Towards Learning Infinite SMT Models
(Work in Progress)

1st Mikoláš Janota
Czech Technical University in Prague
Prague, Czech Republic
https://orcid.org/0000-0003-3487-784X

2nd Bartosz Piotrowski
Czech Technical University in Prague
Prague, Czech Republic
https://orcid.org/0000-0002-1699-018X

3rd Karel Chvalovský
Czech Technical University in Prague
Prague, Czech Republic
https://orcid.org/0000-0002-0541-3899

Abstract—This short paper proposes to learn models of satisfiability modulo theories (SMT) formulas during solving. Specifically, we focus on infinite models for problems in the logic of linear arithmetic with uninterpreted functions (UFLIA). The constructed models are piecewise linear. Such models are useful for satisfiable problems but also provide an alternative driver for model-based quantifier instantiation (MBQI).

Index Terms—SMT, infinite models, piecewise linear

I. INTRODUCTION

Formulas with quantifiers remain a major challenge for satisfiability modulo theories (SMT) [1] solvers. This is especially true when quantifiers are combined with uninterpreted functions. Predominantly, SMT solvers tackle quantifiers by gradually instantiating them by ground terms. Such terms may be chosen by a variety of techniques, which themselves have further degrees of freedom that are addressed by specific heuristics in the concrete implementations of the solvers.

One of the oldest techniques is e-matching [2], which is mainly syntactic and does not guarantee any completeness. Refutation completeness under certain conditions can be achieved by simple enumerative instantiation [3], [4]. Term generation can also be further focused by syntactic guidance [5] or conflicts [6].

A quantifier instantiation technique that stands out is model-based quantifier instantiation (MBQI) [7], which unlike the above-mentioned enables showing a formula SAT. This involves constructing a sequence of candidate models that are checked against the formula and drive further instantiations. In their earlier work, Bradley and Manna identify the array property [8], [9], for which they show that a finite set of instantiations is always complete—MBQI can be seen as an instantiation generalization of this approach [10].

An interesting question arises in the context of MBQI and that is how to construct the candidate models based on the models of the current ground part (which is gradually being strengthened by further instantiations). In this paper, we propose to attempt to learn piecewise linear functions to represent the candidate models. We use simple, fast algorithms that construct such functions based on the values obtained from the ground model. In that sense, our approach is purely semantic—it ignores the syntactic form of the formula, which contrasts with the current techniques that are mainly syntactically driven [10, Sec. 5].

We implement the proposed techniques in the state-of-the-art SMT solver cvc5 [11] and report encouraging results, where number of SAT responses increases and does not incur a slowdown for UNSAT problems.

To the best of our knowledge such learning had not been attempted in the context of MBQI. Some related approaches appear in the literature, finite models have been learned in the context of finite model finding [12]. Invariants and termination conditions in the context of software verification have been constructed in an analogous fashion [13]–[15]. Another related research direction is function and program synthesis. Notably, Barbosa et al. [16] learn syntactically driven decision trees to construct functions—while this is in the context of the SMT solver cvc5 [11], it is separate from the main solver so for instance it is not meant for UNSAT problems. In recent work, Parsert et al. show that state-of-the-art synthesis approaches often fail when faced with SMT problems [17].

II. LEARNING MODELS IN MBQI

MBQI works in iterations, where in each iteration there is a candidate model \(M \) satisfying the ground part \(\phi_g \). Let us assume that the formula being solved is of the form \((\forall x \phi)\) for some quantifier-free \(\phi \) and a vector of variables \(x \). A sub-SMT call is issued to check weather \(M \) satisfies \((\exists x \neg \phi)\). If it does not, the formula is satisfied and the model \(M \) is also a model of the original formula. If it is satisfied by some vector \(c \), then the ground formula \(\phi_g \) is strengthened by an instantiation of \((\forall x \phi)\) based on \(c \)—for simplicity one may imagine that \(c \) is plugged into \(x \). Hence, the process either terminates by finding a model of the original formula, or when the ground part becomes unsatisfiable (meaning that the original formula is also unsatisfiable), or goes on indefinitely. This contrasts with other quantifier instantiation techniques that are only able to prove unsatisfiability.

Example 2.1: The following is a possible (non-terminating) run of MBQI on the formula \((\forall x : Z f(x) > x)\). ITE...
Algorithm 1: Greedy function construction

Function Build(P)
input : list of function points $P \subset \mathbb{Z}^n \times \mathbb{Z}$
output : function $\mathbb{Z}^n \rightarrow \mathbb{Z}$

2 $C \leftarrow \emptyset$ // set of constraints
3 $S \leftarrow \emptyset$ // set of covered points
4 while $P \neq \emptyset$ do
5 $a, v \leftarrow \text{head}(P)$
6 $C' \leftarrow C \cup \{a^T y + c = v\}$
7 if SAT(C') then
8 $C \leftarrow C'$
9 $P \leftarrow \text{tail}(P)$
10 $S \leftarrow S \cup \{(a, v)\}$
11 else
12 break
13 $s, c \leftarrow \text{Solve}(C)$
14 segment $\leftarrow \lambda x. s^T x + c$
15 if $P = \emptyset$ then return segment
16 else return ITE(Split(S, P), segment, Build(P))

