Towards Learning Infinite SMT Models

Mikoláš Janota and Bartosz Piotrowski and Karel Chvalovský

Czech Technical University in Prague

11 September 2023, Nancy, France

• A model is **infinite** iff the universe is infinite.

A model is infinite iff the universe is infinite.
Example: semigroups

$$(\forall xyz)((x*y)*z=x*(y*z))$$

A model is infinite iff the universe is infinite.
Example: semigroups

$$(\forall xyz)((x*y)*z=x*(y*z))$$

• $({0,1}, + \mod 2)$ — finite semigroup

A model is infinite iff the universe is infinite.
Example: semigroups

$$(\forall xyz)((x*y)*z=x*(y*z))$$

■ ({0,1}, + mod 2) — finite semigroup
 ■ (N, +) — infinite semigroup

Models as counterexamples to:

Models as counterexamples to:

incorrect programs

Models as counterexamples to:

- incorrect programs
- incorrect theorems

Models as counterexamples to:

- incorrect programs
- incorrect theorems

Structures of interesting properties "Find a semigroup not a group!"

Models as counterexamples to:

- incorrect programs
- incorrect theorems
- Structures of interesting properties "Find a semigroup not a group!"
- Some properties only for infinite models

Models as counterexamples to:

- incorrect programs
- incorrect theorems
- Structures of interesting properties "Find a semigroup not a group!"
- Some properties only for infinite models
- In Satisfiability Modulo Theories infinite models often required for functions + integers + quantifiers (UFLIA).

SMT Models: Constants

(declare-fun c () Int) (declare-fun d () Int) (assert (< c d)) (check-sat) (get-model)

c < *d*

SMT Models: Constants

(declare-fun c () Int) (declare-fun d () Int) (assert (< c d))(check-sat) (get-model)

c < *d*

:!z3 ex1.smt2 sat ((define-fun d () Int 1) (define-fun c () Int 0))

c = 0, d = 1

SMT Models: Functions

(declare-fun f (Int) Int)
(assert (< (f 0) (f 1)))
(check-sat)
(get-model)</pre>

f(0) < f(1)

SMT Models: Functions

(declare-fun f (Int) Int)
(assert (< (f 0) (f 1)))
(check-sat)
(get-model)</pre>

f(0) < f(1)

 $fx \triangleq (1 \text{ if } x = 1 \text{ else } 0)$

 $(\forall x)(fx \leq x)$

 $(\forall x)(fx \leq x)$

$$fx \triangleq x$$

 $(\forall x)(fx < x)$

 $(\forall x)(fx < x)$

:!z3 -T:60 ex4.smt2 timeout

Learn infinite models from finite ones?

Background: MBQI

Model-Based Guided Quantifier Instantiation [Ge and de Moura, 2009]

- Model-Based Guided Quantifier Instantiation [Ge and de Moura, 2009]
- For $\forall x \phi$ construct a sequence of: candidate models M_i

- Model-Based Guided Quantifier Instantiation [Ge and de Moura, 2009]
- For $\forall x \phi$ construct a sequence of:
 - candidate models *M_i*
 - counterexample instantiations σ_i

 Model-Based Guided Quantifier Instantiation [Ge and de Moura, 2009]

For $\forall x \phi$ construct a sequence of:

- candidate models M_i
- counterexample instantiations σ_i
- s.t. $M_i \models \bigwedge_{j \in 1..i-1} \phi[x/\sigma_j]$

 Model-Based Guided Quantifier Instantiation [Ge and de Moura, 2009]

For $\forall x \phi$ construct a sequence of:

- candidate models M_i
- counterexample instantiations σ_i
- s.t. $M_i \models \bigwedge_{j \in 1..i-1} \phi[x/\sigma_j]$
- s.t. $M_i \not\models \phi[x/\sigma_i]$

$(\forall x)(fx > x)$ $\bigwedge_{j \in 1..i-1} \phi[x/\sigma_j] \qquad M_i \qquad \sigma_i$ $true \qquad fx \triangleq 0 \qquad x \mapsto 0$

