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Abstract—This short paper proposes to learn models of
satisfiability modulo theories (SMT) formulas during solving.
Specifically, we focus on infinite models for problems in the logic
of linear arithmetic with uninterpreted functions (UFLIA). The
constructed models are piecewise linear. Such models are useful
for satisfiable problems but also provide an alternative driver for
model-based quantifier instantiation (MBQI).

Index Terms—SMT, infinite models, piecewise linear

I. INTRODUCTION

Formulas with quantifiers remain a major challenge for
satisfiability modulo theories (SMT) [1] solvers. This is espe-
cially true when quantifiers are combined with uninterpreted
functions. Predominantly, SMT solvers tackle quantifiers by
gradually instantiating them by ground terms. Such terms
may be chosen by a variety of techniques, which themselves
have further degrees of freedom that are addressed by specific
heuristics in the concrete implementations of the solvers.

One of the oldest techniques is e-matching [2], which
is mainly syntactic and does not guarantee any complete-
ness. Refutation completeness under certain conditions can
be achieved by simple enumerative instantiation [3], [4].
Term generation can also be further focused by syntactic
guidance [5] or conflicts [6].

A quantifier instantiation technique that stands out is model-
based quantifier instantiation (MBQI) [7], which unlike the
above-mentioned enables showing a formula SAT. This in-
volves constructing a sequence of candidate models that are
checked against the formula and drive further instantiations.
In their earlier work, Bradley and Manna identify the array
property [8], [9], for which they show that a finite set of
instantiations is always complete—MBQI can be seen as an
instantiation generalization of this approach [10].

An interesting question arises in the context of MBQI
and that is how to construct the candidate models based on
the models of the current ground part (which is gradually
being strengthened by further instantiations). In this paper,
we propose to attempt to learn piecewise linear functions to
represent the candidate models. We use simple, fast algorithms
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that construct such functions based on the values obtained
from the ground model. In that sense, our approach is purely
semantic—it ignores the syntactic form of the formula, which
contrasts with the current techniques that are mainly syntacti-
cally driven [10, Sec. 5].

We implement the proposed techniques in the state-of-the-
art SMT solver cvc5 [11] and report encouraging results,
where number of SAT responses increases and does not incur
a slowdown for UNSAT problems.

To the best of our knowledge such learning had not been
attempted in the context of MBQI. Some related approaches
appear in the literature, finite models have been learned in the
context of finite model finding [12]. Invariants and termination
conditions in the context of software verification have been
constructed in an analogous fashion [13]–[15]. Another related
research direction is function and program synthesis. Notably,
Barbosa et al. [16] learn syntactically driven decision trees to
construct functions—while this is in the context of the SMT
solver cvc5 [11], it is separate from the main solver so for
instance it is not meant for UNSAT problems. In recent work,
Parsert et al. show that state-of-the-art synthesis approaches
often fail when faced with SMT problems [17].

II. LEARNING MODELS IN MBQI

MBQI works in iterations, where in each iteration there is
a candidate model M satisfying the ground part φg . Let us
assume that the formula being solved is of the form (∀xφ) for
some quantifier-free φ and a vector of variables x. A sub-SMT
call is issued to check weatherM satisfies (∃x¬φ). If it does
not, the formula is satisfied and the modelM is also a model
of the original formula. If it is satisfied by some vector c, then
the ground formula φg is strengthened by an instantiation of
(∀xφ) based on c—for simplicity one may imagine that c
is plugged into x. Hence, the process either terminates by
finding a model of the original formula, or when the ground
part becomes unsatisfiable (meaning that the original formula
is also unsatisfiable), or goes on indefinitely. This contrasts
with other quantifier instantiation techniques that are only able
to prove unsatisfiability.

Example 2.1: The following is a possible (non-terminating)
run of MBQI on the formula (∀x : Z f(x) > x). ITE



Algorithm 1: Greedy function construction

1 Function Build (P )
input : list of function points P ⊂ Zn × Z
output : function Zn 7→ Z

2 C ← {} // set of constraints
3 S ← {} // set of covered points
4 while P 6= ∅ do
5 a, v ← head(P )
6 C ′ ← C ∪ {aTy + c = v}
7 if SAT(C ′) then
8 C ← C ′

9 P ← tail(P )
10 S ← S ∪ {(a, v)}
11 else
12 break
13 s, c← Solve(C)
14 segment← λx. sTx+ c
15 if P = ∅ then return segment
16 else return ITE(Split(S, P ), segment,Build(P ))

abbreviation below signifies an if-then-else expression.

iteration φg f(x) c

0 true 0 0
1 f(0) > 0 1 1
2 f(0) > 0 ∧ f(1) > 1 ITE(x = 0, 1, 2) 2
...

...
...

...

Example 2.1 shows that for satisfiable formulas MBQI can
easily diverge, even though it could terminate quickly if it
guessed a different candidate model, for instance f(x) = x+1.
Neither Z3 nor cvc5 solves this formula. In this work, we focus
specifically on simple model candidates that can be composed
of linear functions.

