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Abstract

A three-dimensional scene is an output of many computer vision al-
gorithms (e.g. Structure from Motion, Simultaneous localization and
mapping, Multi-View Stereo) due to the wide range of applications
in industry (e.g. robot navigation, self-driving cars) and entertain-
ment (e.g. virtual reality). There are hundreds of papers reviewed
the maximum likelihood estimate of the scene parameters. However,
more enhanced statistics are rarely considered. In this work, we fo-
cus on describing the second moment of the image points detection
error and its propagation to the scene parameters. First, we describe
common steps of the reconstruction process and show its advantages
and drawbacks. Next, we pinpoint the options of representing the
standard input of Structure from Motion and apply the theory of the
propagation of these statistics from measurements (image points) to
parameters (three-dimensional scene) in practise. We show the open
issues which can be investigated in the context of the second moment
propagation. The directions in which are the investigations made are
robustness, speed and precision. Further, we present our previous
work and show how to increase the numerical precision and speed of
the propagation process. We provide an experimental comparison of
our approach, as well as of previous approaches, on accurate ground
truth and demonstrate that our algorithm is practical. Finally, we em-
phasize main goals of the thesis which focuses on designing scalable,
robust and more precise propagation and its application to overcome
the current state of the art methods.
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1 Introduction

Precise and robust three-dimensional (3D) scene reconstruction is an impor-
tant goal of many computer vision algorithms such as Structure from Motion
(SfM) and Multi-View Stereo (MVS). 3D reconstruction has received a lot of
attention due to wide range of applications, e.g. quality verification of indus-
try products [1], robot navigation [2], self-driving cars [3], virtual reality [4]
and other [5, 6]. Recent work in SfM has demonstrated a possibility of re-
constructing geometry from large photo collections [7,8]. We can reconstruct
3D models of entire cities from pictures taken by customer cameras using a
single computer. These models can be computed from as many as hundreds
of thousands of pictures and lead to reconstructions composed of millions of
3D points.

What to analyse in 3D scene?
A typical output of SfM is a set of parameters describing camera poses and
coordinates of 3D points. These parameters are estimated from detected
points in images. The goal of this thesis is to find out hidden relations be-
tween the parameters and how the detection error of image points coordinates
(the precision of the input) influence the quality of estimated parameters (the
precision of the output). These properties (relationships and precision) can
be approximately described by first few moments of the parameters. The first
moment (the mean) is computed by SfM and MVS in many reconstruction
pipelines [9–11]. This thesis analyses rarely investigated second moment (the
covariance matrix) of the parameters and its computation in practice. The
directions in which the investigations are made are precision, robustness, and
scalability.

Why to analyse the 3D scene?
Iterative Structure from Motion is an iterative algorithm where an error in
early stages influences a lot the error of estimated 3D scene. If we knew the
relationships between parameters of the scene and their precisions, we could
use it for selecting the best possible model for camera representation, filter-
ing the most unconstrained parameters and speed up the reconstruction. It
would allow checking of the uncertainty of iteratively added cameras and pre-
vent wrong extensions of existing partial reconstruction. The reconstruction
pipelines would be faster and more robust. In addition, the precision of pa-
rameters may allow more sophisticated smoothing of reconstructed surfaces
in dense reconstructions [12, 13], and better selection of the first reconstruc-
tion pair in sequential SfM.
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Figure 1: The propagation of the second moment of image points (a) to the
second moment of the camera poses (b). The red ellipsoids show where are
the image points and cameras likely to be. Blue points are reconstructed 3D
points of Toy dataset, see Table 2.

2 State of the Art

A three-dimensional scene is an output of a reconstruction process. This
section starts with a short description how the scene is build up and the
summary of the advantages and drawbacks of this process. Next, we pinpoint
the information which is available from the input of standard reconstruction
pipelines. We collect the statistic properties of the image points and propa-
gate them into the parameters of the 3D scene. At the end of this section, we
focus on previously published enhancements which speed up the propagation
process.

2.1 The reconstruction process

It is necessary to understand how the scene is built up to investigate its
properties. The models of relationships (relative and absolute pose mod-
els, projection functions) between the parameters of the scene influence the
relationships and the error distributions within the final 3D scene.

There are two main approaches how to reconstruct the scene. The global
ones (e.g. [14, 15]) and the local ones (e.g. [10, 16]). The propagation of
the statistics is performed on optimized parameters. Both approaches are
usually optimized with respect to the same projection function at the end
of the reconstruction. Therefore the propagation process is similar for local
and global reconstructions.

We mostly focus on the Iterative SfM which can be categorized into the
local ones. It starts with detection of the interesting image points called fea-
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ture points. The feature points are usually detected by SIFT [17], SURF [18],
MESR [19] and other [20–22] detectors. The areas around all feature points
are described by descriptors (e.g. [17,18]). The relationship between feature
points and scene parameters is based on projective geometry (a summary is
in Hartley - Multiple View Geometry in Computer Vision [23]). Standard
implementation of Iterative SfM [10, 16], first, compute pairwise tentative
matches of feature points between pairs of cameras using an Approximate
Nearest Neighbors (ANN) search (e.g. [24–27]). Second, verify found tenta-
tive matches. The SfM robustly estimates parameters of relative pose model
(e.g. [28, 29]) and filter all correspondences which do not fit the model. The
parameters are robustly estimated by an extension of Random Sample Con-
sensus (RANSAC), see an overview [30]. Further, the algorithm selects the
first reconstruction pair of cameras and setup the global coordinate system.

The iterative part of the algorithm starts by triangulation [23] of 3D
points from verified feature points which lie in images of the first recon-
structed pair of cameras. A new camera is added to the partial reconstruction
(e.g. the first pair of cameras with their 3D points) by solving the absolute
pose problem. The absolute pose problem is the task of computing the ex-
ternal parameters (e.g. the orientation and the position) of the camera from
the image points - 3D points correspondences. There are many absolute pose
solvers (e.g. [31,32]). The algorithm iterate between adding new cameras and
triangulation of new 3D points.

