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Abstract— The estimation of the fabric material property
during the folding is presented. The available techniques for the
accurate garment folding rely on known material properties.
Currently, the properties are estimated by an operator in
advance of folding. We propose an iterative strategy, which up-
dates the property while the garment is folded. The estimation is
formulated as an optimisation task. It is based on measurements
from a laser range finder. The proposed algorithm improves the
estimation iteratively and prevents the garment from slipping
at the same time. We demonstrate the estimation procedure for
10 fabric strips of different materials.

I. INTRODUCTION

One of the core tasks in a robotic garment folding pipeline
is the design of the folding path. The execution of the
folding path brings the garment from the initially flat state
to its folded state. The folding path design is either purely
geometrical [1], [2] or is based on the simulation [3], [4]. The
geometrical methods require only the size and the position
of the garment to be known, but the methods are accurate
for specific materials only. The simulation based methods
are able to fold a wider range of materials, but rely on
the material properties estimation [5]. The state-of-the-art
methods estimate the properties manually in advance of the
folding. To our knowledge, the automatic estimation of the
material properties for the folding purposes has not been
addressed yet.

This paper describes the automatic material property called
weight-to-bending-stiffness-ratio estimation for the physics-
based model, which we used for the folding path design
in work [3]. The task is motivated by the robotic garment
folding but it is simplified to one layer fabrics folding.
The estimation is based on the measurements acquired by
the 2D laser range finder. It measures the position of the
fabric in a single plane cut. The measurement is used to
formulate the optimisation problem for the material property
estimation. The estimation itself is done in the course of
folding. It provides a rough estimation at the beginning of
the folding, which is, however, accurate enough to prevent
the fabric/garment slipping on the folding desk. The estima-
tion is refined iteratively with new measurements obtained.
We demonstrate the proposed estimation procedure using a
robotic testbed with the laser range finder (Fig. 1). In a real
household scenario, a humanoid robot capable of measuring
a point cloud (e.g. PR2 robot) can be used.
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Fig. 1: Robotic testbed used for the demonstration of the
proposed algorithm.

The main contribution of the paper is the automatic esti-
mation of the material property in the course of folding. The
proposed method replaces the manual estimations performed
by an operator before the folding. Using our algorithm, the
robotic garment folding can be fully automatic and accurate
at the same time.

II. ROBOTIC GARMENT FOLDING

The complete robotic garment folding pipeline was firstly
presented for a towel folding in work [6]. It was generalized
to more complex garments in works [7], [8]. All works
follow the same pipeline, in which the unknown garment is
grasped from the pile, it is unfolded while its type is being
recognized, and then it is being folded. The unfolding ends
with garments laying flat on a folding desk and was studied
in works [9], [10], [11], [12], [13], [14]. The folding follows
the unfolding and is divided into individual folds as shown
in works [15], [16], [17].

Our work studies the folding path design for a single fold.
The folding path is either purely geometrical (used in [6],
[7]) or simulation-based (used in [8]). Two geometrical paths
were proposed: triangular [1] and circular [2]. The triangular
path is more suitable for flexible materials and the circular
one is more suitable for stiffer materials.

The simulation-based path designs are suitable for wider
range of material properties providing an accurate folding re-
sult [5]. The first simulation-based path design was proposed
in work [18]. The method uses a simplified dynamic model
and relies on a dynamically controlled robot. The second
path design method [19] uses the simulation software Maya.



The last method is based on continuum mechanics and was
described separately for one-dimensional fabric models [4]
and two-dimensional models [3].

All simulation-based methods assume that the underlying
model properties are known or measured in advance of
folding. Our goal is to estimate the required properties during
folding.

The recently published work [20] represents the under-
lying model by deep neural network, which was trained in
advance of folding by teleoperation. The neural network is
used to predict the robot trajectory according to the input
image of the scene.

III. FABRIC MODEL

The fabric model in this work is the same as the model
used for folding path design in the paper [3]. The model is
represented by a Kirchoff-Love shell described in the series
of work [21], [22], [23]. The state of the model satisfies
the condition of the static equilibrium of forces. The finite
element method is used to find the model state following
the work [24], which uses isogeometrical analysis described
in [25]. The same model was used for the fabric simulation
in [26].