Here we focus on problems from linear integer arithmetic
with uninterpreted functions (UFLIA). In each iteration of the
MBQI loop, we assume that we are given for each n-ary
function or predicate f finitely many points (a, v), where a
is a vector of n values for the arguments and v is the value
of f for these arguments, i.e., f(a) = v. The value is either
an integer (for functions) or Boolean (for predicates). These
function points appear naturally in MBQI as a model of the
ground part. So for instance, in iteration 2 of Example 2.1,
the model for the ground part might assign f(0) = 2 and
f(1) = 3, allowing us to propose f(x) = x+ 2.

Currently, we consider each function or predicate in the
formula separately. Hence, the objective is fitting a piecewise
linear function to these points, which is essentially a synthesis
task. Here we also need to take into account that the points
are in the space of integers and they must be matched
perfectly, not just approximately as in some methods used in
statistical learning, cf. [18]. Further, the process needs to be
efficient since it may be invoked many times during individual
iterations of MBQI.

Algorithm 2: Recursive predicate splitting

1 Function Build (P )
input : positive and negative points P ⊂ Zn×B
output : predicate Zn 7→ B

2 if P all negative then return λx.false
3 if P all positive then return λx.true
4 C ← {} // set of constraints
5 foreach (a, b) ∈ P do
6 if b then C ′ ← C ∪ {aTy ≥ c}
7 else C ′ ← C ∪ {aTy < c}
8 if SAT(C ′) then C ← C ′

9 s, c← Solve(C)
10 P+ ← Build({(a, b) ∈ P | sTa ≥ c})
11 P− ← Build({(a, b) ∈ P | sTa < c})
12 return λx. ITE(sTx ≥ c, P+, P−)

A straightforward approach to synthesizing a piecewise
linear function is a greedy one, where we first sort the points
according to some criterion (e.g., lexicographically) and then
try to greedily connect adjacent points into a single hyperplane.
This approach is outlined in Algorithm 1. The points are
organized in a list and to check if the current point fits onto
the hyperplane under construction, we add a corresponding
constraint to the set of equations C. These equations are of
the form aTy+ c = v, where a ∈ Zn, c ∈ Z and y is a vector
of integer variables. These are linear Diophantine equations
solvable in polynomial time [19, pgs. 343–345] [20].

Once the set of constraints C becomes unsatisfiable, a new
segment (hyperplane) needs to be started. In order to construct
an SMT term, we use an if-then-else (ITE) expression. The
splitting condition must be such that the points already covered
and the points yet to be covered become disjoint under this
condition. How exactly this split is done is represented by the
function Split in the pseudocode. In our implementation, we
use a lexicographic order on P , which lets us also easily split
the points as follows. If the last covered point is a0, a1, . . .
and the point yet to be covered is a′0, a

′
1, . . . , the condition is

x0 < a′0 ∨ (x0 = a′0 ∧ x1 < a′1) ∨ . . .

Additionally, this condition is simplified so that we consider
xi only if aj = a′j for j < i. If all the given points already fit
on the hyperplane under construction, no splitting is needed.

To treat predicates, rather than equations, as a primitive we
use inequalities of the form sTa ≥ c, s ∈ Zn, c ∈ Z. An
analogous greedy algorithm could be used to split a list of
points into segments. However, only very simple predicates
can be learned by this approach, since each segment is only
able to separate points by a single hyperplane. So for instance
equality cannot be learned.

An alternative is to use decision trees but here the question
is what should be the predicates used in the internal nodes of
the tree? In statistical machine learning, decision trees split
on the value of a single feature (variable) and this seems
to be too limiting since this enables capturing only limited



interactions between variables—again, equality would not be
learnable. Hence, we apply a hybrid approach where the points
are split into two parts by some hyperplane and the rest is
classified recursively. Effectively, we are building a decision
tree where each branch corresponds to a convex polyhedron
and each polyhedron should only contain points of one value.

This approach is outlined in Algorithm 2, which looks
greedily for a hyperplane splitting the encountered points into
positive and negative. Since this hyperplane might not split
the points perfectly, each “half” is further refined recursively.

For the Algorithm 2 to terminate, the chosen hyperplane
must split at least one positive and one negative point. Further,
the algorithm is sensitive to the order in which the points
are added to the constraints C. We use a simple heuristic for
this order. We first focus on a pair of points with different
values (one false, one true). Since there may be many such
pairs, we first sort by lexicographic order and pick a pair
of adjacent points (pi, pi+1) with different values. There still
may be multiple such pairs and we pick such pair that
maximizes information gain [21] by looking at the points
left and right of the pair—i.e., by looking at the subsets
{p1, . . . , pi} and {pi+1, . . . , pn}, as if they were split by the
hyperplane currently constructed (even though this might not
eventually be true, since we only guarantee that pi and pi+1

are split). Other points are added into the constraints by going
first right and then going left from the splitting pair—this order
was chosen arbitrarily.

Compared to Algorithm 2, the current implementation in
fact stops the greedy search on the first UNSAT response
from the sub-solver. The reason is that we want to avoid
inefficiencies in the sub-solver, which is currently used in an
incremental setting without push and pops.