Algorithm 2: Recursive predicate splitting

Function Build(P)
input : positive and negative points $P \subset \mathbb{Z}^n \times \mathbb{B}$
output : predicate $\mathbb{Z}^n \rightarrow \mathbb{B}$

2 if P all negative then return $\lambda x. \text{false}$
3 if P all positive then return $\lambda x. \text{true}$
4 $C \leftarrow \emptyset$ // set of constraints
5 foreach $(a, b) \in P$ do
6 if b then $C' \leftarrow C \cup \{a^T y \geq c\}$
7 else $C' \leftarrow C \cup \{a^T y < c\}$
8 if SAT(C') then $C \leftarrow C'$
9 $s, c \leftarrow \text{Solve}(C)$
10 $P^+ \leftarrow \text{Build}(((a, b) \in P \mid s^T a \geq c))$
11 $P^- \leftarrow \text{Build}(((a, b) \in P \mid s^T a < c))$
12 return $\lambda x. \text{ITE}(s^T x \geq c, P^+, P^-)$

A straightforward approach to synthesizing a piecewise linear function is a greedy one, where we first sort the points according to some criterion (e.g., lexicographically) and then try to greedily connect adjacent points into a single hyperplane. This approach is outlined in Algorithm 1. The points are organized in a list and to check if the current point fits onto the hyperplane under construction, we add a corresponding constraint to the set of equations C. These equations are of the form $a^T y + c = v$, where $a \in \mathbb{Z}_n^n$, $c \in \mathbb{Z}$ and y is a vector of integer variables. These are linear Diophantine equations solvable in polynomial time [19, pgs. 343–345] [20].

Once the set of constraints C becomes unsatisfiable, a new segment (hyperplane) needs to be started. In order to construct an SMT term, we use an if-then-else (ITE) expression. The splitting condition must be such that the points already covered and the points yet to be covered become disjoint under this condition. How exactly this split is done is represented by the function Split in the pseudocode. In our implementation, we use a lexicographic order on P, which lets us also easily split the points as follows. If the last covered point is a_0, a_1, \ldots and the point yet to be covered is a'_0, a'_1, \ldots, the condition is $x_0 < a'_0 \lor (x_0 = a'_0 \land x_1 < a'_1) \lor \ldots$

Additionally, this condition is simplified so that we consider x_i only if $a_j = a'_j$ for $j < i$. If all the given points already fit on the hyperplane under construction, no splitting is needed.

To treat predicates, rather than equations, as a primitive we use inequalities of the form $s^T a \geq c$, $s \in \mathbb{Z}_n^n, c \in \mathbb{Z}$. An analogous greedy algorithm could be used to split a list of points into segments. However, only very simple predicates can be learned by this approach, since each segment is only able to separate points by a single hyperplane. So for instance equality cannot be learned.

An alternative is to use decision trees but here the question is what should be the predicates used in the internal nodes of the tree? In statistical machine learning, decision trees split on the value of a single feature (variable) and this seems to be too limiting since this enables capturing only limited
interactions between variables—again, equality would not be learnable. Hence, we apply a hybrid approach where the points are split into two parts by some hyperplane and the rest is classified recursively. Effectively, we are building a decision tree where each branch corresponds to a convex polyhedron and each polyhedron should only contain points of one value.

This approach is outlined in Algorithm 2, which looks greedily for a hyperplane splitting the encountered points into positive and negative. Since this hyperplane might not split the points perfectly, each “half” is further refined recursively.

For the Algorithm 2 to terminate, the chosen hyperplane must split at least one positive and one negative point. Further, the algorithm is sensitive to the order in which the points are added to the constraints C. We use a simple heuristic for this order. We first focus on a pair of points with different values (one false, one true). Since there may be many such pairs, we first sort by lexicographic order and pick a pair of adjacent points (p_i,p_{i+1}) with different values. There still may be multiple such pairs and we pick such pair that maximizes information gain [21] by looking at the points left and right of the pair—i.e., by looking at the subsets $\{p_1,\ldots,p_i\}$ and $\{p_{i+1},\ldots,p_n\}$, as if they were split by the hyperplane currently constructed (even though this might not eventually be true, since we only guarantee that p_i and p_{i+1} are split). Other points are added into the constraints by going first right and then going left from the splitting pair—this order was chosen arbitrarily.

Compared to Algorithm 2, the current implementation in fact stops the greedy search on the first UNSAT response from the sub-solver. The reason is that we want to avoid inefficiencies in the sub-solver, which is currently used in an incremental setting without push and pops.

