximax

~f(α).

Example 2.3. We have that

(20, 20, 20) ≺leximax (10, 40, 40),

since the following holds for their sorted versions:

(20, 20, 20) ≺lexico (40, 40, 10).

Proposition 2.2. Every leximax-optimal solution is Pareto-optimal [10].

4

How to Approximate Leximax-optimal Solutions Cabral, Janota and Manquinho

In short, lexicographical minimisation is the sequential minimisation of the most important
objective function to the least important objective function. Leximax minimisation is the
sequential minimisation of the maxima of the objective vector.

Remark. Recall that, in MaxSAT, the goal is to maximise the sum of the weights of the
satisfied soft clauses. On the other hand, objective functions are to be minimised. Hence,
whenever we mention an objective function in the context of MaxSAT, we refer to the weighted
sum of the falsified soft clauses.

Package Upgradeability Problem. This problem consists in: (1) a universe of packages
with dependencies and conflicts; (2) a set of initially installed packages; (3) a user request to
install, remove or upgrade some packages. Given a package p, a dependency of p is a set of
packages and it imposes that if p is installed, then one of the packages must also be installed.
A conflict is a binary relation between packages. Package p1 and p2 having a conflict means
both packages can not be installed at the same time. The problem is easily modelled in SAT
by taking a Boolean variable for each package p that is true if and only if p is installed.

3 Related Work

Leximax Optimisation. Some algorithms for obtaining leximax-optimal solutions have been
developed in Constraint Programming [8]. One of the algorithms has been adapted to Integer
Linear Programming and implemented in the package upgradeability tool mccs3 [20, 18]. In
Boolean and Pseudo-Boolean Satisfiability (SAT and PBS), no leximax optimisation algorithm
requiring only SAT/PBS solvers is currently known.

Approximation. Recent work done by Ignatiev et al. [13] explores the computation of MSSes
to approximate the lexicographic optimum. The work involved extending the package upgrade-
ability tool packup [15] with MSS enumeration, motivated by the practical time restrictions of
package upgradeability. Our work is similar, but with a focus on the leximax order.

The work of Terra-Neves et al. [21] is also related to approximation in Multi-Objective
Combinatorial Optimisation and MSS enumeration. The goal of their work was to enumerate
the set of Pareto-optimal solutions using MSS enumeration.

4 Contribution

In this Section we present (1) an adaptation of the well-known MSS linear search algorithm [3] to
the multi-objective paradigm with heuristics to guide the search towards the leximax optimum
and (2) a modification of the Guided Improvement Algorithm [14] to force that each time a
solution is found, the objective vector is closer to the leximax optimum.

4.1 MSS Heuristics

The MSS linear search algorithm is perhaps the simplest MSS/MCS algorithm. The MSS and
the MCS are initially empty, and are constructed as we iterate through all soft clauses. In each
iteration we call a SAT solver to test if the soft clause can be added to the MSS. If it can, then
the clause is added to the MSS, otherwise, the clause is added to the MCS.

3https://www.i3s.unice.fr/~cpjm/misc/mccs.html

5

https://www.i3s.unice.fr/~cpjm/misc/mccs.html

How to Approximate Leximax-optimal Solutions Cabral, Janota and Manquinho

Algorithm 1: MSS extended linear search with multiple objective functions

Input: Hard clauses H and multiple sets of soft clauses F1 . . .Fn

Output: Assignment α. The set of satisfied clauses under α is an MSS of (H,
⋃n

i=1 Fi)
1 S1 ← H . . .Sn ← H // MSS per objective

2 T1 ← F1 . . . Tn ← Fn // unprocessed clauses

3 while
⋃n

i=1 Ti 6= ∅ do
4 i← ChooseNextObjective(T1, . . . , Tn,S1, . . . ,Sn)
5 c← GetClause(Ti)
6 Ti ← Ti \ {c}
7 (st, α′)← SAT(

⋃n
i=1 Si ∪ {c})

8 if st then
9 α← α′

10 Si ← Si ∪ {c}
11 UpdateSatisfiedClauses(α, T1, . . . , Tn,S1, . . . ,Sn)

12 return α

The linear search algorithm’s performance can be improved by reducing the number of calls
to the SAT solver. Each time a solution is found, we can check if there are more satisfied soft
clauses and add them to the MSS. Thus, in the extended [19] linear search algorithm, the MSS
in construction can grow by more than one element in each iteration.