Let us denote the fabric model state with a gripper grasp-
ing the known part of the fabric (e.g. a corner of a towel)
as: S(Tg, ηm, ηb, ν), where Tg is a gripper pose, ηm is
weight-to-membrane-stiffness-ratio, ηb is weight-to-bending-
stiffness-ratio, and ν is Poisson’s ratio. Parameters ηm, ηb,
and ν represent material properties of the fabric [3]. It was
shown in [3] that the material properties: mass density ρ,
thickness h, Young’s modulus E and Poisson’s ratio ν are
merged into the properties ηm, ηb, and ν. The weight-to-
stiffness-ratios are expressed as:

ηm =
(
1− ν2

) ρ

hE
, ηb = 12

(
1− ν2

) ρ

h3E
. (1)

These properties are sufficient to describe the fabric, which
state is found by the static analysis. The model state is
represented by a fabric surface geometry position, i.e. the
function S(Tg, ηm, ηb, ν) returns a fabric surface for the
given gripper pose and material properties. The fabric surface
geometry is represented by NonUniform Rational B-Splines
(NURBS) surface as shown in [24].

A. Path Design

The design of the folding path requires the material prop-
erties to be known in advance. The path is computed from
the sequence of fabric states, which is found as described
in [3]. The individual fabric states are constrained by a
partially known gripper pose. The unknown pose parameters
are computed such that the folding constraints are satisfied.
For example, at the beginning of the folding, the gripper
z-coordinate is fixed while the rest of the gripper pose is
computed such that horizontal force is minimal. It results in
a state:

si = S1(zi, ηm, ηb, ν), (2)

gripper

fabric

path

Fig. 2: The folding path divided into individual phases:
Phase 1 is green, Phase 2 is red, and Phase 3 is blue.
The fabric model (gray) is divided into elements according
to [24].

where zi represents the gripper pose z-coordinate. The
parameter zi increases monotonically with time resulting in
the fabric lifting. The function S1 represents Phase 1 in [3].
The Phase 1 raises the fabric up while keeping the horizontal
force minimal. The fabric slipping is avoided by horizontal
force minimization.

There are additional two phases, which need to be com-
puted to form the whole folding path. These two phases
put the upper layer of the fabric on the fabric lower layer.
The constraints in these phases ensure that the upper and
lower layer of the folded fabric touch each other in the
expected position. The relative position of the upper and
lower layer is not changed by the consequent motion. In the
Phase 2, only the x-coordinate of the gripper pose is known
and is increasing monotonically with time. In the last phase,
the gripper pose z-coordinate is decreasing monotonically.
See [3] for details on the folding path design.

The folding path for the robot is computed from the found
sequence of states. We denote the operation of the gripper
pose computation from the know state s as:

Tg = P (s). (3)

Applying the operator to all states results in the folding path
as visualized in Fig. 2.

B. Material Properties Influence

The fabric model depends on three parameters. The
first parameter, weight-to-membrane-stiffness-ratio ηm, rep-
resents the elasticity of the fabric. During the folding, the
fabric is stretched by its own weight only. However, typical
fabrics are small and exhibit little to none stretch during
the folding. For example, the stretch of our 1 m long
strips of different materials used in the experiments was
less than 3 mm, when stretched by its own weight. We can
thus approximate the weight-to-membrane-stiffness-ratio by
a small value, which represents almost inextensible material.
However, the value which is not too small is used to prevent
numerical problems. Such an approximation has a negligible
influence on the designed folding path.



Poisson’s ratio ν represents the amount of material com-
pression in a direction perpendicular to the fabric extension
direction. With the small weight-to-membrane-stiffness-ratio
there is almost none extension, which results in almost none
material compression in the perpendicular direction. The
influence of Poisson’s ratio on the folding is thus negligible
too.

The weight-to-bending-stiffness-ratio ηb represents the
fabric resistance to bending. This is the only property which
influences the folding path significantly. It is estimated by
the method described in the next section.

IV. PROPERTIES ESTIMATION

The estimation is done during the Phase 1 of the folding
path. As a robot is lifting the fabric, new measurements are
obtained and the estimation accuracy is improved.

Different materials require different path for the Phase 1
as shown in Fig. 3. Our goal is to follow the path which is
closest to our current estimation. The value of ηb is updated
after each new measurement is obtained. The next gripper
position is computed from the updated value of ηb. Without
the path updating, the followed path would not corresponds
to the path which would be appropriate for the manipulated
fabric. It would result in the horizontal force which could
cause the fabric slipping.
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Fig. 3: The paths for different materials. The optimal path
in the lower-left corner of the figure lies in between the
triangular and circular path depending on the property ηb.
Path for the softer material is closer to the triangular path
and the stiffer material path is closer to the circular path.
The zoom of the lower-left corner is show on the right side.