The parameters of the scene are often optimised after few iterations us-
ing an efficient nonlinear refinement [33, 34]. This optimization is usually
implemented by Google nonlinear least squares solver Ceres [35] and use an
another model of relationships based on reprojection error [23]. It minimises
the distance between feature points and ”bundles” of rays leaving the 3D
points and creating projections into the images. This method, called Bundle
Adjuster (BA) [36], usually runs at the end of reconstruction pipelines.

2.1.1 Properties of the reconstruction process

Most of the current reconstruction pipelines [9–11] are realized by Iterative
SfM algorithm. It locally extends the partial scene which is fast. The another
benefit is that the Iterative SfM has received an immense amount of partial
improvements over few last decades. There are tens of improvements of the
robust estimation (RANSAC) of the parameters, dozens of the relative and
absolute pose models for different sets of parameters (e.g. radial distortion,
tangential distortion, focal length, rolling shutter, etc.) and usually several
implementations of each model based on different geometric relationships
(e.g. angles between rays, distances between 3D points, ratios of distances
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Figure 2: The 3D scene is created form images (e.g. left subfigure) captured
in a loop. The result of SfM (center subfigure) have to be corrected (right
subfigure). Published in [39].

between 3D points, etc.).

The drawback of Iterative SfM is that the local extension of partial re-
construction may lead to a local optimum which can be seen for example
on ”loop closing” problem [37, 38]. The loop composed of tens or more of
cameras usually do not end in the same position as the start of the loop is.
Current reconstruction pipelines [9–11] optimize the reconstruction after few
iterations which slow down the reconstruction process [14, 15]. Further, the
pipelines only estimate the mean of 3D scene parameters while the higher mo-
ments (relations between scene parameters) are usually too computationally
expensive to be computed (current algorithms for uncertainty propagation
have cubic time and quadratic memory complexity). Another disadvantage
is that there is no comparison of all relative and absolute pose solvers in the
sense of the second moment of the parameters.

There are also the Global SfM algorithms [14, 15]. Global SfM usually
assume an approximation of the projection function and lead to another type
of the errors (e.g. similar parts of the reconstruction may be reconstructed
as one object, see Fig.5 in [14]).

2.2 The statistics of a 3D scene

The detection error of image points, chosen relative and absolute pose model
and chosen projection function influence the precision and relationships inside
the 3D scene. For example, the Iterative SfM may lead to local optimum,
e.g., curves the straight geometry in 3D space because it does not consider
the radial distortion parameters [40] or in opposite case, it can collapses the
whole reconstruction into one flat because of considering the rolling shutter
parameter [41]. Regardless the reconstruction process, the BA minimizes an
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objective function and adjust the scene to an optimum. Thus, we have to
perform the propagation of the uncertainty using the objective function.

2.2.1 The formulation of 3D scene

We consider a setup with n cameras C = {C1, C2, . . . , Cn} where Ci ∈ Rp is
p-dimensional vector of camera parameters, m points X = {X1, X2, . . . , Xm}
in 3D and k image observations represented by vector u ∈ R2k. Each obser-
vation ui,j ∈ u, i.e. an image point, is a projection of 3D point Xj by camera
Ci, using projection function p(Ci, Xj). Parameter εi,j is the detection error
of the observation ui,j. All pairs of indices (i, j) are in an index set S that
determines which point Xj is visible in which camera view Ci.

ui,j = p(Ci, Xj) + εi,j ∀(i, j) ∈ S (1)

The vector θ equals [C1, . . . , Cn, X1, . . . , Xm] and ε is the vector composed of
all εi,j where (i, j) ∈ S. Function f is composed of projection functions p. It
projects vector θ into the image observations

u = f(θ) + ε (2)

The function (2) leads to a nonlinear least squares optimization

θ̂ = arg min
θ
‖f(θ)− u‖2 (3)

minimizing the objective (residual) function which is the sum of squares of
the differences r(θ) = f(θ) − u between observations u and reprojections
f(θ).

2.2.2 The uncertainty of the measurements

In real applications, the image point ui,j can be determined only to a finite
accuracy due to the quantization process of the image and unmodeled er-
rors caused by image compression and the imprecision of detection. We call
the sum of these errors: the detection error εi,j. The distribution of detec-
tion error may be different from point to point. These distributions may
be approximated by the normal distributions and described by their first
and second moments. The representation of the second moment for multiple
variables is called the covariance matrix. The detection error has zero mean
E(εij) = 0 and a nonzero covariance matrix Σεi,j ∈ R2×2 for each εi,j. The
third and higher moments have not been used in practice because we cannot
estimate them reliably unless we have a large number of samples of each
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image point [42]. Note that, we usually have one image point for describing
its distribution. The covariance of one point is always zero matrix. So, the
previous work usually approximates these distributions based on the norm
of the residuals.

Lhuillier and Perriollat [43] assumed that all points have the same standard
deviation scaled by the squared Euclidean norm of the residuals. They de-
fined the covariance matrix for all image points as

Σu = σ2I (4)

where I is the identity matrix scaled by an approximation of the non-biased
variance factor

σ2 = ‖r(θ)‖2 /(2k − pn− 7) (5)

Bishop [44] defined a precision matrix Pu for statistically independent mea-
surements with nonzero covariance matrix

Pu = Diag(|r(θ)|)−1 Σε = Σu = P−1u (6)

The precision matrix Pu is the inversion of the diagonal matrix composed
of the absolute values of the residual vector. Förstner and Wrobel [45] used
the precision matrix to weight the sum of squared residuals and to derive
a formula for maximum likelihood estimate (MLE) θ̂ from observations u,
see Section 2.2.3. This approach replaced one scalar, the variance factor σ2,
by diagonal covariance matrix Σε. The image points, e.i. their covariances
∈ R2×2 on the diagonal, has large values (large uncertainty) for the points
with large reprojection error and vice verse.

Kanatani and Morris [46] assumed that the noise vector ε is the Gaussian
random variable, which may not be independent for different images. The
unknown variance was set up using the template matching. The patch of
corresponding points was shifted around the detected point and normalized
variation of the residual Ru was used instead of identity matrix

Σu = σ2
R

Ru

||Ru||
(7)

The variance factor σ2
R which they called noise level was computed follow-

ing [47].
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2.2.3 The propagation of the uncertainty

The general principle of covariance propagation is well known. The for-
ward/backward propagation for the linear/nonlinear system which is, or isn’t,
over-parameterized was described in [23, 45]. We are computing the back-
ward transport (from measurements to the parameters) of the uncertainty
for the nonlinear over-parameterized system (represented by objective func-
tion r(θ)). The system of equations is over-parameterized because any 3D
scene can be shifted, scaled and rotated without any change of the objective
function we optimize.

