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Abstract

The electronic fetal monitoring (EFM) is used for fetal behaviour surveillance via measurement of fetal
heart rate. In the course of labour, fetus can suffer by severe hypoxic insults that might lead to possible
adverse long term consequences. The main goal of EFM is to provide indirect information about fetal
well-being and help obstetricians to indicate timely intervention to prevent adverse consequences.

Nowadays, the EFM is an integral part of every day obstetrics practice. The EFM most commonly
refers to cardiotocography (CTG) that is a measurement of fetal heart rate and uterine contractions.
The reliability, validity, and efficiency of CTG have neither been confirmed nor disproved. Also
all the computerized systems have yet to prove its efficiency. The reasons for stagnating or even
non-existent technical progress are: i) use of very small and ad-hoc created databases, ii) neglect
of the high intra/inter observer variability of clinical evaluation of CTG, iii) unclear definition of
pathological labour outcome (usually the outcome is imprecisely defined by a pH value), iv) strict
technical approach disconnected from the clinical reality.

Therefore, in this thesis, we introduce the first open access database of intrapartum CTG. The
database that enables other researchers to developed and test new algorithms for CTG analysis and
classification. We show that it is possible to overcome the high inter observer variability using a model
of clinical annotation. We also show that there is a group of pathological CTG records on which
the clinicians have good agreement. Finally, we develop a novel approach for CTG evaluation using
a hierarchical model. The model considers different outcome measures as a mixture of individual
components. Thus is able to overcome discrepancies between biochemical markers (pH, base excess,
base deficit), Apgar score, and clinical evaluation of CTG. The developed model is able to answer the
difficult question, whom to trust when you are given multiple noisy and imprecise information about
labour outcome.

Keywords Cardiotocography, Fetal heart rate, Time series analysis, Feature selection, Mixture
models, Latent class analysis, Latent class regression, Classification
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Chapter 1

Introduction

"A journey of a thousand miles began with a single step."
saying of Lao Tzu tr. L. Giles 51, 1904

Being born is one of the most crucial events in our life. After intrauterine growth and development
a baby is going to establish itself as an independent individual. During labour, a fetus can repeatedly
suffer from oxygen insufficiency, which is normal but for fetuses with weakened defence mechanism
a metabolic acidosis could be developed. The metabolic acidosis can lead to neuro-development
disability, cerebral palsy, neonatal encephalopathy, or death resulting from excessively long oxygen
insufficiency. To handle the labour stress a fetus is equipped with a defence mechanism. Good
understanding of how an individual fetus reacts to the stress of labour helps to indicate timely
intervention when the fetal defence has been activated but before the risk of long-term consequences
increases.

The fetal heart rate (FHR) reflects changes in fetal behaviour. In the past a fetal stethoscope was
used to intermittently monitor FHR and its changes. However, the stethoscope could not detect subtle
changes in FHR and continuous monitoring was also impracticable. Introduction of electronic fetal
monitoring (EFM) overcame these disadvantages and offered continuous fetal surveillance during
pregnancy and, more importantly, during delivery. The EFM most commonly refers to cardiotocography
(CTG) that is a measurement of FHR and uterine contractions (UC). Since its introduction the CTG
has served as the main information channel providing obstetricians with insight into fetal well-being.

The introduction of CTG in late 1960’s was accompanied by great expectations. Initially, the CTG
was intended for high risk pregnancies but it has become commonly used even for normal pregnancies.
However promising the technology at the time, it has been surrounded by great controversies from
the very beginnings. The rationale of CTG is that it should prevent adverse labour outcomes by
enabling clinicians to timely intervene in labour. For this rationale to be true three conditions must
hold (Haggerty, 1999; Paneth et al., 1993). The CTG is i) reliable: substantial inter-observer agreement
exist as to the identity and meaning of CTG patterns, ii) valid: one or more CTG patterns are statistically
significant to an adverse labour outcome, and iii) efficient: an intervention based on a CTG pattern
could prevent an adverse labour outcome. The great research effort was devoted to the reliability of
CTG by introduction of various guidelines (ACOG, 2009; FIGO, 1986; Macones et al., 2008) to the
validity by examining different patterns in connection to labour outcomes (Hamilton et al., 2012; Parer
et al., 2006; Westgate et al., 2007) and to the efficiency (Alfirevic et al., 2006).