When there are multiple objective functions, i.e. multiple sets of soft clauses F1, . . . ,Fn, the
subset of clauses that we obtain is an MSS of the single-objective problem with the following set
of soft clauses

⋃n
i=1 Fi. Algorithm 1 shows the extended linear search algorithm with multiple

objective functions. In the pseudocode, the SAT solver takes as input the set of clauses, and
returns a pair (st, α′), where st is a Boolean: true if and only if the formula is satisfiable, and
α′ is the solution, if there is one. The sets Ti, i ∈ {1, . . . , n}, contain the clauses that have not
been checked (‘T’ for ‘TODO’). The sets Si, i ∈ {1, . . . , n}, contain the clauses that are part of
the MSS (‘S’ for ‘Satisfiable’). The UpdateSatisfiedClauses routine removes clauses that α
satisfies in Ti and puts them in Si, i ∈ {1, . . . , n}. The ChooseNextObjective routine outputs
the index i ∈ {1, . . . , n} of the sets Ti, from which the next clause will be removed and tested
for addition to the MSS. Our heuristics for approximating leximax address the implementation
of these two routines. We address two questions:

1. Which objective function do we choose the next clause from? Suppose we start by always
choosing the next clause from the same objective function, without adding satisfied clauses
from other objective functions. We expect that, when the MSS search is completed, the
chosen objective function’s value will be quite small, which, in general, will impose a high
lower bound on some of the remaining objective functions. Since the goal of leximax
optimisation is to minimise the maxima of the objective vector, this scenario should be
avoided.

2. Should we add all satisfied clauses to the MSS? The more clauses are added to the MSS,
without having to call the SAT solver, the better the performance. However, note that
the clauses that are added to the MSS impose an upper bound on the respective objective
functions. By blindly adding all satisfied clauses to the MSS, we risk bounding an objective
function too much.

We propose:

6

How to Approximate Leximax-optimal Solutions Cabral, Janota and Manquinho

1. choosing the next clause from an objective function whose upper bound is the largest
among all objective functions.

2. if the chosen clause can be satisfied and there are other satisfied clauses, add to the MSS
as many satisfied clauses as possible while trying to even out all the upper bounds. For
example, suppose we have three objective functions, and in a certain iteration the upper
bounds are 1500, 1800 and 1600, and there are 500 satisfied clauses that can be added to
the MSS, for each objective function. Instead of adding all clauses, resulting in the upper
bounds 1000, 1300 and 1100, we add 200 clauses of the first objective function, all 500
clauses of the second objective function, and 300 clauses of the third objective function.
The upper bounds become 1300, 1300 and 1300.

4.2 Guided Improvement Algorithm for Leximax

In a nutshell, the Guided Improvement Algorithm [14] for enumerating the set of Pareto-optima
works by repeatedly finding a Pareto-optimal solution and then blocking its objective vector
with a constraint. A single Pareto-optimal solution is computed using the following loop:

1. Compute a solution.
2. Get the objective vector (k1, . . . , kn).
3. Add constraints f1 ≤ k1, . . . , fn ≤ kn and

∨n
i=1 fi ≤ ki − 1.

4. Repeat until the formula becomes unsatisfiable (Pareto optimality is proven).

The algorithm can be adapted to approximate the leximax optimum by essentially replacing
the constraint

∨n
i=1 fi ≤ ki − 1 by the constraint fj ≤ kj − 1, where kj = max(k1, . . . , kn).

Algorithm 2: Guided Improvement Algorithm adapted to leximax

Input: Hard clauses H, objective functions f1, . . . , fn, initial satisfying assignment α
Output: Assignment α is successively updated with a leximax-better objective vector

1 i← 1
2 while i ≤ n do
3 α← FindParetoSol(H, f1, . . . , fn, α, i)
4 (i, α)← BlockOptimum(H, f1, . . . , fn, α, i)
5 return α

Algorithm 2 shows the pseudocode of the Guided Improvement Algorithm adapted to the
leximax order. It is composed of a while loop. In each iteration, as in the original Guided Im-
provement Algorithm, we start by finding a Pareto-optimal solution (function FindParetoSol).
Then, that Pareto-optimum is blocked (function BlockOptimum), so as to find a different
Pareto-optimum in the next iteration. Instead of finding random Pareto-optimal solutions,
our approach is to find Pareto-optimal solutions such that each new intermediate solution is
leximax-better than the previous one. As in the MSS linear search pseudocode, the SAT solver
returns a pair (st, α′), where st is true if and only if the formula is satisfiable and α′ is a solution,
if there is one. Note that, in practice, the algorithm may stop if it reaches a timeout. In that
case, the best solution so far is output.