To describe the propagation process we are using following notation

Variable Expectation Covariance Meaning

ε E(ε) = 0 Σε detection error
u E(u) Σu = Σε measured observations

û E(û) Σû projections of f(θ̂), û = f(θ̂)
ū E(ū) 0 correct observations
θ E(θ) Σθ scene parameters

θ̂ E(θ̂) Σθ̂ MLE of scene parameters
θ̄ E(θ̄) 0 correct scene parameters

Table 1: The notation for detection error, measured, estimated and correct
observations and parameters of 3D scene. MLE is the abbreviation for max-
imum likelihood estimate.

2.2.4 Forward propagation of linear function

We show an example using the Equation 2, i.e. the function f(θ). Forward
propagation propagate the input of the function (e.g. Σθ) to the output of
the function (e.g. Σu). The vector ε is a constant vector and therefore do
not change the output covariance.

If we assume a linear function f , the Equation 2 can be rewritten into the
matrix form

u = f(θ) + ε = Ā θ + ε (8)

where Ā realize the mapping of function f . Let us assume that each camera
and 3D point has its own distribution approximated by normal distribution.
These distributions are diagonal blocks inside the covariance matrix Σθ. Due
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to the linearity of the expectation operator holds

E(u) = Ā E(θ) Σu = ĀΣθĀ
> (9)

2.2.5 Forward propagation of nonlinear function

If f is a nonlinear differentiable function we can approximate it using Taylor
expansion (TE). The linearization up to forth-order in point θ̂ equals

u≈ f(θ̂) + f ′(θ̂)(θ− θ̂) +
1

2
f ′′(θ̂)(θ− θ̂)2 +

1

6
f ′′′(θ̂)(θ− θ̂)3 +

1

24
f ′′′(θ̂)(θ− θ̂)4

(10)

Our point θ̂ is the maximum likelihood estimate of 3D scene parameters, i.e.
θ̂ = E(θ). If θ is random variable with normal distribution with symmetric
density function, the expectation and covariance matrix equal

(11)E(u) ≈ f(θ̂) +
1

2
f ′′(θ̂)(θ − θ̂)2 +

1

24
f ′′′(θ̂)(θ − θ̂)4

(12)Σu ≈ f ′2(θ̂)(θ − θ̂)2 +
1

3

(
f ′(θ̂)f ′′′(θ̂) +

1

2
f ′′2(θ̂)

)
(θ − θ̂)4

and the third moment (θ− θ̂)3 equals zero. For non-symmetric density func-
tion becomes the propagation functions (i.e. Equations 11,12) more compli-
cated.

However, we usually do not have the third and higher moments for the de-
tection error. Thus, the previous work [23, 43, 45] use the first order Taylor
expansion for the forward propagation

u ≈ f(θ̂) + f ′(θ̂)(θ − θ̂) = f(θ̂) + Jf (θ − θ̂) (13)

where Jf is the partial derivation of function f in θ̂. It leads to expectation
and covariance matrix

E(u) ≈ f(θ̂) Σu ≈ JfΣθJ
>
f (14)

The first order linearization is also used in backward propagation because we
describe the observations by first two moments, the mean E(u) = u and the
covariance matrix Σu.

12



2.2.6 Backward propagation of linear function

We derive how to construct the function q which maps the measurements
u to the maximum likelihood estimate of 3D scene parameters θ̂. Then, we
perform the forward propagation using q. First, we define the weight sum of
the squared residuals

Ω(θ) = r>(θ)Pu r(θ) (15)

The MLE of 3D scene parameters minimises the function

θ̂ = arg min
θ

Ω(θ) (16)

If we assume that f is a linear function, f can be rewritten in a matrix form

f(θ) = Āθ (17)

and the residual function will be represented by

r(θ) = Āθ − u (18)

The necessary condition for estimating of the minimum Ω(θ) is that the
partial derivation equals zero. So, it holds

1

2

[
∂Ω(θ)

∂θ

]
θ=θ̂

= Ā>Pu(Āθ̂ − u) = 0 (19)

which can be adjusted into the form called normal equation system

Ñ θ̂ = ñ (20)

where the unknown parameter θ̂ appears linear and the matrices equal

Ñ = Ā>PuĀ ñ = Ā>Puu (21)

The solution of this system is the function q(u)

θ̂ = q(u) = Ñ−1ñ = (Ā>PuĀ)−1Ā>Pu(u) (22)

If we apply the forward propagation of linear function (Equation 9) to the
function q(u) the covariance matrix of the estimated parameters will be

Σθ̂ = Ñ−1 = (Ā>PuĀ)−1 (23)

This formula propagates the uncertainty (Σu = P−1u ) to the uncertainty of
MLE of scene parameters Σθ̂. The propagation is in the opposite direction
than forward propagation (i.e. Equation 9) and therefore we call it the back-
ward propagation [23].
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2.2.7 Backward propagation of nonlinear function

Hartley [23] has shown the backward propagation for nonlinear differentiable
function. The function f is approximated by its first-order approximation
and the residual function in Equation 18 can be rewritten to

r(θ) ≈ Jf (θ − θ̂) (24)

where Jf is the Jacobian of function f in θ̂. Assume that we do not have
an over-parametrized system, i.e. the Jacobian Jf has full rank which equals
the number of scene parameters n p+ 3m. While the objective function r(θ)
do not depend on θ̂ we can substitute Jf θ̂ by a constant vector jf and write
the residual function

r(θ) ≈ Jfθ − jf (25)

Applying the Equations 19-26 leads to the formula for approximation of co-
variance matrix. It is the same as in Hartley [23]. The backward propagation
for nonlinear not over-parametrized function f is

Σθ̂ ≈ (J>f PuJf )
−1 (26)

2.2.8 Backward propagation of over-parameterized nonlinear func-
tion

In our case, the objective function r(θ) is over-parameterized. The param-
eters θ may vary without bound which means that their uncertainties are
infinitely large and the Jacobian Jr does not have full rank. Note that Jf
equals Jr because u is the vector of constant values. Therefore, the inversion
of Fisher information matrix (Equation 26) does not exist. We can solve this
problem two ways.