The attempts of computerized CTG were aimed on improving the reliability and efficiency. Be-
ginning with work of (Dawes et al., 1981) the automatic analysis of CTG was aligned with clinical
guidelines, which has become fundamental for almost every work on automatic CTG analysis. In
addition to the morphological features used in the guidelines, new features were introduced for FHR
analysis in order to reveal a possible new information hidden to the clinical guidelines. These were
mostly based on the research in the adult heart rate variability (Task-Force, 1996) and consisted mainly
of frequency, joint time-frequency, and nonlinear features. The morphological features were included
into automatic systems for CTG analysis, among the best known are Omniview SisPorto® (de Campos

1



2 Chapter 1. Introduction

et al., 2008) developed at University of Porto, INFANT® (Greene and Keith, 2002; Keith and Greene,
1994) developed by K2 Medical Systems™, UK, and the PeriCALM™ (Elliott et al., 2010; Parer and
Hamilton, 2010), developed by LMS Medical systems, Canada and PeriGen, USA. However, all the
systems are mainly used at the institution or region they were developed and, more importantly, none
of the system has proven its efficiency in a clinical trial.

The possible reasons that hindered the development of automatic CTG analysis are: i) unclear
relationship between FHR patterns and labour outcome as measured from fetal blood by pH or base
deficit (BDecf) after delivery (Parer et al., 2006; Westgate et al., 2007), ii) high variability in CTG
interpretation (Blackwell et al., 2011; Vayssiere et al., 2009), iii) use of small and proprietary CTG
databases in many studies, and/or iv) disconnection between strictly technical papers and clinical
practice.

The only measurable improvement of the EFM was introduction of the ST-analysis method (Rosén
and Luzietti, 1994) (Neoventa Medical, Sweden), which is based on analysis of fetal electrocardiogram.
The ST-analysis improved the labour outcomes slightly (Amer-Wåhlin and Maršál, 2011; Norén et al.,
2003) but its use is not always possible or feasible since it requires invasive measurement. Moreover,
the ST-analysis is not an alternative to the CTG but rather a support. In order to use the ST-analysis
correct interpretation of CTG is still required.

Nowadays, the CTG remains the most prevalent method for intrapartum fetal surveillance (Bernardes
et al., 1997; Chen et al., 2011) often supported by the ST-analysis. Since the rationale of CTG was nei-
ther confirmed nor disproved, Sartwelle (2012) proposed to abandon the CTG monitoring completely.
Nevertheless, with the widespread use of technology in all areas of clinical practice, it is unlikely that
the CTG will be abandoned and a solution to improve the CTG is still desired. Steer (2008) concluded
that the weakness of CTG lies in a generally poor standard of interpretation and the contribution of the
human factor, demonstrated by high intra- and inter-observer variability. Either more education and
training on CTG interpretation should be performed (Doria et al., 2007; Westerhuis et al., 2007a) or
one should use a more cost-effective solution by developing a decision support system serving as a
source of additional information (Bernardes and Ayres-De-Campos, 2010; Hasley, 2011; Steer, 2008).
A development of methods that could enable to create such a decision system are the main aim of this
work.

1.1 Motivation and goals of thesis

The motivation of this work is to overcome the possible reasons that hindered a development of
automatic CTG interpretation as described above. The main goals are to propose a methodology of
CTG evaluation, to design a new classification paradigm, and to develop a novel classification system
that would support the clinicians with assessment of CTG. The methodology will be based on the
design and implementation of a model for evaluation of CTG. The main goals of the thesis can be
summarized as follows:

1. To perform a critical analysis of used databases and algorithms. The comprehensive
overview of databases that were used for CTG processing and/or classification. The criti-
cal analysis would also give overview of different approaches (algorithms) with respect to their
classification performance.

2. To create and describe a new open access database of CTG records. The CTG database that
would be used for design and verification of a model for classification and that would be open to
other researches.