Fig. 1 visualizes how equality can be found using this algorithm. The example shows the evolution of models for the formula $(\forall xy : \mathbb{Z} R(x,y) \Rightarrow x = y) \land (\forall xy : \mathbb{Z} x = y \Rightarrow R(x,y))$, which unambiguously defines R as the equality. Also, this instance is not solved by neither Z3 nor cvc5.

In the final iteration of the MBQI loop, the learning algorithm is given the positive points $\{(0,0),(1,1),(-1,-1)\}$ and the negative points $\{(-1,0),(0,1),(1,0),(1,2)\}$. The recursive algorithm learns the term $\text{ITE}(x - y \geq 0, -x + y \geq 0, \text{false})$, which can be seen as the intersection of $x \geq y$ and $y \geq x$, as expected.

III. EXPERIMENTS

The proposed algorithms were implemented in cvc5 [11] in the main branch. The experiments were run with the time limit of 30 s. We evaluate on two sets of benchmarks. The first set was obtained by taking SMT-LIB benchmarks from UFLIA that do not contain any uninterpreted sorts; these tend to be unsatisfiable. The second set is obtained by taking fragments of UFLIA benchmarks—we describe the process in the following subsection. The solver cvc5 is run with e-matching turned off, i.e. MBQI only. We compare two versions: one where predicates are synthesized by Algorithm 1 (non-smart) and Algorithm 2 (smart).

<table>
<thead>
<tr>
<th>solver</th>
<th>solved: SAT</th>
<th>solved: UNSAT</th>
<th>solved: total</th>
</tr>
</thead>
<tbody>
<tr>
<td>standard MBQI</td>
<td>18843</td>
<td>7863</td>
<td>26706</td>
</tr>
<tr>
<td>ours non-smart MBQI</td>
<td>29456</td>
<td>7863</td>
<td>37319</td>
</tr>
<tr>
<td>ours smart MBQI</td>
<td>31977</td>
<td>7863</td>
<td>39840</td>
</tr>
<tr>
<td>Z3</td>
<td>28380</td>
<td>7482</td>
<td>35862</td>
</tr>
</tbody>
</table>

TABLE I: Problems solved within 30 s time limit by four solvers in a benchmark being a set of these UFLIA problems that does not have sort declarations. There were no SAT results in this benchmark. The total number of problems is 6288.

The results for these two sets of problems are summarized in Tables I and II, respectively. The results indicate that on satisfiable instances, our semantic-guided syntactic outperforms the syntactic approach of Z3. Our implementation does not incur any slowdown on the unsatisfiable instances. In fact, a handful of instances are solved on top of the default MBQI.

A. Generation of satisfiable problems

We consider a simple technique to generate interesting satisfiable fragments from a given SMT formula—understood as a conjunction of assertions. The idea is to consider some parameter k and extract fragments that contain k uninterpreted functions. Given an SMT formula, we choose k uninterpreted function symbols that appear in the formula and filter out the conjuncts that are only weakly related to these k symbols. Let us describe the process for $k = 2$. Consider an SMT formula ϕ and two uninterpreted function symbols f and g that occur in ϕ. Consider subformula ψ in ϕ (one of the conjuncts) of the form $(\forall x \psi')$, where x is an arbitrary set of variables. We will say that ψ is in the f,g fragment of ϕ if it contains at least one f or g and no other uninterpreted functions; there is no limitation on constants. The global f,g fragment of ϕ is defined as the conjunction of all the f,g fragments in ϕ. We remark that in the current implementation, we only consider subformulas that are denoted by the users as separate assertions—this could be relaxed.

Since the current implementation only supports generation of functions and predicates on integers, we only consider UFLIA problems and replace all of interpreted sorts by Int. The global f,g fragment of ϕ is defined as the conjunction of all the f,g fragments in ϕ. We remark that in the current implementation, we only consider subformulas that are denoted by the users as separate assertions—this could be relaxed.

IV. SUMMARY

In this short paper we propose algorithms for the construction of piecewise-linear model candidates in the context of model-based quantifier instantiation (MBQI), which is a
pom powerf ul instantiation technique for solving SMT problems with quantification. In essence, this means learning an infinite model based on finite information. The experimental evaluation shows that many new satisfiable problems can be solved by the proposed approach and at the same time it does not slow down the solver for unsatisfiable problems. In the future, we would like to explore closer collaboration with the sub-solvers and the main algorithm, cf. [22].

Acknowledgments

We would like to thank Chad Brown for numerous discussions on the topic and Andrew Reynolds for giving useful pointers regarding the codebase of cvc5.

REFERENCES

Fig. 1: Four snapshots of the iterative process of finding an infinite model for a binary relation R, as described in Algorithm 2. The relation R is constrained by two assertions: $R(x,y) \Rightarrow x=y$ and $x=y \Rightarrow R(x,y)$. Yellow color signifies true and blue color signifies false. Dots in the center are points with boolean values assigned by the solver. Rectangles in the background depict the current relation assigned to R. The last figure shows the state in which the algorithm found the desired relation.