First, we can add some restrictions to make the Jacobian Jf full-rank.
Kanatani [46] presented a theory for describing the uncertainties under chang-
ing regularisation conditions (gauge transformations). There is a large num-
ber of choices of the regularisation conditions (e.g. fixing some parameters
of the scene: camera rotation, camera position, 3D point, etc. or fixing some
statistical properties of the scene: mean of a subset of 3D points, the scale of
a subset of camera poses, etc.). The additional restrictions change the opti-
mization function, and therefore we obtain different covariance matrices for
one 3D reconstruction based on various restrictions. The comparison of the
covariance matrices computed with different restrictions against the ground
truth was part of our research, and it is in Section 3.

Second, we can project the parameters θ to the subset which uniquely
describe a 3D scene. The minimal subset of parameters which uniquely

14



describe a scene is called the set of essential parameters θe. The number of
essential parameters nθe equals the number of scene parameters nθ minus the
rank of the null space of Jf , i.e. nθe = nθ−7 = np+3m−7. So, we can reduce
7 parameters, e.g. 3 for scene rotation, 3 for scene position and one for scale.
The mapping to the set of essential parameters can be realized by a matrix
Â ∈ Rnθ×nθe . The column vectors of Â span the tangent space Sθ at θ̄. Since
we do not know the correct parameters θ̄ the previous work [43, 45, 46] used
MLE θ̂ instead of θ̄. The space Sθ is a smooth sub-manifold of dimension
nθe which is embedded to nθ, pass through θ̂ and for which exist one-one
mapping from neighbourhood of θ̂ to observations, i.e. f(Sθ) ∈ R2k. We can
write the function s : Rnθe → Rnθ which derivation equals the matrix Â. So
that, the composition f ◦ s of over-parametrized f and mapping s leads to
one-one map from sub-manifold Sθ to observations. The derivation of f ◦ s
equals Jf Â and after applying the Equation 26, the formula

Σθe = (Â>J>f PuJf Â)−1 (27)

realize the mapping of the covariance matrix of the image points to the
covariance matrix of the essential parameters Σθe ∈ Rnθe×nθe . If we apply
forward propagation to the set of parameters, i.e the Equation 14, we get

Σθ̂ = (J>f PuJf )
+Â = Â(Â>J>f PuJf Â)−1Â> (28)

The expression depend on particular choice of column-space of Â. The ma-
trix Â can be also seen as the regularisation matrix. For example, fixing
one of scene parameters cause that the corresponding column in Â is a zero
vector. The Jacobian Jf with this additional constrain is equals the Jacobian

without this constrain multiplied by Â. The covariance matrix Σθ̂ has dimen-
sion nθ, rank nθe and zero variance in directions orthogonal to Sθ. Kanatani
presented the gauge-free approach and defined the normal form of the co-
variance matrix. The normal form of the covariance matrix is computed as
the Moore-Penrose (M-P) pseudoinverse

Σθ̂ = (J>f PuJf )
+ (29)

In this case is the constrained surface Sθ orthogonal to the null space of Jf .
For example, a homogeneous vector vh has as the constraint surface the unit
sphere ||vh||= 1. The function which works with homogeneous vectors is usu-
ally invariant to changes of scale (the radial direction) and thus its Jacobian
has null vector in radial direction. The tangent plane Svh is perpendicular
to the parameter vector vh, i.e. to the range of the Jacobian, in any point
and the covariance matrix has zero variance in Svh . Thus, the normal form
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Figure 3: The structure of the covariance matrix for Cube dataset. The
covariance matrix Σθ ∈ R90×90 is composed of blocks R9×9 camera (green)
and R3×3 point (violet) covariance matrices

of the covariance matrix has zero variance in radial direction, the direction
of the additional constrain.

2.2.9 Sparse backward propagation

In the case of Equation 26, i.e. not-overparametrized objective function, we
can use the sparse algorithms [48] to compute interesting parts of the covari-
ance matrix of scene parameters (i.e. cameras and points submatrices), see
Figure 3. This computation can be done without determining the inverse
of the normal equation matrix Ñ . The covariance matrix Σu and the preci-
sion matrix Pu are diagonal matrices for mutually independent image points.
Therefore, for mutually independent image points hold

Ñ =

nθ∑
i=1

piāiā
>
i ñ =

nθ∑
i=1

piuiāi (30)

where āi is i-th row of the matrix Ā and pi is i-th column of Pu. We can
see that each item of the sum equals one vector of the matrix Ñ and one
number of ñ. Thus, Ñ ,ñ cannot be stored. The interesting parts of co-
variance matrix Σθ can be computed using Cholesky decomposition. This
sparse approach was used in recent paper Polok [49], however the author
didn’t assume the over-parametrization and used Cholesky decomposition
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on rank-deficient matrix Ñ . Note that, Cholesky decomposition works only
for symmetric positive semi-definite full-rank matrices.

2.2.10 Speed up of general backward propagation

The M-P pseudoinverse is computationally demanding task (i.e. has the
cubic time and quadratic memory complexity). Lhuillier and Perriollat [43]

decomposed the normal equation matrix Ñ also called the Fisher information
matrix [50] to sub-blocks

Ñ = J>f PuJf =

[
UÑ WÑ

W>
Ñ

VÑ

]
(31)

The Schur complement [51] of the submatrix of 3D point parameters

ZÑ = UÑ −WÑV
−1
Ñ
W>
Ñ

(32)

has the same size as the block of camera parameters ZÑ ∈ Rnp×np. It is much
smaller than Σθ ∈ Rnθ×nθ since the reconstructions usually contain much
fewer cameras than 3D points. The inversion of the decomposed information
matrix may be written