Fig. 1 visualizes how equality can be found using this
algorithm. The example shows the evolution of models for
the formula (∀xy : ZR(x, y) ⇒ x = y) ∧ (∀xy : Zx =
y ⇒ R(x, y)), which unambiguously defines R as the equality.
Also, this instance is not solved by neither Z3 nor cvc5.

In the final iteration of the MBQI loop, the learning al-
gorithm is given the positive points {(0, 0), (1, 1), (−1,−1)}
and the negative points {(−1, 0), (0, 1), (1, 0), (1, 2)}. The
recursive algorithm learns the term ITE(x− y ≥ 0,−x+ y ≥
0, false), which can be seen as the intersection of x ≥ y and
y ≥ x, as expected.

III. EXPERIMENTS

The proposed algorithms were implemented in cvc5 [11]
in the main branch. The experiments were run with the time
limit of 30 s. We evaluate on two sets of benchmarks. The
first set was obtained by taking SMT-LIB benchmarks from
UFLIA that do not contain any uninterpreted sorts; these
tend to be unsatisfiable. The second set is obtained by taking
fragments of UFLIA benchmarks—we describe the process
in the following subsection. The solver cvc5 is run with
e-matching turned off, i.e. MBQI only. We compare two
versions: one where predicates are synthesized by Algorithm 1
(non-smart) and Algorithm 2 (smart).

solver solved: UNSAT

standard MBQI 3831
ours non-smart MBQI 3831
ours smart MBQI 3835
Z3 5809

TABLE I: Problems solved within 30 s time limit by four
solvers in a benchmark being a set of these UFLIA problems
that does not have sort declarations. There were no SAT results
in this benchmark. The total number of problems is 6288.

solver solved: SAT solved: UNSAT solved: total

standard MBQI 18843 7863 26706
ours non-smart MBQI 29456 7863 37319
ours smart MBQI 31977 7863 39840
Z3 28380 7482 35862

TABLE II: Problems solved within 30 s time limit by four
solvers in a benchmark based on UFLIA problems modified to
make most of the problems SAT by removing some assertions,
and where all declared sorts were substituted with Int. The
total number of problems is 69692.

The results for these two sets of problems are summarized
in Tables I and II, respectively. The results indicate that on sat-
isfiable instances, our semantic-guided syntactic outperforms
the syntactic approach of Z3. Our implementation does not
incur any slowdown on the unsatisfiable instances. In fact, a
handful of instances are solved on top of the default MBQI.

A. Generation of satisfiable problems

We consider a simple technique to generate interesting
satisfiable fragments from a given SMT formula—understood
as a conjunction of assertions. The idea is to consider some
parameter k and extract fragments that contain k uninterpreted
functions. Given an SMT formula, we choose k uninterpreted
function symbols that appear in the formula and filter out the
conjuncts that are only weakly related to these k symbols. Let
us describe the process for k = 2. Consider an SMT formula
φ and two uninterpreted function symbols f and g that occur
in φ. Consider subformula ψ in φ (one of the conjuncts) of
the form (∀xψ′), where x is an arbitrary set of variables. We
will say that ψ is in the f, g fragment of φ if it contains at
least one f or g and no other uninterpreted functions; there
is no limitation on constants. The global f, g fragment of
φ is defined as the conjunction of all the f, g fragments in
φ. We remark that in the current implementation, we only
consider subformulas that are denoted by the users as separate
assertions—this could be relaxed.

Since the current implementation only supports generation
of functions and predicates on integers, we only consider
UFLIA problems and replace all of interpreted sorts by Int.

IV. SUMMARY

In this short paper we propose algorithms for the con-
struction of piecewise-linear model candidates in the context
of model-based quantifier instantiation (MBQI), which is a
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Fig. 1: Four snapshots of the iterative process of finding an infinite model for a binary relation R, as described in Algorithm 2.
The relation R is constrained by two assertions: R(x, y)⇒ x = y and x = y ⇒ R(x, y). Yellow color signifies false and blue
color signifies true. Dots in the center are points with boolean values assigned by the solver. Rectangles in the background
depict the current relation assigned to R. The last figure shows the state in which the algorithm found the desired relation.

powerful instantiation technique for solving SMT problems
with quantification. In essence, this means learning an infinite
model based on finite information. The experimental evalua-
tion shows that many new satisfiable problems can be solved
by the proposed approach and at the same time it does not slow
down the solver for unsatisfiable problems. In the future, we
would like to explore closer collaboration with the sub-solvers
and the main algorithm, cf. [22].
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M. Preiner, A. Reynolds, Y. Sheng, C. Tinelli, and Y. Zohar, “cvc5: A
versatile and industrial-strength SMT solver,” in Tools and Algorithms
for the Construction and Analysis of Systems, TACAS. Springer, 2022.
[Online]. Available: https://doi.org/10.1007/978-3-030-99524-9 24

[12] M. Janota and M. Suda, “Towards smarter MACE-style model finders,”
in 22nd International Conference on Logic for Programming, Artificial
Intelligence and Reasoning, LPAR 2018, vol. 57. EasyChair, 2018,
pp. 454–470. [Online]. Available: https://doi.org/10.29007/w42s
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