At the beginning, the fabric is lifted into the gripper pose
T0 computed from the fabric state s0:

s0 = S1(z0, ηm, η
0
b , ν), (4)

T0 = P (s0), (5)

where S1 represents Phase 1 and an operator P (·) stands for
the gripper pose computation from the fabric state. Properties

Data: ηm, ν, η0b , ∆zg
Result: ηb, Tδ
T 0
δ ← identity
zg ← 0
for i← 0 to number of iterations do

zg ← zg + ∆zg
si ← S1(zg, ηm, η

i
b, ν)

Ti ← P (si)
move robot to pose Ti
Zi ← obtain a new measurement
ηi+1
b , T i+1

δ ← arg min
ηb,Tδ

J(Ti, Zi, ηb, Tδ)

end
Algorithm 1: Iterative material property estimation

ηm and ν are constant. The value η0b is an initial guess for
the weight-to-bending-stiffness-ratio. For the initial guess
we use small value which represents a path which is close
to the circular path. We observed that the circular path does
not result in the fabric slipping at the beginning of the folding
motion. In the later part of the folding motion the gripper
follows the path corresponding to the estimated ηb value.()

After the robot reaches the computed pose T0, the new
measurement of the fabric shape Z0 is obtained. The es-
timation assumes the measurement in form of the point
cloud consisting of points: zi, i = 1, . . . , N . Based on the
measurement, the new value for ηb is estimated:

η1b = arg min
ηb

J(T0, Z0, ηb), (6)

where J(·, ·, ·) is a cost function defined as:

J(T,Z, ηb) =
1

2

∑
z∈Z

d(z, S(T, ηm, ηb, ν))2, (7)

with a function d(z, S(·)) representing the Euclidean dis-
tance between the fabric surface and measured point. In
our implementation, the position of the NURBS surface was
evaluated on a fine rectangular grid, and the closest position
was used. The new gripper pose T1 is obtained with the
estimated η1b following Eq. (4, 5). The process continues
iteratively during the whole Phase 1.

The presented estimation process requires the gripper
position to be known precisely. In practice, this is however
unfeasible due to the overall robotic testbed accuracy. In
order to make the estimation process feasible in the presence
of this uncertainty, we relaxed the constraints by adding
an unknown gripper position offset into the optimisation
process. This changes the cost function (7) into:

J(T,Z, ηb, Tδ) =
1

2

∑
z∈Z

d(z, S(TTδ, ηm, η
0
b , ν))2, (8)

where Tδ represents the unknown translation matrix. The
properties being estimated are thus: ηb and Tδ . The complete
algorithm for iterative parameters estimation is shown in
listing 1.



V. EXPERIMENTS

A. Testbed Description

A single-arm robot KUKA LBR iiwa 7 was used for the
fabric manipulation purposes. For the point cloud measure-
ment, we used a monocular camera and laser plane projector.
The robot, camera and projector were calibrated to each
other. It allows us to measure the fabric shape in the projected
plane. The real testbed and the schematic visualisation are
shown in Fig. 1 and Fig. 4.

robot

laser camera

fabric

Fig. 4: Schematic visualisation of the robotic testbed. The
robot, laser plane projector, and camera are calibrated with
respect to each other. It allows us to measure the fabric
surface shape.

B. Manual Reference Properties Measurement

To verify the estimation algorithm, we used narrow fabric
strips of different materials. We used single layer materials
from the whole spectrum of weaving fabrics used for fab-
ric manufacturing. The reference strips weight-to-bending-
stiffness-ratio are not known a priori. To estimate them, we
used manual measurements of the folded fabric height hm as
shown in Fig. 5. This process of estimation is called a free
fold test as described in [27]. The relation between ηb and
hm is shown in Fig. 6 and we denote the ratio computation
as: ηb = ηb(hm).

hm

Fig. 5: Free fold test is an offline method of the weight-to-
bending-stiffness-ratio estimation.

Besides the material properties used in our model, prop-
erties, which reflect the history of the particular patch of the
fabric such as ironing, washing, bending, storing conditions,
moisture content influence the actual bending shape during
folding. Therefore, we measure the height multiple times
with different free fold test locations and we estimate the
reference ratio in a statistical manner. Measured values hm
together with an estimated mean µh and ±2σh, where σh

10 15 20 25 30 35 40
hm [mm]

103

104
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106

´ b
 [
m
¡
4
s2
]

Fig. 6: The weight-to-bending-stiffness-ratio ηb as a function
of the measured height hm.

stands for standard deviation, are shown in Fig. 7. We visu-
alize the material property uncertainty with the 4σ interval.
From the estimated height statistical values µh and σh, the
expected values of ηb are computed as shown in Tab. I and
Fig. 8.