Σθ̂ = σ2

[
I 0

−V −1
Ñ
W>
Ñ

I

] [
Z−1
Ñ

0

0 V −1
Ñ

] [
I −V −1

Ñ
W>
Ñ

0 I

]
(33)

if the following two conditions hold: the input covariance matrix equals Σu =
σ2I and the matrix ZÑ has full-rank. Generally, the matrix ZÑ has not full-
rank. In that case, we can replace the inversion of Z−1

Ñ
by pseudoinversion

and write the decomposition

Σθ̂ = σ2

[
I 0

−V −1
Ñ
W>
Ñ

I

] [
Z+

Ñ
0

0 V −1
Ñ

] [
I −V −1

Ñ
W>
Ñ

0 I

]
(34)

if the rank additivity condition [23,52] holds. The rank additivity condition
meas that the sum of rank of the submatrices equals the rank of whole matrix

rank Ñ = rank

[
UÑ
W>
Ñ

]
+ rank

[
WÑ

VÑ

]
= rank

[
UÑ WÑ

]
+ rank

[
W>
Ñ

VÑ
]

(35)

The problem is that the submatrices UÑ ,VÑ has full-rank and the matrix Ñ is
rank deficient. Therefore, even this condition does not hold. Thus, Lhuillier
extend the Equation 34 about the correction terms

P⊥f = I−Kf (K
>
f Kf )

−1K>f (36)

P c
f = I−Kf (JcKf )

−1Jc (37)
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where Kf equals the kernel of J>f Jf and Jc is the Jacobian of additional

constrains (the matrix Â in our notation) and the formulas

Σθ̂ = σ2P⊥f

[
I 0

−V −1
Ñ
W>
Ñ

I

] [
Z+

Ñ
0

0 V −1
Ñ

] [
I −V −1

Ñ
W>
Ñ

0 I

]
(P⊥f )> (38)

Σθ̂ = σ2P c
f

[
I 0

−V −1
Ñ
W>
Ñ

I

] [
Z+

Ñ
0

0 V −1
Ñ

] [
I −V −1

Ñ
W>
Ñ

0 I

]
(P c

f )> (39)

should approximate the normal form of the covariance matrix. Lhuillier has
also published a proof number one in [43] that exist such correction term
however, there is no straightforward connection between the proof and the
correction term actually used (Equation 36-39). We empirically observed

that neither P⊥f nor P c
f is composed from some matrices Q̃Q̃> for which

holds Q̃>Q̃ = I and Ñ = Q̃D̃2Q̃> where D is a diagonal and Q̃ a rectangular
matrix.

2.2.11 Other work

There are also many specific extensions for computation of the uncertainty
of lines [53], edges [54], laser scans [55, 56], and stereo setups [57, 58] which
are not general. The authors tried to approximate covariances of specific se-
tups using heuristics instead of following the general uncertainty propagation
method.

2.3 Properties of the propagation process

The previous work estimates very roughly the second moment of the detec-
tion error. Therefore, the output of the uncertainty propagation may be
corrupted. This problem was not well investigated and may be solved by
more detailed analysis of the second and higher moments of the detection
error.

To invert the Fisher information matrix, the space of the parameters has
to be projected to a manifold such that there is a one-to-one mapping from
observations to parameters [23], i.e. there is no ambiguity in parameters after
all observations have been taken into account. We showed that many addi-
tional restrictions could realize such projection. Each additional restriction
changes the objective function and no comparison against the normal form
of covariance matrix was published. Further, the computation of the nor-
mal form is realized by M-P pseudoinversion which is too computationally
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expensive to be used in current reconstruction pipelines, see comparison of
the speed of the algorithms in Section 3.4.4.

The application of the theory, described above, on the problem of the un-
certainty propagation leads to another issue. Current computers and most
of the libraries work with double representation of the numbers (i.e. 15 sig-
nificant digits). Camera rotation angles and radial distortion parameters
are usually much smaller than the coordinates of 3D points and also have
much larger impact on the objective function, which is typically the sum of
squared differences between the projected parameters and the measurements
(reprojection errors) [23]. Therefore, the Jacobian of the objective function
contains a wide range of values. The values of the Jacobian are squared
into the Fisher information matrix which makes the “raw” information ma-
trix numerically rank deficient for medium and larger image collections, see
comparison of the precision in Section 3.4.3.
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3 Our previous work

We presented the first approach for large scale covariance matrix propagation
which is practical. We derived the Taylor expansion (TE) idea (Section 3.2)
for the approximation of the M-P pseudoinversion [59]. This approximation
was used to extend the Lhuillier paper [43]. After we found the problem of
the decomposition of rank deficient matrices (Equation 38) we extended TE
approach by estimating the inverse instead of M-P pseudoinversion.

Secondly, we presented an important experimental comparison of recent
methods [43, 46] against Ground Truth (GT) covariance matrices, which we
constructed using more accurate arithmetics in Maple [60] (Section 3.4).

To calculate useful inversions, we had to fix the ambiguity (gauge free-
dom [46]) of the 3D scene and approximate the normal form of covariance
matrices [46]. The inversion allowed us to scale the information matrix and
its decomposition to smaller blocks (Section 3.1), which would not be possi-
ble with the M-P pseudoinversion.

We investigated different regularisation ideas that fix the reconstruction by
projecting the parameters to a set of essential parameters and find out which
parameters minimize the differences between the GT and the computed co-
variance matrices of the camera parameters (Section 3.3). Our approach is
faster, more precise and much more stable than any previous one.

The output of our work was publicly available source code which can be
used as an external library in nonlinear optimization pipelines, like Ceres
Solver [35].

3.1 Constrained decomposition of Fisher information
matrix

The standard way to solve the backward propagation of nonlinear over-
parametrized system of equations is to use the M-P pseudoinverse. The
objective function which we optimize in the last step of the reconstruction
process is

r(θ) = f(θ)− u (40)

Therefore we are in its minimum and the propagation is realized by

Σθ̂ = (J>Σ−1u J)+ (41)

20



camera parameters point parameters

ca
m

e
ra

 p
a
ra

m
e
te

rs
p

o
in

t 
p

a
ra

m
e
te

rs

U W

V

W
T

Figure 4: The structure of the information matrix for Cube dataset

with Jr replaced by J for brevity.

