

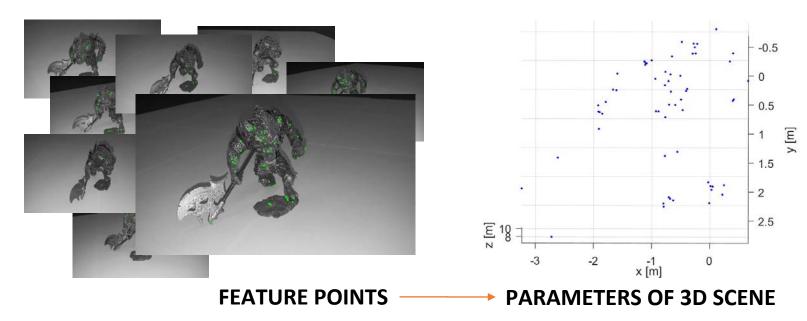
Camera Uncertainty Computation in Large 3D Reconstruction

Michal Polic and Tomas Pajdla

Previous work

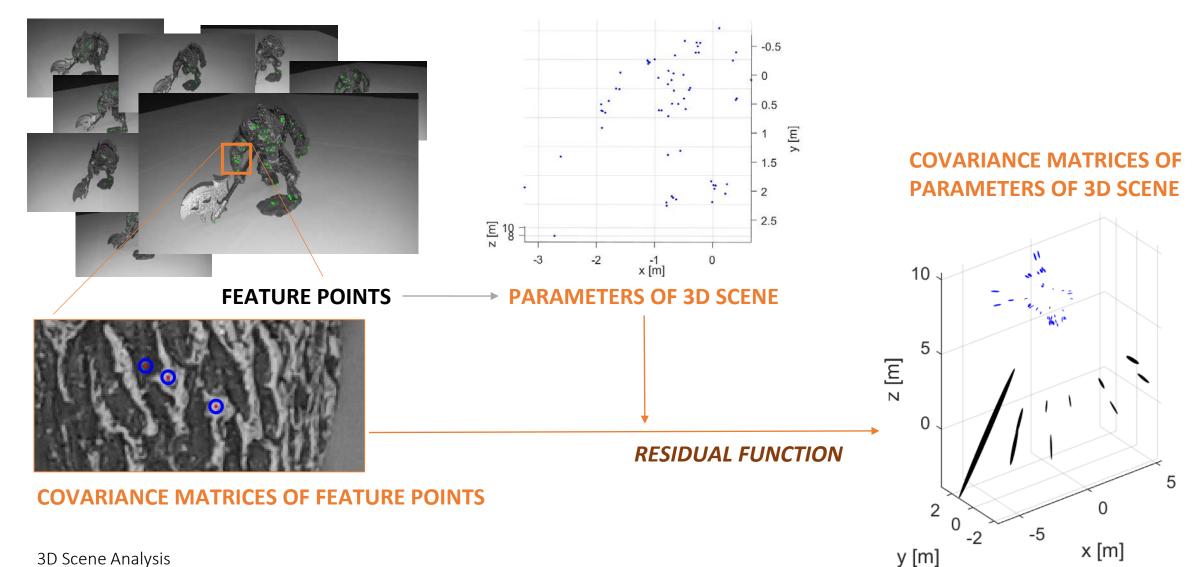
Lhuillier, Maxime, and Mathieu Perriollat. "Uncertainty ellipsoids calculations for complex 3D reconstructions." *ICRA 2006*

Hartley, Richard, and Andrew Zisserman. *Multiple view geometry in computer vision*. Cambridge university press, 2003.


Kanatani, Ken-ichi, and Daniel D. Morris. "Gauges and gauge transformations for uncertainty description of geometric structure with indeterminacy." *IEEE Transactions on Information Theory* 47.5 (2001).

Center for Machine Perception
Czech Institute of Informatics, Robotics and Cybernetics
Czech Technical University in Prague

Structure from Motion



Uncertainty propagation

Previous work

[KANATANI2001] - Gauges and gauge transformations for uncertainty description of geometric structure with indeterminacy

- ➤ Normal form of covariance matrix for 3d scene parameters
- Computationally demanding
- Numerically imprecise

$$\Sigma_{\theta} = (J^T \Sigma_{\boldsymbol{u}}^{-1} J)^+$$

Previous work

[KANATANI2001] - Gauges and gauge transformations for uncertainty description of geometric structure with indeterminacy

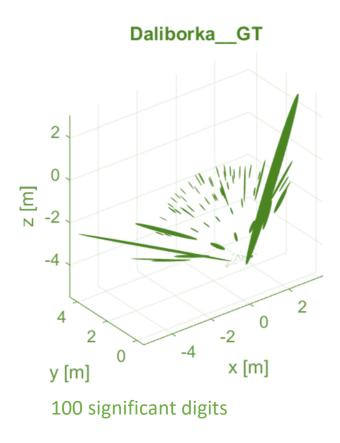
➤ Normal form of covariance matrix for 3d scene parameters

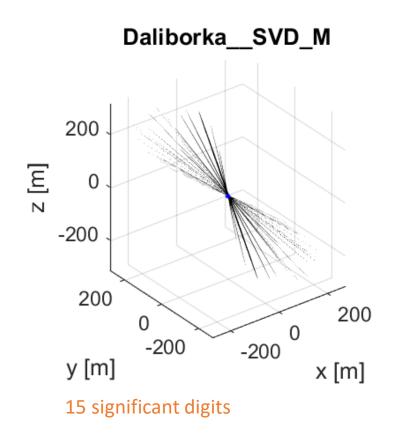
 $\Sigma_{\theta} = (J^T \Sigma_{\boldsymbol{u}}^{-1} J)^+$