3. To design a model for clinical evaluation of CTG. The model that is able to account for the
high inter-observer variability in clinical decision and that would estimate the hidden (unknown)
truth of CTG evaluation from multiple clinical annotations. Until now there has not been such a
model developed.
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4. To design, implement, and verify a classification of FHR features using pH. The FHR
features would reflect the complex behaviour of fetus and would be suitable to discriminate
normal and abnormal fetuses. Further, to produce a classifier of FHR features where a pH value
is used to discriminate between normal and abnormal labour outcome.

5. To design and develop a classification system that is able to account for uncertainty with
labour outcome definition. A system that would consider the discrepancy between objective
evaluation using biochemical markers and subjective evaluation using Apgar score and clinical
assessment of CTG. The results of the system would be a classifier of FHR features and estimated
labour outcome from multiple, possibly noisy and imprecise sources. The system would provide
accurate information about fetal well-being.

1.2 Structure of the thesis

In Chapter 2 we introduce the fetal physiology and CTG from an obstetrician’s perspective and present
the surveillance methods used for fetal monitoring. We thoroughly describe the assessment of labour
and neonate outcome. In Chapter 3 we present the state of the art of automatic evaluation of fetal
heart rate and in Chapter 4 we introduce the new open access CTG database. We describe the FHR
preprocessing and analysis using a comprehensive set of features originating from different domains
in Chapter 5. We provide a through analysis of clinical evaluation in Chapter 6 and we show that
the inter observer variability in clinical decision could be lowered using a latent class model. We
perform a classification of FHR features using the pH value as a discriminator between normal and
abnormal CTG records in Chapter 7 and in Chapter 8 we present a novel hierarchical model for FHR
evaluation. We prove that the model is able to account for discrepancy in biochemical markers and
clinical evaluation and provide the best classification results.
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Chapter 2

Obstetrics preliminaries

This chapter contents is largely based on (Spilka, 2009, 2011) with modifications of state of the art
knowledge. The summarized medical information is based on general medical textbooks (Guyton and
Hall, 2005; Čech et al., 2006) and other general texts such as (Sundström et al., 2000).

Labour is a very stressful period for fetus as well as for mother. Fetus is affected by mother’s
behaviour and condition. The way fetus reacts to its changing environment gives an important
information about its status. For instance, a change in fetal heart rate can be caused by nervous system
that is activated by receptors reacting to the change of internal environment.

One of the major fetus’s tasks is to handle reoccurring hypoxic events that could lead to severe
consequences for further child development. Fetus has its own physiological protective mechanism
able to sustain repetitive hypoxic episodes. However, if the fetus is not able to adequately response or
to recover from hypoxic stage, the hypoxia could be developed into the next stage of oxygen deficiency
called asphyxia that could lead to cerebral palsy, neonatal encephalopathy, or to death. Hypoxia,
with prevalence lying in the region of 0.6% (Heintz et al., 2008) to 3.5% (Strachan et al., 2000), is
considered still to be the third most common cause of newborn death (d’Aloja et al., 2009).

Several studies elaborated more on the cause of neonatal encephalopathy and cerebral palsy. Pierrat
et al. (2005) examined 90 neonates with moderate or severe newborn encephalopathy with prevalence
1.64/1000. Birth asphyxia prevalence was 0.86/1000 per term live birth. The main cause of newborn
encephalopathy was birth asphyxia, diagnosed in 52% cases. From these cases, asphyxia was caused
intrapartum in 56% of cases, antepartum in 13%, ante-intrapartum in 10%, and post-partum in 2%. In
19% of cases, no underlying cause was identified during the neonatal course. Locatelli et al. (2010)
investigated risk factors (described below) related to neonatal encephalopathy (prevalence 0.88/1000)
and compared these factors with a control group. In neonatal encephalopathy group the risk factors
were present antepartum in 74%, and intrapartum in 68% while in the control group the occurrence
was lower, 18% antepartum and 19% intrapartum.