Pseudoinverse Ã+ of matrix Ã equals the inverse Ã on the range of Ã and
sends the orthogonal complement of the range Ã to the zero vector [61]. We
approximate the projection of orthogonal complement by a regularisation
matrix R ∈ Rpn×pn−7 which can, e.g., be constructed as a composition R =
RpRs of a projection matrix Rp [23, 46] and a scaling matrix Rs, which we
introduce here. Using R, we can rewrite Equation 41 as

Σθ = R(R>J>Σ−1u JR)−1R> (42)

We investigate which regularisation minimizes the differences in comparison
with Ground truth (GT) covariance matrices in Section 3.3. If the content
of Jacobian is permuted to have cameras followed by points, i.e. J = [JC JX ],
the information matrix

Q = R>J>Σ−1u JR =

[
U W
W> V

]
(43)

will be sparse with block diagonal matrices U and V , see Figure 4.

To compute the inverse of information matrix, we introduce Y = −V −1W>.
We note, first, that V is composed of 3 × 3 blocks on the diagonal and its
inverse can be computed separately for each block, and then also that forming
Y should be fast thanks to the sparsity of V and W . The Upper triangular–
Diagonal–Lower triangular (UDL) decomposition of the block matrix Q leads
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to

Σθ = σ2R

([
I −Y >
0 I

] [
Z 0
0 V

] [
I 0

−Y I

])−1
R> (44)

where matrix Z is the Schur complement [51] of the block V of the informa-
tion matrix

Z = U +WY (45)

We are not interested in off-diagonal blocks. All covariances of reconstruction
parameters are in the blocks on the diagonal of the dense matrix Σθ. The
interesting sub-matrices can be computed as

Σθ = σ2R

[
Z−1 −
− Y Z−1Y > + V −1

]
R> (46)

The blocks of size Rp×p on the diagonal Z−1 are covariances of camera param-
eters. The blocks of size R3×3 on the diagonal of sub-matrix Y Z−1Y >+V −1

are covariances of point parameters.

3.2 The Taylor expansion algorithm

We derived the Taylor expansion (TE) algorithm for estimation of M-P pseu-
doinversion in [59]. After we had found the problem of the decomposition
of the Fisher information matrix (Equation 38) because of using the pseu-
doinversion we focused on estimation of the inversion of Z. First, we defined
M = J>Σ−1u J . Using the inversion allowed us employ necessary scaling

(R>M R)+ 6= R+M+R+> (47)

(R>M R)−1 = R−1M−1R−> (48)

and LDU decomposition of Q to smaller blocks. To solve the TE inversion,
we introduce function

g(λ) = (Z + λI)−1 (49)

where I is scaled by a scalar λ. Error produced by damping term λI is
removed by TE of function g(λ) in point 0. The general i-th derivative of
function g with respect to λ is

dig

dλi
(λ) = (−1)ii(Z + λI)−(i+1) (50)

We assigned the derivatives to the Taylor series estimated in zero point

∞∑
i=0

(
(−λ)i

i!

dig

dλi
(λ)

)
(51)
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and express the inversion of matrix Z

g(0) = (Z + λI)−1 +
∞∑
t=1

(
λt

(t− 1)!
(Z + λI)−(t+1)

)
(52)

The λI term allows us to compute the inversion of Z approximately for
numerically rank deficient matrices and improves the numerical precision of
inversion computation for large reconstructions.

3.3 Regularization of the Jacobian

The regularisation matrix R combines projection Rp to the submanifold
where the inversion can be computed and scaling Rs

R = RpRs (53)

The matrix Rp fixes the ambiguity of the reconstruction. The inversion using
the TE approach can be done with Rp = I because we have infinitely dif-
ferentiable function r(θ) and we can follow Taylor series to approximate the
inversion function. However, the numerical precision of doubles, represented
by 15 significant digits, causes that the results are less precise than in the
case of appropriate projection to the submanifold of reconstruction parame-
ters.

There are different ways how to construct projections Rp in [23,43,46], which
can be split into two groups: the trivial gauges (TG) and the nontrivial sym-
metric gauges (NSG). We will start shortly with NSG and then focus more
to the TG.

To use NSG, we have to assume Gauss-Helmert model instead of Gauss-
Markov model for redundant observations [45] and deal with measurements
as parameters. Thus the objective (residual) function would be

r(θ,u) = u− f(θ) (54)

with additional conditions represented by function h(θ) and the derivatives

A =
∂r(θ,u)

∂θ
, B =

∂r(θ,u)

∂u
, H =

∂h(θ)

∂θ
(55)

and covariance matrix Σθ computed by[
Σθ N
N> P

]
=

[
A>(B>V (u)B)−1A H

H> 0

]−1
(56)
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The covariance Σθ can be computed using sparse inversion, however the in-
verted matrix in 56 is much larger than inversion of Z and we cannot use TE
to improve numerical precision.

The NSG conditions usually fix some statistical properties of estimated cen-
ters and orientations of a subset of cameras or estimates of some 3D points to
fix the global shift (3 parameters), orientation (3 parameters) and the scale
(1 parameter) of the reconstruction.

The TG fix cameras and 3D points directly instead of their mean, covariance
and scale. If we fix one camera pose and one of the coordinates of another
camera center, we lose the information about their uncertainties. Note, that
we can not rely on the numerical precision of the uncertainty of points in 3D
and when we fix some of them we do not loose any useful information. We
empirically found out that most similar uncertainties w.r.t. GT are produced
by the fixation of the three most distant points Xa, Xb, Xc. We seek for this
triple of points using RANSAC [62]. A triple of points fixes nine instead
seven parameters however we empirically found out that it produces more
precise results than fixing two and one-third of a 3D point or any fixation of
one or more cameras.

The matrix Rp is realized as the partial derivation of the function h(θ) w.r.t.
points Xa, Xb, Xc. The function h projects parameters θ\{Xa, Xb, Xc} to θ.
Thus, the multiplication J Rp removes the columns of the Jacobian J which
correspond to the partial derivatives of function r(θ) w.r.t. points Xa, Xb, Xc.

The scale Rs of the Jacobian J is the diagonal matrix

Rs(i,j) = 1/‖Jj‖ for : i = j; (57)

Rs(i,j) = 0 for : i 6= j (58)

where Jj represents j-th column of J . The scaled Jacobian has similar range
of the values in each column and M has unit values at the diagonal.