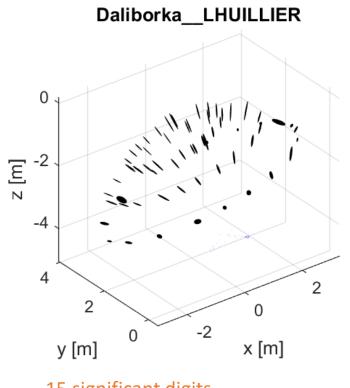
- Computationally demanding
- Numerically imprecise

[LHUILLIER2006] - Uncertainty ellipsoids calculations for complex 3D reconstructions

- > Decomposition of Fisher information matrix
- Numerically imprecise


$$(J^T \Sigma_{\boldsymbol{u}}^{-1} J)^+ = \left(\begin{bmatrix} U_{\widetilde{N}} & W_{\widetilde{N}} \\ W_{\widetilde{N}}^T & V_{\widetilde{N}} \end{bmatrix} \right)^+$$




Ground Truth vs. previous methods

COMPARISON AGAINST GROUND TRUTH (64 cameras, 200 points in 3D)

15 significant digits

Our solution

REGULARISATION

- REMOVE LARGE RANGE VALUES IN JACOBIAN BY COLUMNS SCALING
- FIX THE SCENE SUCH A WAY TO MINIMIZE THE DEFFERENCE AGAINST MOORE-PENROSE PSEUDOINVERSION (FIX OF 3 MOST DISTANT POINTS)

Our solution

REGULARISATION

- REMOVE LARGE RANGE VALUES IN JACOBIAN BY COLUMNS SCALING
- FIX THE SCENE SUCH A WAY TO MINIMIZE THE DEFFERENCE AGAINST MOORE-PENROSE PSEUDOINVERSION (FIX OF 3 MOST DISTANT POINTS)

DECOMPOSITION

LDU DECOMPOSITION TO SPEED UP THE PROPAGATION PROCESS

Our solution

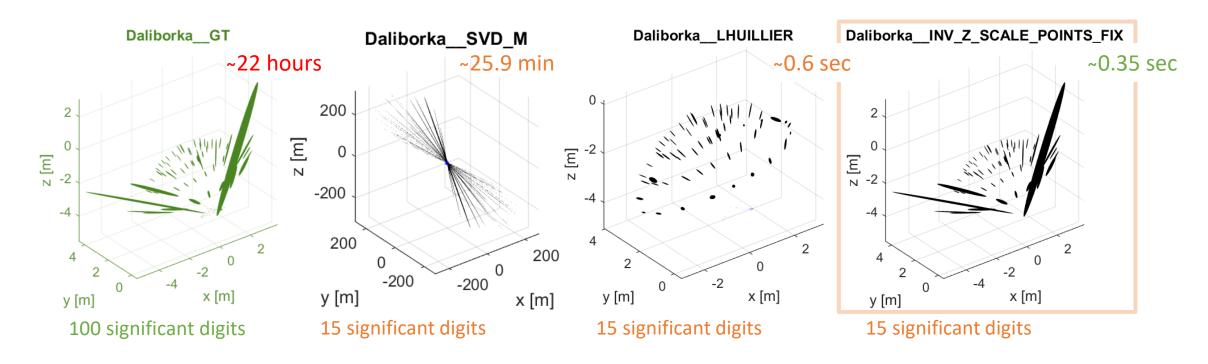
REGULARISATION

- REMOVE LARGE RANGE VALUES IN JACOBIAN BY COLUMNS SCALING
- FIX THE SCENE SUCH A WAY TO MINIMIZE THE DEFFERENCE AGAINST MOORE-PENROSE PSEUDOINVERSION (FIX OF 3 MOST DISTANT POINTS)

DECOMPOSITION

LDU DECOMPOSITION TO SPEED UP THE PROPAGATION PROCESS

APPROXIMATION OF THE INVERSION OF THE SCHUR COMPLEMENT MATRIX


 IMPROVE NUMERICALL PRECISION AND ALLOW THE COMPUTATION FOR LARGE 3D SCENE

Results

 MORE PRECISE AND FASTER ALGORITHM FOR UNCERTAINTY PROPAGATION FROM FEATURE POINTS TO CAMERAS WHICH CAN BE USED IN PRACTISE

Camera Uncertainty Computation in Large 3D Reconstruction

Michal Polic and Tomas Pajdla

Thank you for attention

You are welcome to our poster!

The most relevant previous work

[LHUILLIER2006] - Lhuillier, Maxime, and Mathieu Perriollat. "Uncertainty ellipsoids calculations for complex 3D reconstructions." *ICRA 2006*

[HARTLEY2003] - Hartley, Richard, and Andrew Zisserman. *Multiple view geometry in computer vision*. Cambridge university press, 2003.

[KANATANI2001] - Kanatani, Ken-ichi, and Daniel D. Morris. "Gauges and gauge transformations for uncertainty description of geometric structure with indeterminacy." *IEEE Transactions on Information Theory* 47.5 (2001).