It is apparent that adverse delivery outcomes are not necessarily connected to intrapartum events
but can be linked to antepartum period. In the both periods there are risk factors which occurrence
significantly contribute to neonatal encephalopathy (Locatelli et al., 2010) and cerebral palsy (Evans
et al., 2001). The antepartum risk factors are: obesity, diabetes, thyroid dysfunction, previous caesarean
delivery, pre-eclampsia, fetal growth restriction, abnormal amniotic fluid volume, and abnormal FHR
tracing before labour. The intrapartum risk factors are: bleeding during labour, epidural analgesia,
intrauterine infection, meconium-stained liquor, post-term delivery, induced labour, and caesarean
section. In presence of some risk factors, electronic fetal monitoring is necessary for fetal surveillance.
On the other hand, for low risk pregnancies the use of electronic fetal monitoring does not offer
significant contribution to fetal outcomes (Alfirevic et al., 2006).

This chapter is organized as follows: first, we outline the basics of fetal physiology and fetus
response to different stages of oxygen deficiency. Next, we describe an interaction between mother and
fetus during gestation with emphasis on the antepartum and intrapartum period. Finally, we introduce
methods for the fetal hypoxia diagnostics with focus on electronic fetal monitoring.

5
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2.1 Fetal physiology

Fetal development lasts about 40 weeks. Complex systems, such as circulatory, respiratory, nervous,
gastrointestinal, etc. are being developed during that time. In this work we discuss in detail only the
circulatory system; the others are mentioned only to give overall insight into fetal behaviour.

Fetal heart begins beating approximately at 4th week of pregnancy with frequency about 65 beats
per minute (BPM). This frequency increases during a gestation up to 140 bpm before delivery. The
main function of fetal heart is to pump oxygenated blood from placenta to the organs and, in turn, to
carry carbon dioxide back to placenta, where an exchange between mother and fetus is maintained.
The exchange is not limited to gases only but is performed for all substances such as nutrition and
fetus’ waste products.

Fetal circulation The oxygenated blood from mother’s aorta is distributed to the uterine arteries and
further to the spiral arteries that deliver blood to placenta. Here, in the thin capillaries membranes,
the exchange of gases and substrates is performed. The fetus respiration system is non-functional and
placenta works as the fetal lungs. Therefore, blood flows bypass lungs by ductus arteriosus. The same
situation applies for liver, only with the difference, that liver are partially functioning and blood is not
completely bypassed by ductus venous. The whole organization of the fetal circulation is illustrated
in Figure 2.1. The oxygenated blood from placenta enters the right atrium and continues directly to
the left atrium throughout foramen ovale. From there it is pumped into left ventricle and then to aorta
and further back to placenta via umbilical arteries. The de oxygenated blood returning from the upper
part of the body enters the right atrium and is pumped into the right ventricle. Then, after ventricle
contraction, blood is pumped through ductus arterious into the descending aorta.

Figure 2.1: Organization of the fetal circulation. The difference between fetal and neonatal circulation lies in so
called "blood short-cuts". It involves ductus venous, ductus arterious and foramen ovale. If these are not closed
at the first breath, there is a serious risk for a new born development (Guyton and Hall, 2005).

2.1.1 Energy metabolism

Placenta maintains an exchange of oxygen and carbon dioxide between mother and fetus. This
exchange can only be performed due to different partial pressures of gases. In placenta, oxygen
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is bound to haemoglobin and released in the capillaries in the fetal circulatory system. There the
carbon dioxide replaces the oxygen and is carried back to placenta. Depending on oxygen availability
we distinguish aerobic and anaerobic metabolism. These are illustrated in Figure 2.2. The aerobic
metabolism utilises glycogen (or fatty acids), oxygen, adenosine diphosphate, and phosphate (P) in
order to create adenosine triphosphate which serves as energy source. The waste product are carbon
dioxide and water. The anaerobic metabolism is also used for glycolysis but with the difference that
the oxygen is not available and cannot be used.

(a) aerobic metabolism

(b) anaerobic metabolism

Figure 2.2: Energy metabolism. The aerobic metabolism is oxygen dependent. In cases of oxygen insufficiency,
the so called anaerobic metabolism produces enough energy to cover basal activity (modified from (Sundström
et al., 2000)).