3.4 Experimental evaluation

The experiments are structured into four parts: the computation of the GT
covariance matrices, the description of the datasets, the evaluation of the
precision, and the comparison of the speed of the algorithms.
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# Dataset NCams NPts NObs

1. Cube 6 15 60
2. Toy 10 60 200
3. Flat 30 100 1033
4. Daliborka 64 200 5205
5 Marianska 118 80 873 248 511
6 Sagrada Familia 199 75 166 633 477
7 Dolnoslaskie 360 529 829 226 0026
8 Tower of London 530 65 768 508 579
9 Notre Dame 715 127 431 748 003
10 Seychelles 1400 407 193 2 098 201

Table 2: This table summarize the number of cameras NCams, the num-
ber of points NPts and the number of observations NObs for the reconstruc-
tions which were created: 1,3 synthetically, 4-9 by Bundler [9] and 2, 10 by
COLMAP [10]

3.4.1 Computation of Ground Truth covariance matrices

We use the theory of gauge-free approach which leads to M-P pseudoinver-
sion, described in [46]. We decompose the matrix Z using the SVD into

Z = Ū S̄V̄ > (59)

and invert the diagonal values S̄ ′i,i = 1/S̄i,i for i ∈ 1, 2, . . . , n p− 7 because
the 3D scene has 7 degrees of freedom. The remaining values on the diagonal
of S̄ ′ are set to zero. The inversion of Z is than obtained as

Z+ = Ū S̄ ′V̄ > (60)

The SVD algorithm is sensitive rounding when the range of values in ma-
trix Z is large and different implementations may lead to different results
(i.e. Maple, Matlab and Ceres which can be seen in Figure 6). All imple-
mentations, except for Maple, use the double precision, represented by 15
significant digits. To achieve more accurate results, we evaluated the GT
covariance matrices in Maple using 100 significant digits. The precise evalu-
ation of the uncertainty matrix is computationally demanding (e.g. the SVD
of Z for Daliborka dataset took approximately 22hours). Therefore, we com-
puted GT covariance matrices only for the datasets 1-4, see Table 2.

3.4.2 Datasets

We experimented with realistic synthetic reconstructions, as well as with
middle to large scale Internet datasets. The parameters of the datasets are
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# Algorithm

1. SVD of M using Maple (Kanatani [46]) (GT)
2. TE inversion of scaled Z with three points fix
3. SVD of M using Ceres (Kanatani [46])
4. TE inversion of scaled Z with trivial camera fix
5. SVD of Z with correction term (Lhuillier [43])
6. SVD of M using Matlab (Kanatani [46])
7. M-P inverse of Z using TE (Polic [59])

Table 3: Compared algorithms

summarized in Table 2. The datasets 2, 4 were reconstructed by publicly
available pipelines (COLMAP [10], Bundler [9]) and after that, the number
of the points in 3D was reduced to allow computing GT covariance matrices.
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Figure 5: The distribution of all errors (with the corresponding color coding)
for the experiments in Figure 6

3.4.3 Precision

We compared the algorithms summarized in Table 3. The algorithm 1 uses
Maple computation with 100 significant digits and its result is considered the
Ground Truth (GT). The algorithm 3 uses Ceres [35], algorithm 2 uses C++
libraries while other algorithms use Matlab [60].
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Figure 6: The comparison of the algorithms from Table 3 for the datasets
1-4 from Table 2
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Figure 7: Each point represents the mean of errors (described precisely in
Section 3.4.3) of the uncertainty matrices for one [dataset,algorithm] and
given damping term λ. The lambdas chosen by our algorithm are shown as
red circles and the lambdas chosen by other algorithms are shown as orange
circles.

Figure 6 shows the uncertainties. The order of rows corresponds to the order
of algorithms in Table 3 (i.e. the first row corresponds to the SVD of M
using Maple). You can see that the correct gauge-free approach [46] on rows
3,6 do not produce correct covariance matrices even for small reconstruc-
tions because of the numerical rank deficiency of the information matrix.
These algorithms usually ignore the most unconstrained cameras or fail, see
algorithm 6 for Daliborka dataset. This problem was not solved by any of
previous approaches [23, 43, 59] which are on rows 4,5,7. The algorithm 4 is
an improved version of [23]. It scales Jacobian by suitably chosen Rp, see
Section 3.3. You can see that the Lhuillier algorithm [43] (the fifth row) also
ignores the most unconstrained cameras even for small scenes. The covari-
ances of the camera centers are not shown when containing complex, not a
number or infinite values (e.g. for the algorithm 7, Figure 6). Our algorithm,
TE inversion, has the opposite trend, i.e. the error decreases with the grow-
ing size of the reconstruction. Figure 5 shows the distribution of all errors
(with the corresponding color coding) for the experiments in shown Figure 6.
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Figure 8: Each point (except λ̂, the empirically selected value of λ) represents
the mean of errors (described precisely in Section 3.4.3) of the uncertainty
matrices for TE inversion algorithm, one dataset and λ̂ based on number of
camera parameters n p

The inversion of Z + λI is usually stable for λ = 0 for small reconstructions,
however for the large ones may be very unstable. The algorithms 2, 4, 7
use a damping term. The dependence of the mean error err(V̂ (θ, λ)) of the
estimated covariance V̂ (θ, λ) for scene parameters θ dependent on parameter
λ is shown in Figure 7. Error function err(V̂ ) is computed as the mean of
the Frobenius norm of the elements of V̂ − V̂GT , which correspond to camera
orientations and centers. It has been observed that the errors in covariances
of extrinsic camera parameters are sufficient for finding suitable values of λ.

