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Intro

A model is infinite i� the universe is in�nite.

Example: semigroups

(∀xyz)((x ∗ y) ∗ z = x ∗ (y ∗ z))

({0, 1},+ mod 2) — �nite semigroup
(N,+) — in�nite semigroup
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Motivation

Models as counterexamples to:

I incorrect programs
I incorrect theorems

Structures of interesting properties
“Find a semigroup not a group!”

Some properties only for in�nite models
In Satis�ability Modulo Theories in�nite
models often required for
functions + integers + quantifiers

(UFLIA).
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SMT Models: Constants

c < d
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SMT Models: Constants

c < d

c = 0, d = 1
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SMT Models: Functions

f (0) < f (1)
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SMT Models: Functions

f (0) < f (1)

fx , (1 if x = 1 else 0)
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SMT Models: Quanti�ers

(∀x)(fx ≤ x)
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SMT Models: Quanti�ers

(∀x)(fx < x)
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SMT Models: Quanti�ers

(∀x)(fx < x)
Not Solved!
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Learn infinite models from
finite ones?
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Background: MBQI

Model-Based Guided Quanti�er Instantiation
[Ge and de Moura, 2009]

For ∀xφ construct a sequence of:

candidate models Mi

counterexample instantiations σi
s.t. Mi |=

∧
j∈1..i−1 φ[x/σj]

s.t. Mi 6|= φ[x/σi]
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Example

(∀x)(fx > x)∧
j∈1..i−1 φ[x/σj] Mi σi

true fx , 0 x 7→ 0
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Example

(∀x)(fx > x)∧
j∈1..i−1 φ[x/σj] Mi σi

f (0) > 0 fx , 1 x 7→ 1
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Example

(∀x)(fx > x)∧
j∈1..i−1 φ[x/σj] Mi σi

f (0) > 0

f (1) > 1

fx , (x = 0 ? 1 : 2) x 7→ 2
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Example
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f (0) > 0

f (1) > 1
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Example

(∀x)(fx > x)∧
j∈1..i−1 φ[x/σj] Mi σi

f (0) > 0

f (1) > 1

f (2) > 2

fx , (x = 0 ? 1
: (x = 1 ? 2 : 3))Déjà Vu
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Example: Generalization

(∀x)(fx > x)

0

1 2

x + 1
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Generalization for Functions

Sort points lexicographically
Keep the same hyper-plane as long as possible
Otherwise start a new hyper-plane.

For LIA: linear Diophantine equations,
solvable in polynomial time

0 1 2 3 4
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Generalization for Predicates

Split recursively by hyper-planes
until all positive or all negative
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Results UFLIA

Implemented in cvc5
Run on [Janota et al., 2023]

solver SAT UNSAT total

standard MBQI 18843 7863 26706
ours smart MBQI 31977 7863 39840
Z3 28380 7482 35862
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Summary
Guessing infinite models for MBQI,

Currently for UFLIA
Fast: without losing performance on UNSAT.

What next?

Tighter integration with ground theory solver?
More theories?
Non-linear shapes?
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