Function FindParetoSol, shown in Algorithm 3, consists of a while loop. The loop termi-
nates when Pareto-optimality of α is proven. ~k = (k1, . . . , kn) denotes the objective vector of

α. Recall that ~k↓ denotes ~k sorted in decreasing order. The index i refers to the i-th maximum
of the objective vector, i.e. k↓i . The idea is to (1) fix i−1 objective functions with value greater

7

How to Approximate Leximax-optimal Solutions Cabral, Janota and Manquinho

Algorithm 3: Function FindParetoSol

Input: Hard clauses H, objective functions f1, . . . , fn, assignment α and index i
Output: Pareto-optimal solution α

1 (k1, . . . , kn)← (f1(α), . . . , fn(α))
2 while i ≤ n do

3 P ← {p ∈ {1, . . . , n} : kp > k↓i }
4 M ← {m ∈ {1, . . . , n} : km = k↓i }
5 while |P | < i− 1 do
6 m← SelectFrom(M) // get any element of M
7 M ←M \ {m}
8 P ← P ∪ {m}

9 R← {r ∈ {1, . . . , n} : kr < k↓i }
10 (st, α′)← SAT(H ∪

⋃
m∈M{fm ≤ km − 1} ∪

⋃
p∈P {fp = kp}) ∪

⋃
r∈R{fr ≤ kr})

11 if st then
12 α← α′

13 (k1, . . . , kn)← (f1(α), . . . , fn(α))

14 else
15 i← i+ 1

16 return α

or equal to the i-th maximum (set P), (2) try to decrease the remaining objective functions
equal to the i-th maximum (set M) and (3) bound all objective functions smaller than the i-th
maximum (set R). Set P is named after ‘Previous’, as it corresponds to the objective functions
equal to previous maxima (the current maximum being the i-th). These objective functions
can no longer be decreased without increasing other objective functions. Set M is named after
‘Maximum’ as it contains the objective functions not in P equal to the i-th maximum. These
objective functions may possibly be decreased (without increasing other objective functions).
Set R is named after ‘Remaining’. These constraints ensure that (1) when the formula is sat-
isfiable, the new solution is leximax-better than the previous solution; and (2) if the formula is
unsatisfiable and i is incremented to n+ 1, the loop ends and α is Pareto-optimal.

In function BlockOptimum, shown in Algorithm 4, we simply remove the set R, responsible
for bounding objective functions smaller than the current maximum. By removing the set R,
we check if the i-th maximum can be decreased without bounding further the smaller objective
functions, but still fixing the previous i − 1 maxima stored in P . If the formula is satisfiable,
we get a leximax-better solution. Otherwise, we increment i. This process is repeated until a
solution is found or i exceeds n.

Example 4.1. Suppose we have three objective functions f1, f2 and f3. Suppose we have
an initial solution with objective vector (400, 500, 300). We enter function FindParetoSol

where we will find a Pareto-optimal solution. The SAT solver is called on the hard clauses
and the following constraints: f1 ≤ 400, f2 ≤ 499 and f3 ≤ 300. Suppose the SAT solver
returns a solution with objective vector (300, 200, 300). The SAT solver is now called with
the following additional constraints: f1 ≤ 299, f2 ≤ 200, f3 ≤ 299. Suppose the SAT solver
proves unsatisfiability. Then, we will try to decrease the 2nd maximum, with the 1st fixed.
The SAT solver is called on the hard clauses and the following constraints: f1 = 300, f2 ≤ 200

8

How to Approximate Leximax-optimal Solutions Cabral, Janota and Manquinho

Algorithm 4: Function BlockOptimum

Input: Hard clauses H, objective functions f1, . . . , fn, assignment α and index i
Output: Assignment α and index i

1 (k1, . . . , kn)← (f1(α), . . . , fn(α))
2 repeat

3 P ← {p ∈ {1, . . . , n} : kp > k↓i }
4 M ← {m ∈ {1, . . . , n} : km = k↓i }
5 while |P | < i− 1 do
6 m← SelectFrom(M) // get any element of M
7 M ←M \ {m}
8 P ← P ∪ {m}