The waste product of anaerobic metabolism is lactic acid. The anaerobic metabolism only pro-
vides energy for basal (vital) activity and, as a consequence, fetus growth is restricted. Therefore,
the anaerobic metabolism should not last for hours. If the supply of oxygen is not re-established,
hypoxanemia, hypoxia, and sequentially asphyxia are developed. These terms express different stages
of decreased oxygen saturation of the fetal artery blood. Asphyxia is the last and worst stage that might
occur. Before describing the individual stages, it is necessary to explain autonomic nervous system
and its reaction to oxygen deficiency. This system adapts fetal heart rate to changing environment
and regulates blood distribution. It consists of humoral and neural (parasympathetic and sympathetic)
systems that function antagonistically. Parasympathetic system reacts rapidly on abrupt changes,
whereas the sympathoadrenal system works at more fundamental level prevailing during stage of fetal
hypoxia (Amer-Wåhlin, 2003). Parasympathetic activation causes reduction in fetal heart rate called
bradycardia, while sympathetic activation leads to surge of stress hormones from the adrenals and
FHR may increase up to tachycardia. It is worth to mention that transition between sympathetic and
parasympathetic system is not linear, i.e. changing constantly in time, but rather shows non-linear
behaviour (Goldberger et al., 2002). In Figure 2.3 is illustrated how the nervous systems reflect a
change in blood gases.

Hypoxanemia Hypoxanemia is an initial stage of oxygen deficiency. The oxygen is depleted in the
arterial blood at the periphery. Central organs and peripheral tissues are intact and enough oxygen is
provided to maintain aerobic metabolism. The fetal response is activated by chemoreceptors located
in major vessels. It involves several safety precautions. First, the more efficient uptake of oxygen is
performed by increased blood flow or increased number of erythrocytes. Second, the fetal movements
are reduced and also growth is restricted in order to save the oxygen. The fetus can sustain hypoxanemia
for days and weeks. However, in presence of fetal hypoxanemia before labour, fetus has less ability to
handle labour stress because of restriction of energetic reserves.
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Figure 2.3: Relationship between blood gases and heart function (Amer-Wåhlin, 2003).

Hypoxia Hypoxia represents second stage of oxygen deficiency when the peripheral tissues are
affected. Blood flow is redistributed in favour of central organs guaranteeing aerobic metabolism. On
the contrary, anaerobic metabolism is utilised at peripheral tissues. The prime reaction to hypoxia is
surge of stress hormones (adrenalin, noradrenalin) and sympathetic activation. Without any damage to
fetus, hypoxia can last several hours.

Asphyxia Asphyxia is the most critical stage. The oxygen is depleted and high priority organs utilise
anaerobic metabolism. The energy is created from glucose stored in liver and myocardium. Brain
has very low glucose level, therefore glucose is supplied by liver. The fetal response to asphyxia
involves release of stress hormones and activation of sympathetic nervous system. The fetus attempts
to maintain function of central organs as long as possible. The final stage of asphyxia is the collapse of
system with brain and heart failure. Asphyxia that lasts only few minutes might cause irrecoverable
damage.

2.2 Fetal surveillance methods

The reliable assessment and diagnosis of changes in fetus condition is of major importance. The fetus
hypoxia activate defence mechanism and anaerobic metabolism is utilised at the peripheral tissues.
Using diagnostic tools these can be detected and evaluated. The diagnosis can be roughly split into
two groups: fetal blood measurement (fetal blood sampling, pulse oximetry) and electronic fetal
monitoring (cardiotocogram, fetal electrocardiogram).

2.2.1 Cardiotocogram

The fetal heart rate reflects changes in fetal behaviour and condition. Cardiotocogram (CTG) involves
monitoring of fetal heart rate and uterine pressure. It offers valuable insight into fetal condition and
serves intrapartum as well as peripartum (the admission CTG) when it might diagnose potential fetal
compromise. The electronic fetal monitoring was introduced in 1960s and is a successor of auscultation
method where the FHR was monitored periodically by stethoscope.

Cardiotocogram recording

We distinguish two types of CTG monitoring based on different stages of labour. Before rupture
of membranes the external ultrasound probe and transducer are used to acquire FHR and uterine
pressures, respectively. After the rupture of membranes an electrode could be attached at fetus scalp
and FHR is computed directly from ECG’s R-R intervals. The uterine pressures are obtained using
internal electrode placed in vagina. The record is called intrauterine pressure. The external and internal
monitoring is shown in Figure 2.4.