$(\forall x)(fx > x)$ $\bigwedge_{j \in 1..i-1} \phi[x/\sigma_j] \qquad M_i \qquad \sigma_i$ $f(0) > 0 \qquad fx \triangleq 1 \qquad x \mapsto 1$

$(\forall x)(fx > x)$ $\bigwedge_{j \in 1..i-1} \phi[x/\sigma_j] \qquad M_i \qquad \sigma_i$ $f(0) > 0 \qquad fx \triangleq (x = 0?1:2) \quad x \mapsto 2$ f(1) > 1

 $(\forall x)(fx > x)$ $\bigwedge_{i \in 1, i-1} \phi[\mathbf{x}/\sigma_i]$ M σ_i f(0) > 0 $fx \triangleq (x = 0?1)$ (x = 1?2:3)f(1) > 1f(2) > 2

 $(\forall x)(fx > x)$

 $(\forall x)(fx > x)$

 $(\forall x)(fx > x)$

- Sort points lexicographically
- Keep the same hyper-plane as long as possible
- Otherwise start a new hyper-plane.

- Sort points lexicographically
- Keep the same hyper-plane as long as possible
- Otherwise start a new hyper-plane.
- For LIA: linear Diophantine equations, solvable in polynomial time

- Sort points lexicographically
- Keep the same hyper-plane as long as possible
- Otherwise start a new hyper-plane.
- For LIA: linear Diophantine equations, solvable in polynomial time

- Sort points lexicographically
- Keep the same hyper-plane as long as possible
- Otherwise start a new hyper-plane.
- For LIA: linear Diophantine equations, solvable in polynomial time

- Sort points lexicographically
- Keep the same hyper-plane as long as possible
- Otherwise start a new hyper-plane.
- For LIA: linear Diophantine equations, solvable in polynomial time

- Sort points lexicographically
- Keep the same hyper-plane as long as possible
- Otherwise start a new hyper-plane.
- For LIA: linear Diophantine equations, solvable in polynomial time

- Sort points lexicographically
- Keep the same hyper-plane as long as possible
- Otherwise start a new hyper-plane.
- For LIA: linear Diophantine equations, solvable in polynomial time

- Sort points lexicographically
- Keep the same hyper-plane as long as possible
- Otherwise start a new hyper-plane.
- For LIA: linear Diophantine equations, solvable in polynomial time

- Sort points lexicographically
- Keep the same hyper-plane as long as possible
- Otherwise start a new hyper-plane.
- For LIA: linear Diophantine equations, solvable in polynomial time

- Split recursively by hyper-planes
- until all positive or all negative

Implemented in cvc5

Run on [Janota et al., 2023]

solver	SAT	UNSAT	total
standard MBQI	18843	7863	26706
ours smart MBQI	31977	7863	39840
Z3	28380	7482	35862

Guessing infinite models for MBQI,

- Guessing infinite models for MBQI,
- Currently for UFLIA

- Guessing infinite models for MBQI,
- Currently for UFLIA
- Fast: without losing performance on UNSAT.

- Guessing infinite models for MBQI,
- Currently for UFLIA
- Fast: without losing performance on UNSAT.

What next?

Tighter integration with ground theory solver?

- Guessing infinite models for MBQI,
- Currently for UFLIA
- Fast: without losing performance on UNSAT.

What next?

- Tighter integration with ground theory solver?
- More theories?

- Guessing infinite models for MBQI,
- Currently for UFLIA
- Fast: without losing performance on UNSAT.

What next?

- Tighter integration with ground theory solver?
- More theories?
- Non-linear shapes?

 Ge, Y. and de Moura, L. M. (2009).
 Complete instantiation for quantified formulas in satisfiabiliby modulo theories.
 In *Computer Aided Verification CAV*, pages 306–320.

 Janota, M., Brown, C. E., and Kaliszyk, C. (2023).
 A benchmark for infinite models in smt.
 In 8th Conference on Artificial Intelligence and Theorem Proving, AITP 2023.