9 (st, α′)← SAT(H ∪
⋃

r 6∈P {fr ≤ k
↓
i − 1} ∪

⋃
p∈P {fp = kp})

10 if st then
11 α← α′

12 else
13 i← i+ 1

14 until st or i > n
15 return (i, α)

and f3 ≤ 299. Suppose the SAT solver outputs a solution with objective vector (300, 200, 250).
The SAT solver is now called on the hard clauses and the following constraints: f1 = 300,
f2 ≤ 200 and f3 ≤ 249. Suppose the formula is unsatisfiable. Then, we move on to decreasing
the 3rd maximum. The SAT solver is called on the hard clauses and the following constraints:
f1 = 300, f2 ≤ 199 and f3 = 250. Suppose the formula is unsatisfiable. We conclude that the
last solution with objective vector (300, 200, 250) is Pareto-optimal and function FindParetoSol

ends. Now, in function BlockOptimum, we try to find a leximax-better solution by decreasing
the i-th maximum without bounding the objective functions smaller than the i-th maximum. In
this case, i = 1, and the SAT solver is called on the hard clauses and the following constraints:
f1 ≤ 299, f2 ≤ 299 and f3 ≤ 299. If the formula is satisfiable, we execute FindParetoSol

to find another Pareto-optimal solution. Otherwise, we conclude that 300 is the optimal 1st
maximum, and we proceed by fixing f1 = 300 and moving on to the 2nd maximum. In this case,
we call the SAT solver on the hard clauses and the following constraints: f1 = 300, f2 ≤ 249
and f3 ≤ 249. And so on.

The cardinality constraints (of the form f = k and f ≤ k) can be encoded to CNF in several
ways. We implemented a sorting network encoding, using Batcher’s odd even merge sorting
network construction [5, 16]. This encoding is explained for example in [1].

Guided Improvement Algorithm for Leximax versus MSS Enumeration. In the
Guided Improvement Algorithm for Leximax, we construct a sorting network for each objective
function. As a result, the number of variables and clauses increases significantly. Consequently,
each call to a SAT solver can be quite expensive. Hence, in a short amount of time, the Guided
Improvement Algorithm may only be able to find a few solutions with a very bad objective
value. However, each time a solution is found, we have a guaranteed leximax-better solution.
On the other hand, MSSes are generally much faster to compute, and much more solutions
will be obtained with MSS enumeration than with the Guided Improvement Algorithm. The

9

How to Approximate Leximax-optimal Solutions Cabral, Janota and Manquinho

disadvantage of MSS enumeration is that there is no guarantee that the next MSS found will
have a leximax-better objective vector than the previous one.

Incremental SAT Solving. The algorithms we have discussed can be implemented using
incremental SAT solving (the IPASIR interface is described in [4]). In both MSS and Guided
Improvement Algorithm approaches, we highlight two approaches: (1) using only one SAT solver
throughout the entire computation and (2) using a new SAT solver in each single MSS/Pareto-
optimal search.

Approach (1) does not allow the addition of the clauses of the MSS and MCS in construction
(or cardinality constraints in the Guided Improvement Algorithm) to the hard clauses. We can
only add them as assumptions, which means that all consequences of those clauses have to be
deduced in each call to the SAT solver. On the other hand, it allows keeping the learned clauses
of the formula during the entire computation.

Approach (2) allows the addition of the aforementioned clauses not as assumptions but as
hard clauses. However, each time we use a different SAT solver we lose the learned clauses of
the previous MSS/Pareto-optimal solution search.

When finding a single MSS/Pareto-optimal solution, approach (2) is obviously faster. The
question is the performance of the approaches when obtaining several MSSes/Pareto-optimal
solutions. It may happen that as more solutions are found and the number of SAT calls
increases, the performance of approach (1) surpasses that of approach (2).

5 Evaluation

The experiments were run on 24 core Intel(R) Xeon(R) E5-2630 v2 CPU 2.60GHz machines
with Debian Linux operating system and 4 processes running at the same time. The 142
upgradeability benchmarks4 used are from the Mancoosi International Solver Competition of
2011. The 5 objective functions (or user criteria) used are: removed, notuptodate, changed,
unsat recommends and new.5 The 142 benchmarks were run for all 26 combinations of two,
three, four and five objective functions, resulting in 3692 problems. All solvers were run with
a single thread.