Figure 8 shows (red dashed line) the decreasing trend of the mean error

err(Ṽ (θ, λ̂, np)) (where Ṽ (θ, λ̂, np) is estimated covariance for scene param-
eters θ and given λ̂ dependent on the number of camera parameters np)
with increasing reconstruction size (i.e. the size of inverted matrix Z). The
Figure 8 also shows (solid lines) the error

ẽrr(ZZ−1) =

np∑
1

1

104np

(
Σ104

k=1(Z Z
−1 − I)xk

)
(61)

of inversion Z−1 where x ∈ Rnp is a random vector with zero mean and
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Figure 9: Each subplot represents one dataset (i.e. 1-4) and each point rep-
resents the mean of errors of uncertainty matrices for selected dataset and
different sets of fixed points {Xa, Xb, Xc}. The function D is the sum of all
points distances, i.e. D(Xa, Xb, Xc) = ‖Xa −Xb‖+ ‖Xa −Xc‖+ ‖Xb −Xc‖.

unit standard deviation. The matrix Z ∈ Rnp×np is either random matrix
Z̃i,j ∈ [0, 1] or the Schur complement matrix Z (Equation 45) with and

without using the damping term λ̂ for computing Z−1. It can be seen that
the dumping term decreases the error for large datasets (i.e. datasets 9, 10).
The best linear prediction λ̂ of λ from the number of cameras (i.e. the size
of inverted matrix Z) has been found as follows

λ̂ = 10−1.2653 log10(n)−2.9415 (62)

Finally, Figure 9 shows that error err(V (θ,Xa, Xb, Xc)) decreases with in-
creasing sum of distances between fixed points Xa, Xb, Xc. V (θ,Xa, Xb, Xc)
is the estimated covariance matrix for chosen triple of fixed points. Moreover,
the influence the choice of the fixed points on the covariance computation
decreases with increasing size of the reconstructed scene. Thus, we can fix
any three mutually distant points for large datasets (e.g. datasets 9, 10).

3.4.4 Speed

The covariance matrix using M-P pseudoinversion of M for Daliborka dataset
(i.e. for 1176 reconstruction parameters) was computed using Matlab in
0.45sec, using Ceres (via Eigen 3.3 [63]) in 25.9min. Our algorithm (TE
inversion) was computed for Daliborka in Matlab in 0.67sec and using Intel
MKL (C++ code) in 0.35sec. Further, the first middle sized reconstruction
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Figure 10: The dependency between the number of camera parameters of the
reconstruction (equal the dimension of Z) and the run time of the algorithm.
Each point represents evaluation of one dataset from Table 2

Marianska without reduction of 3D points has 243681 reconstruction param-
eters and requires about 470GB for dense representation of matrix M . Thus,
we cannot use current implementation of Ceres nor the algorithm 5. Secondly,
the evaluation using SVD has cubic asymptotic complexity in the number of
the parameters and the uncertainty evaluation for Marianska dataset would
take approximately 9 million times the time of Daliborka evaluation. Our
TE inversion algorithm was computed for Marianska in 4.32sec from which
the sparse matrix-matrix multiplication (SMMM) took 3.26sec. The SMMM,
used for building the matrix M and Z, was performed by Eigen 3.3 which
means that the speed can be further improved using the structure of the
matrices or more enhanced algorithm [64,65].

The state of the art methods are neither precise enough nor allow the
computation for real middle sized datasets. We summarized the processing
times of the three most important algorithms in Figure 10. The algorithm 1
was much slower (i.e. 22 hours for Daliborka) than all other algorithms. The
algorithms 4 and 7 take the same time as algorithm 2 and the algorithms
3 and 5 cannot be evaluated on datasets 5-10 due to the time and memory
requirements. All experiments were performed on a single computer with one
2.6GHz Intel Core i7-6700HQ with 32GB RAM running a 64-bit Windows
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10 operating system.

3.5 Conclusion and future work

Previous work for evaluating the quality [23, 43, 46] of the reconstruction by
error propagation from measurements to the estimated parameters was based
on Moore-Penrose pseudoinversion (i.e. Singular Value Decomposition [66])
which is computationally challenging and mostly imprecise for real datasets
because of a wide range of values in the information matrix. We proposed
a method which computes the approximation of the inversion and the M-P
pseudoinversion [59] of Fisher information matrix. That allows the scaling
of the values of the information matrix and produces more precise results.
We showed that other methods using the standard approaches to computing
the covariance matrix work well for datasets with a few cameras and tens of
points in 3D. Our method works for much larger reconstructions (e.g. a recon-
struction with 1400 cameras, 407193 points in 3D and 2098201 observations
in reasonable time 10min) on a single computer. The additional analysis may
lead to more precise evaluation of the uncertainty of the points in 3D.
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4 Goals of the thesis

The main purpose of the thesis is to address the shortcomings of 3D scene
analysis and provide improvements in terms of performance, robustness and
applicability.
In particular, we identify following problems that are worth solving:

1. Solving the problem of uncertainty propagation
We have presented a new algorithm for the propagation of the uncertainty
for large 3D scenes. However, we believe that local propagation of the
uncertainty (i.e. between few cameras and their points) can iteratively
converge to the same results. Such approach might be faster and allows
the computation of uncertainty for any scene regardless its size.

2. Comparing the current relative and absolute pose solvers
There is no comparison of absolute and relative pose solvers (e.g. [28,
29,31,32]) in sense of the second moments (i.e. the precision of estimated
parameters is not known). We believe that such comparison may lead to
better selection of the model for a particular scene and makes reconstruc-
tion pipelines more robust.

3. Speeding up the Structure from Motion algorithm
The SfM usually reconstruct as many 3D points as possible and optimize
them almost in each iteration. The information about the precision of
scene parameters may allow us removing or not optimizing the least con-
ditioned 3D points and cameras. The optimization of well-conditioned
sub-scene should be faster and more robust.

We have studied the problem 1 in [59] discussed how to analyze the prop-
erties of the 3D scene. We described the scene approximately by first two
moments. Our algorithm propagates these moments more precisely on much
larger scenes than the previous algorithms [23,43,49], i.e. thousands of cam-
eras and millions of 3D points.

We empirically observed that the uncertainty of the parameters of a scene
change a little when we remove few 3D points. Thus, we believe that well-
selected subset of input parameters may be sufficient to estimate covariances
of the 3D scene and it may be possible to employ the unscented transforma-
tion [67] or the iterative local propagation (problem 1) to further improve
the uncertainty propagation process.

Finally, we would like to apply the results from problem 1 in practi-
cal applications: comparing the current absolute and relative pose solvers
(problem 2), creating the most conditioned sub-scene and speeding up the
SfM (problem 3).
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