External monitoring has certain limitations in comparison to internal. In external monitoring
the ultrasound Doppler principle is utilized to detect fetal heart pulsations. Therefore the ultrasound
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Figure 2.4: Recording of fetal heart rate and uterine activity (Sundström et al., 2000).

probe must be located precisely at the position of fetal heart and any movement either mother’s or
fetus’ may cause distortions. The great advantage of external monitoring lies in easy application and
non-invasibility. Internal monitoring, the direct electrocardiogram measurement (DECG), is invasive
and can be used only when the fetal position is normal, i.e. head first presentation, and after fetal
membranes’ rupture. The electrode is screwed to fetal scalp without any damage to fetus and complete
electrocardiogram is acquired. Then the fetal heart rate is computed as difference of successive
beats. The pressure transducer is placed in vagina and intrauterine pressure is recorded. The internal
monitoring has a higher signal to noise ratio than the external one and, in addition, DECG and its
morphological changes can be examined.

Changes in fetal heart rate The changes of fetal heart rate may either occur during oxygen insuf-
ficiency or could be caused by aspects, such as mother behaviour or external influences. The FHR
changes and its causes are as follows:

• Normal changes – the FHR is different during quiet and active sleep (REM1). There are rapid
shifts in autonomic nervous system resulting in accelerations and increased heart variability
during active sleep.

• Changes in placental blood flow – mainly due to cord compression. When the cord is compressed,
the blood is pushed into fetus. The heart must pump more blood and the heart rate increases. The
increase in blood volume results to increase in blood pressure. Hence, sensitive baro-receptors
are activated and cause decrease in fetal heart rate. When the compressed cord is released, the
FHR returns to normal.

• Adaptation to oxygen insufficiency – when oxygen content decrease, chemo-receptors are
activated and stimulate sympathetic and parasympathetic nervous system. The changes in fetal
heart rate depends on the stages of hypoxia. In case of acute hypoxanemia, immediate fall in
FHR occurs while gradually developing hypoxia causes increase in FHR.

• External stimuli – due to the contraction there is an increase of head pressure that may cause
deceleration. Also pressure on eye bulb might induce bradycardia.

• Increase in mother’s temperature – in case of mother fever, the fetal metabolism increase which
leads to higher oxygen consumption and may result in fetal tachycardia.

• The effect of drugs – the fetus could be affected by various drugs and the ability to handle
labour stress may decrease, e.g. mother over-stimulation with xytocin results in increased uterine
activity and fetus is affected by more intensive contraction.

• Fetal activity – the state of fetus (active and quiet) affects the frequency spectrum of FHR.
1rapid eyes movement
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Assessment of fetal heart rate changes

The following patterns and features are usually assessed in CTG records: baseline rate, variability,
acceleration, and deceleration. These patterns and their properties are strictly defined in guidelines for
fetal monitoring (FIGO, 1986; NICE, 2007) and according to their occurrence the appropriate reaction
is suggested. The normal CTG record is presented in Figure 2.5. It shows accelerations and normal
heart variability that are markers of fetal well-being.

Figure 2.5: Normal reactive trace. (a) Accelerations; (b) normal variability (Hinshaw and Ullal, 2007).

Baseline heart rate Baseline fetal heart rate is determined over time period of 5 or 10 minutes when
acceleration and deceleration are absent. Normal baseline rate is in range of 110 – 160 bpm. The
decrease of heart rate below 110 bpm is called bradycardia and the increase of heart rate up to 150
bpm is called tachycardia.

Variability FHR variability is defined as amplitude oscillations around baseline heart rate. Normal
values are between 5–25 bpm. Example of normal variability is shown in Figure 2.5. The so called
saltatory pattern is an increase in variability of more than 25 bpm. Complete loss of variability for
more than 40 minutes is the most abnormal sign and fetus may no longer fine-tune its circulation.
The FHR could also have sinusoidal pattern with smooth, undulating sine-wave. In case of sinusoidal
pattern, immediate intervention is required.