First of all, the Integer Linear Programming approach [18] of the package upgradeability
tool mccs6 [20, 18] was evaluated (version 1.1), with a time limit of 180 seconds (3 minutes).
mccs was run with the commercial solver CPLEX7 (version 12.10.0), and the non-commercial
solver SCIP [11] (version 7.0.1). Within the 180 seconds time limit, mccs with CPLEX was
able to solve around 97% of the instances, and mccs with SCIP was able to solve around 69%
of the instances. Figure 1 shows the cactus plot of the solving times of these solvers. In the
case of CPLEX, a large percentage of the problems (roughly 80%) can be solved in under 30
seconds, and more than 50% of the problems can be solved in under 10 seconds. Hence, our
new SAT-based approaches will likely not be competitive with mccs using CPLEX, in these
package upgradeability problems.

Next, our new SAT-based approaches and the Integer Linear Programming approach are
compared. Four main algorithms are compared:

4Benchmarks: http://data.mancoosi.org/misc2011/problems/
5Criteria definition: https://www.mancoosi.org/misc-2011/criteria/
6https://www.i3s.unice.fr/~cpjm/misc/mccs.html
7https://www.ibm.com/analytics/cplex-optimizer

10

http://data.mancoosi.org/misc2011/problems/
https://www.mancoosi.org/misc-2011/criteria/
https://www.i3s.unice.fr/~cpjm/misc/mccs.html
https://www.ibm.com/analytics/cplex-optimizer

How to Approximate Leximax-optimal Solutions Cabral, Janota and Manquinho

Figure 1: Cactus plot of the run times of solved instances, for mccs with CPLEX and SCIP.

1. Linear search MSS enumeration with our two heuristics of choosing the next clause from
the maximum and adding satisfiable clauses to even out the upper bounds of the objective
functions. Abbreviation: MSS-H (H from Heuristics).

2. Linear search MSS enumeration with sequential choice of the next clause and addition of
all satisfiable clauses. Abbreviation: MSS-N (N from Normal).

3. Guided Improvement Algorithm for Leximax. Abbreviation: GIA.

4. Intermediate solutions of the Integer Linear Programming approach, using the package
upgradeability tool mccs with CPLEX and SCIP. Abbreviations: CPLEX and SCIP.

Our approximation algorithms were implemented in the package upgradeability tool
packup [15, 13] and the IPASIR interface of cadical [6] (version 1.3.1) was used for the SAT
calls. Each algorithm was tested with both incremental SAT solving variants: using always the
same SAT solver in the enumeration versus using a new SAT solver in the search for a single MSS
or Pareto-optimal solution. When using the same SAT solver during the entire computation,
the algorithms’ abbreviations are appended with the string ‘-I’ (from ‘Incremental’).

For package upgradeability problems, we considered an admissible time limit of 10 seconds.
However, larger time limits are also evaluated, as the algorithms may be used to approximate
other Multi-Objective Combinatorial Optimisation problems. The results are summarised as
victory tables. For each timeout t there is a table. In each table, the algorithms are compared
pairwise. In each instance, if algorithm x obtains a leximax-better solution than algorithm y,
in the course of t seconds, then x wins against y. If the best solutions of algorithms x and
y are leximax-indistinguishable, then it is a draw. In row x, column y of each table we have
the difference between the percentage of wins of algorithm x and the percentage of losses of
algorithm x against algorithm y. Hence, a positive number (highlighted in bold) in row x,
column y, means algorithm x won more instances than algorithm y. Thus, rows with mainly

11

How to Approximate Leximax-optimal Solutions Cabral, Janota and Manquinho

positive numbers are the winners. Also, note that the tables are symmetric, in the sense that
if in row x column y there is a number n, then in row y column x there is the number −n. The
results are shown in Tables 1, 2, 3, 4 and 5, for timeouts of 10, 30, 60, 120 and 180 seconds,
respectively.

10 Seconds MSS-H MSS-N GIA MSS-H-I MSS-N-I GIA-I CPLEX SCIP
MSS-H - 34 46 9 56 51 −66 20
MSS-N −34 - 34 −5 20 41 −65 20

GIA −46 −34 - −41 −21 9 −64 28
MSS-H-I −9 5 41 - 40 45 −68 20
MSS-N-I −56 −20 21 −40 - 29 −68 20

GIA-I −51 −41 −9 −45 −29 - −67 27
CPLEX 66 65 64 68 68 67 - 61

SCIP −20 −20 −28 −20 −20 −27 −61 -

Table 1: Victory Table for a timeout of 10 seconds. Row x, column y, is the difference between
the percentage of wins and the percentage of losses of solver x against solver y. A positive
number (in bold) in row x, column y, means more victories for solver x against solver y.