TABLE I: Reference material properties.

Material µh
[mm]

2σh
[mm]

ηb(µh)
[m−4 s2]

ηb(µh ± 2σh)
[m−4 s2]

coating 20 3.4 8.5 · 103 5.1 · 103 - 1.6 · 104
chanel 28 3.9 2.6 · 103 1.7 · 103 - 4.2 · 103
twill 19 4.6 8.9 · 103 4.5 · 103 - 2.3 · 104
denim 23 3.1 5.2 · 103 3.4 · 103 - 8.3 · 103
terry cloth 25 2.8 3.9 · 103 2.8 · 103 - 5.7 · 103
plain weave 25 3.4 4.0 · 103 2.7 · 103 - 6.4 · 103
herringbone 21 2.5 6.5 · 103 4.6 · 103 - 9.7 · 103
georgette 15 1.7 2.4 · 104 1.6 · 104 - 4.1 · 104
chiffon 13 2.3 3.5 · 104 1.8 · 104 - 1.5 · 105
wool suiting 18 1.8 1.1 · 104 8.0 · 103 - 1.5 · 104

C. Strips Properties Estimation

We have observed, that the ηb value for the wide range
of materials lies in a range from 102 to 106 m−4 s2. We
chose an initial guess for the estimated value to be η0b =
102 m−4 s2. The initial guess value does not seem to influ-
ence the resulting estimate. The value of ηb is then updated
iteratively following Algorithm 1. The whole Phase 1 is used,
and we divided it into 10 iterations. The values estimated in
the last iteration for all tested materials are shown in Fig. 8.
The path followed by the gripper and the reference path for
the selected fabric are shown in Fig. 9. The estimations for
all tested fabrics are shown in Fig. 10.

The results shown in Fig. 10 indicate that the estimation
is improved as the fabric is lifted. The initial rough esti-
mation was however sufficient to prevent the fabric from
slipping. Estimated values have much lower uncertainty than
the interval of values which prevent the slipping as shown
in [4]. We did not observe any slipping during the whole
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Fig. 7: Measurements for the free fold test. The mean
value and standard deviation is computed from the height
measurements.
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Fig. 8: The reference ηb estimated by the free fold test
(green cross) and the value estimated in the last iteration
of the proposed algorithm (black dot). The visualized range
represents uncertainty of reference value estimation.

experiment. The value estimated in the last iteration (Fig. 8)
for all materials was in a range of ±2σh.

VI. CONCLUSIONS

We have presented the algorithm for estimation of the
material property for the robotic garment folding purposes.
The estimation is done iteratively in the course of folding
while updating the folding path. The formulated optimisation
task uses the measurement of the fabric shape, provided
in the form of a point cloud. It replaces the state-of-the-
art estimation technique, which was done manually by an
operator.

We demonstrated the accuracy of our approach experimen-
tally using the robotic testbed with the laser range finder.
The 1 m long fabric strips of various materials were tested.

0 1 2 3 4 5 6 7 8 9 10
Iteration [¡ ]

102

103

104

105

106

´ b
 [
m
¡
4
s2
]

coating

Estimated
´b(¹h)

´b(¹h§ 2¾h)

0.0 0.1 0.2 0.3 0.4 0.5 0.6
x [m]

0.0

0.1

0.2

0.3

0.4

0.5

z 
[m
]

coating

Phase 1 path for ¹h
Circular path

Triangular path

Estimation path

Fig. 9: The iterative update of the weight-to-bending-
stiffness-ratio and the gripper position for the selected fabric.
The red dashed line represents the reference values estimated
from the free fold test. The uncertainty of the estimation is
represented by red dotted lines. The triangular (blue, dashed)
and circular (green) paths are shown as a reference.

So far we have tested the estimation algorithm on one-
layer samples only since they satisfy the assumptions of the
fabric model. In future work, the limits of the model, as well
as the limits of the estimation algorithm, should be tested on
multi-layer fabrics as well as other technical materials such
as rubber strips, steel sheets, etc.
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Folding: Precision Improvement and Workspace Enlargement,” in
Annu. Conf. Towards Autonomous Robotic Systems (TAROS), Liver-
pool, 2015, pp. 204–215.
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