Accelerations Acceleration is a transient increase in the heart rate of more than 15 bpm lasting 15
seconds or more. This is associated with fetal movements or stimulation, and indicates fetal well-being,
see Figure 2.5.

Decelerations Deceleration is characterized as a transient decrease of FHR below the baseline level
of more than 15 bpm lasting at least 10 seconds. The decelerations are linked to uterine activity
and distinguished as uniform or variable. Uniform deceleration has the same pattern and shape from
one deceleration to another, whereas the variable decelerations might vary from one contraction to
another; for illustration see Figure 2.6. Uniform decelerations can be further divided into early and late
depending on time of occurrence. Early deceleration represents transient decrease in FHR when the
drop in FHR matches the onset of contraction. On the contrary, late decelerations are characterized as
those with different onset of the contraction and deceleration. Note that only late decelerations are
connected with hypoxia. The variable decelerations have different shape from one deceleration to
another. As for uniform deceleration, the variable can be also split into two groups: uncomplicated
and complicated. Uncomplicated deceleration is defined as deceleration lasting less than 60 seconds;
below this time fetus is able to sustain it.

CTG guidelines

In order to standardize CTG interpretation and classification the guidelines were introduced by the
International Federation of Gynaecology and Obstetrics (FIGO, 1986), see Table 2.1. They were
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Figure 2.6: Uniform (rounded pattern, shape is similar) and variable (rapid loss of beats, pattern may vary)
decelerations (Sundström et al., 2000).

further adapted by the national obstetrics organizations and resulted into modified guidelines (NICE,
2007; RCOG, 2001). In 2008 the guidelines were reviewed by the diverse group of investigators
from the three organizations (National Institute of Child Health and Human Development, American
College of Obstetricians and Gynaecologists, and Society for Maternal-Fetal Medicine) and resulted
into the guidelines described in (Macones et al., 2008) and (ACOG, 2009). Despite the efforts made
and variety of guidelines introduced, the interpretation of CTG still remains subjective with high inter
and intra observer variability documented back in 1982 (Beaulieu et al., 1982; Lotgering et al., 1982)
as well as in the recent studies (Blackwell et al., 2011; Vayssiere et al., 2009). Note that the FIGO
guidelines still remain the only international consensus on interpretation of CTG. (de Campos and
Bernardes, 2010) showed comparison between various guidelines and concluded that for the normal
patterns the guidelines are consistent but for the suspicious and pathological patterns they are in wide
disagreements. They also stated that guidelines are difficult to interpret and proposed a simplified view
on guidelines.

Table 2.1: FIGO guidelines. Adapted from (de Campos and Bernardes, 2010).

NORMAL PATTERN SUSPICIOUS PATTERN PATHOLOGICAL PATTERN

– Baseline heart rate between 110 and
150 bpm

– Baseline heart rate between 150 and
170 bpm or between 100 and 110 bpm

– Baseline heart rate below 100 or above
170 bpm

– Amplitude of heart rate variability be-
tween 5 and 25 bpm

– Amplitude of variability between 5 and
10 bpm for more than 40 minutes
– Increased variability above 25 bpm

– Persistence of heart rate variability of
less than 5 bpm for more than 40 minutes

– Variable decelerations – Severe variable decelerations or severe
repetitive early decelerations.
– Prolonged decelerations
– Late decelerations: the most ominous
trace is a steady baseline without base-
line variability and with small decelera-
tions after each contraction
– A sinusoidal pattern

2.2.2 Fetal electrocardiogram analysis

ST analysis of fetal electrocardiogram was successfully introduced into clinical practise by Neoventa
Medical, Moelndal, Sweden. This technique is commonly referred to as STAN® (ST ANalysis).
Contrary to CTG, the complete ECG curve is used to examine and evaluate morphological changes.
The ST analysis is not intended to be used autonomously but only as addition to standard CTG. It
serves as source of additional information validating or invalidating hypothesis of fetal condition
and behaviour observed on CTG. The analysis of ST segment is well established in detecting and
monitoring of myocardial insufficiency in adults cardiology and the development of ST analysis of
fetal ECG has been based on this experience and knowledge. The fetal brain and heart are equally
sensitive to changes in oxygen content; therefore, myocardial function serves as indirect measurement
of brain condition.
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The ECG signal is acquired by internal electrodes screwed into the fetal scalp without any damage
to fetus. The continuous ECG is displayed and important markers of ECG are automatically computed.
These markers involve changes in T wave amplitude and ST segment. For illustration of important
ECG waves and intervals see Figure 2.7.