30 Seconds MSS-H MSS-N GIA MSS-H-I MSS-N-I GIA-I CPLEX SCIP
MSS-H - 45 9 −24 48 17 −85 −5
MSS-N −45 - −17 −32 −9 −2 −85 −4

GIA −9 17 - −5 21 14 −65 12
MSS-H-I 24 32 5 - 37 18 −85 −5
MSS-N-I −48 9 −21 −37 - −5 −84 −4

GIA-I −17 2 −14 −18 5 - −67 12
CPLEX 85 85 65 85 84 67 - 51

SCIP 5 4 −12 5 4 −12 −51 -

Table 2: Victory Table for a timeout of 30 seconds. Row x, column y, is the difference between
the percentage of wins and the percentage of losses of solver x against solver y. A positive
number (in bold) in row x, column y, means more victories for solver x against solver y.

60 Seconds MSS-H MSS-N GIA MSS-H-I MSS-N-I GIA-I CPLEX SCIP
MSS-H - 47 13 −39 46 −5 −86 −30
MSS-N −47 - −44 −44 −17 −31 −85 −28

GIA −13 44 - 13 43 9 −60 −7
MSS-H-I 39 44 −13 - 45 −3 −86 −29
MSS-N-I −46 17 −43 −45 - −31 −85 −28

GIA-I 5 31 −9 3 31 - −61 −7
CPLEX 86 85 60 86 85 61 - 40

SCIP 30 28 7 29 28 7 −40 -

Table 3: Victory Table for a timeout of 60 seconds. Row x, column y, is the difference between
the percentage of wins and the percentage of losses of solver x against solver y. A positive
number (in bold) in row x, column y, means more victories for solver x against solver y.

12

How to Approximate Leximax-optimal Solutions Cabral, Janota and Manquinho

120 Seconds MSS-H MSS-N GIA MSS-H-I MSS-N-I GIA-I CPLEX SCIP
MSS-H - 47 −24 −45 46 −18 −86 −54
MSS-N −47 - −51 −48 −21 −47 −85 −53

GIA 24 51 - 21 50 4 −56 −26
MSS-H-I 45 48 −21 - −47 −15 −86 −54
MSS-N-I −46 21 −50 47 - −46 −84 −53

GIA-I 18 47 −4 15 46 - −56 −25
CPLEX 86 85 56 86 84 56 - 32

SCIP 54 53 26 54 53 25 −32 -

Table 4: Victory Table for a timeout of 120 seconds. Row x, column y, is the difference between
the percentage of wins and the percentage of losses of solver x against solver y. A positive
number (in bold) in row x, column y, means more victories for solver x against solver y.

180 Seconds MSS-H MSS-N GIA MSS-H-I MSS-N-I GIA-I CPLEX SCIP
MSS-H - 47 −29 −47 45 −23 −86 −66
MSS-N −47 - −57 −50 −23 −51 −85 −64

GIA 29 57 - 25 56 6 −54 −34
MSS-H-I 47 50 −25 - 49 −20 −86 −65
MSS-N-I −45 23 −56 −49 - −51 −84 −64

GIA-I 23 51 −6 20 51 - −54 −34
CPLEX 86 85 54 86 84 54 - 26

SCIP 66 64 34 65 64 34 −26 -

Table 5: Victory Table for a timeout of 180 seconds. Row x, column y, is the difference between
the percentage of wins and the percentage of losses of solver x against solver y. A positive
number (in bold) in row x, column y, means more victories for solver x against solver y.

5.1 Discussion

General Comparison. The Integer Linear Programming approach using the commercial
solver CPLEX is clearly the best approach, for all the analysed time limits. However, the SAT-
based approaches had a better performance than the Integer Linear Programming approach
using the non-commercial solver SCIP, in the 10 second timeout, and are competitive in the
30 second timeout. For larger timeouts, we observe that SCIP is better than all of the SAT-
based approaches. And, the greater the timeout, the greater the difference in performance.
For small timeouts, such as a 10 second timeout, the MSS enumeration approaches have the
best performance among all algorithms excluding CPLEX. For sufficiently large time limits,
the Guided Improvement Algorithm is better than MSS enumeration, the difference being
accentuated after the 60 second timeout.

Comparison of MSS Heuristics. In general, the two heuristics proposed for the computa-
tion of one MSS helped to obtain leximax-better solutions than if it were implemented using
the typical approach of choosing the clauses sequentially and adding all satisfiable clauses to
the MSS.

13

How to Approximate Leximax-optimal Solutions Cabral, Janota and Manquinho

Comparison of Incremental Approaches. The tables show similar behaviour between
using the same SAT solver during the entire computation and using a new SAT solver in each
MSS/Pareto-optimal solution search. However, the results suggest that using only one SAT
solver can become slightly better than using many SAT solvers, if the computation time is
sufficiently large, in the MSS enumeration case. In the Guided Improvement Algorithm case,
using multiple SAT solvers is slightly better for all timeouts. This is expected, as the number
of calls to the SAT solver in this case is small, and so adding constraints as hard clauses (not
as assumptions) at the expense of losing learned clauses pays off.

6 Conclusions

We proposed two adaptations of well-known algorithms in Multi-Objective Combinatorial Op-
timisation, with the goal of approximating the leximax-optimum. The leximax-optimum is
fair [8] Pareto-optimum, having typically a small trade-off between the objective functions.

The adaptation of the Guided Improvement Algorithm [14] and MSS enumeration [21, 13]
to leximax optimisation were presented. Two heuristics were proposed for the MSS extended
linear search algorithm [19]. These new SAT-based approaches for approximating the leximax-
optimum were empirically compared with an earlier Integer Linear Programming approach [18,
8], in a large set of benchmarks of the package upgradeability problem. The results show that
the Integer Linear Programming approach with the commercial solver CPLEX8 performs better
than all the other approaches, in timeouts of 10, 30, 60, 120 and 180 seconds. Excluding CPLEX,
the SAT-based approaches are better than or competitive with the Integer Linear Programming
approach, using the non-commercial solver SCIP [11], for small timeouts (10 and 30 seconds).
The MSS enumeration algorithm performed better than all the other approaches, excluding
CPLEX, in the 10 second timeout, which corresponds to a reasonable practical time limit in
package upgradeability. Moreover, the two heuristics proposed for the MSS extended linear
search algorithm enhanced its performance. However, the number of MSSes that the algorithm
is able to find, is very small compared to the total number of MSSes. In our implementation
of the MSS enumeration algorithms, we did not include any other heuristics not mentioned in
this paper. In particular, the order of traversal of clauses in the algorithms was fixed. We
believe this contributed to finding very similar MSSes. Hence, as future work, a more rigorous
assessment should be made of the MSS enumeration algorithms taking into account other known
heuristics, such as diversification techniques [22].

Acknowledgements

This work is supported in part by the Fundação para a Ciência e Tecnologia projects
UIDB/50021/2020, PTDC/CCI-COM/31198/2017 and PTDC/CCI-COM/32378/2017. The
results were supported by the Ministry of Education, Youth and Sports within the dedicated
program ERC CZ under the project POSTMAN with reference LL1902. This scientific article
is part of the RICAIP project that has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement No 857306.

8https://www.ibm.com/analytics/cplex-optimizer

14

https://www.ibm.com/analytics/cplex-optimizer

How to Approximate Leximax-optimal Solutions Cabral, Janota and Manquinho

References

[1] Ignasi Ab́ıo and Peter J Stuckey. Encoding linear constraints into sat. International Conference
on Principles and Practice of Constraint Programming, pages 75–91, 2014.

[2] Josep Argelich, Daniel Le Berre, Inês Lynce, João Silva, and Pascal Rapicault. Solving linux up-
gradeability problems using boolean optimization. Electronic Proceedings in Theoretical Computer
Science, 29:11–22, 07 2010.

[3] James Bailey and Peter Stuckey. Discovery of minimal unsatisfiable subsets of constraints using
hitting set dualization. Lecture Notes in Computer Science, 3350:174–186, 2005.

[4] Tomáš Balyo, Armin Biere, Markus Iser, and Carsten Sinz. Sat race 2015. Artificial Intelligence,
241:45–65, 2016.

[5] K.E. Batcher. Sorting networks and their applications. Proceedings of AFIPS Spring Joint Com-
puter Conference, 32:307–314, 1968.

[6] Armin Biere, Katalin Fazekas, Mathias Fleury, and Maximillian Heisinger. CaDiCaL, Kissat,
Paracooba, Plingeling and Treengeling entering the SAT Competition 2020. B-2020-1:51–53, 2020.

[7] Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors. The Art of Computer
Programming: Fundamental algorithms, volume 185 of Frontiers in Artificial Intelligence and
Applications. IOS Press, 2009.

[8] Sylvain Bouveret and Michel Lemâıtre. Computing leximin-optimal solutions in constraint net-
works. Artificial Intelligence, 173(2):343–364, 2009.

[9] Roberto Di Cosmo, Berke Durak, Xavier Leroy, Fabio Mancinelli, and Jérôme Vouillon. Maintain-
ing large software distributions: new challenges from the FOSS era. Proceedings of the FRCSS
2006 workshop, 2006. EASST Newsletter.

[10] Matthias Ehrgott. Multicriteria Optimization. Springer-Verlag, Berlin, Heidelberg, 2005.

[11] Gerald Gamrath, Daniel Anderson, Ksenia Bestuzheva, Wei-Kun Chen, Leon Eifler, Maxime
Gasse, Patrick Gemander, Ambros Gleixner, Leona Gottwald, Katrin Halbig, Gregor Hendel,
Christopher Hojny, Thorsten Koch, Pierre Le Bodic, Stephen J. Maher, Frederic Matter, Matthias
Miltenberger, Erik Mühmer, Benjamin Müller, Marc E. Pfetsch, Franziska Schlösser, Felipe Ser-
rano, Yuji Shinano, Christine Tawfik, Stefan Vigerske, Fabian Wegscheider, Dieter Weninger, and
Jakob Witzig. The SCIP Optimization Suite 7.0. Technical report, Optimization Online, March
2020.

[12] Martin Gebser, Roland Kaminski, and Torsten Schaub. aspcud: A linux package configuration
tool based on answer set programming. Electronic Proceedings in Theoretical Computer Science,
65, 09 2011.

[13] Alexey Ignatiev, Mikoláš Janota, and Joao Marques-Silva. Towards efficient optimization in pack-
age management systems. 2014.

[14] Daniel Jackson, H.-Christian Estler, and Derek Rayside. The guided improvement algorithm for
exact, general-purpose, many-objective combinatorial optimization. 07 2009.

[15] Mikoláš Janota, Inês Lynce, Vasco Manquinho, and Joao Marques-Silva. Packup: Tools for pack-
age upgradability solving: System description. Journal on Satisfiability, Boolean Modeling and
Computation, 8, 01 2012.

[16] D.E. Knuth. The Art of Computer Programming, volume 3: Sorting and Searching. Addison-
Wesley, 1973.

[17] Miyuki Koshimura, Tong Zhang, Hiroshi Fujita, and Ryuzo Hasegawa. Qmaxsat: A partial max-
sat solver system description. Journal on Satisfiability, Boolean Modeling and Computation, 8,
2012.

[18] Mancoosi deliverable 4.3. http://www.mancoosi.org/reports/d4.3.pdf.

[19] Joao Marques-Silva, Federico Heras, Mikolas Janota, Alessandro Previti, and Anton Belov. On
computing minimal correction subsets. Proceedings of the Twenty-Third International Joint Con-
ference on Artificial Intelligence, page 615–622, 2013.

15

http://www.mancoosi.org/reports/d4.3.pdf

How to Approximate Leximax-optimal Solutions Cabral, Janota and Manquinho

[20] Claude Michel and Michel Rueher. Handling software upgradeability problems with milp solvers.
Electronic Proceedings in Theoretical Computer Science, 29:1–10, 07 2010.

[21] Miguel Terra-Neves, Inês Lynce, and Vasco Manquinho. Introducing pareto minimal correction
subsets. Proceedings of the Twentieth International Conference Theory and Applications of Satis-
fiability Testing, pages 195–211, 2017.

[22] Miguel Terra-Neves, Inês Lynce, and Vasco Manquinho. Enhancing constraint-based multi-
objective combinatorial optimization. Proceedings of the AAAI Conference on Artificial Intel-
ligence, 2018.

16

	Introduction
	Preliminaries
	Related Work
	Contribution
	MSS Heuristics
	Guided Improvement Algorithm for Leximax

	Evaluation
	Discussion

	Conclusions