Figure 2.7: The representation of ECG curve and its important features (Sundström et al., 2000).

The T wave amplitude is used for computation of T/QRS ratio. This is performed periodically on
ensemble average of several consequent beats. An increase in T wave reflects to fetus hypoxia and the
degree of rise corresponds to degree of hypoxia. The second important feature of ECG is ST segment
where its changes are examined. The biphasic ST is defined as a downward-leaning ST segment. We
distinguish different degrees of biphasic ST segment starting at Grade 1 and continuing to Grade 2 and
3. With progression of disturbance in myocardial function, there is a shift in degree from Grade 1 to
Grade 2 or even to the worst Grade 3. The morphologies of particular biphasic degrees are shown in
Figure 2.8.

Figure 2.8: The morphology of biphasic ST. In Grade 1 the ST segment is above isoelectric line whereas in
Grade 3 is completely below (Sundström et al., 2000).

As mentioned above, the ST analysis should be performed after occurrence of suspicious patterns
on CTG. The sole assessment of ST segment could lead to misleading results and rise in the labour
intervention (Sundström et al., 2000) and potential adverse outcomes for fetus as well as for mother. As
for the CTG, the interpretation of ST segment was standardized and guidelines were created in order
to avoid subjective assessment of ST changes. In this guidelines we distinguish three types of events:
episodic T/QRS rise, baseline T/QRS rise, and biphasic ST. The T/QRS rise is considered as episodic
when the T/QRS rises and returns to the baseline in time period no longer than 10 minutes. The degree
of change indicates the fetal stress and corresponds to short lasting hypoxia. The T/QRS increased of
more than 0.10, in connection with abnormal CTG, is considered as significant and registered as an
ST event. Baseline T/QRS rise is similar to episodic rise with exception that increase of T/QRS has
duration longer than 10 minutes. The baseline T/QRS rise of 0.05 with CTG classified as abnormal,
is consider as significant and indicates persistent stress and zero opportunity to recover. The last
event assessed is the biphasic ST with different degrees where the degree corresponds to the degree of
abnormality. The grade 2 and 3 are generally considered as abnormal. The above mentioned events are
connected with CTG interpretation in guidelines that are called STAN simplified guidelines (Sundström
et al., 2000).
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2.2.3 Other methods

Auscultation

Auscultation in general refers to listening for sounds produced within the body. Fetal heart tones can
also be monitored during pregnancy by auscultation with a specialized stethoscope. The auscultation
gives the clinician short term discrete evaluation of the fetal heart rate function.

Continuous phonocardiography

Recently automated, microphone based, auscultation techniques try to tackle the biggest disadvantage
of the method by introducing continuous monitoring (Jiménez-González and James, 2009, 2010).
Continuous phonocardiography has been nearly non-existent in Europe since the beginning of the
1990’s. It is used more in the developing countries nevertheless there are signs that such concept could
be useful for telemonitoring applications as developed recently within the EU funded ENIAC-MAS
project.

Fetal blood sample

Fetal blood sampling (FBS) is used in conjunction with EFM and serves as an accurate tool for
measurement of metabolic acidosis. In case of non-reassuring patterns on CTG or DECG the FBS
might be performed in order to acquire precise value of pH. The small sample is obtained from fetal
scalp capillary. The fetal blood sampling requires expertise and is time-consuming. It may also cause
complications (Cunningham, 2005) but it is generally considered to be safe (Ojala et al., 2006).

Pulse oximetry

This method uses light reflection from blood where light is differently reflected or inhibited depending
on the oxygen saturation (FSp02) in fetal blood. The electrode emitting and receiving light is placed
against fetal scalp and continuous FSp02 is acquired. However, as it was noted by (Cunningham, 2005;
Steer, 2008), low oxygen saturation has poor specificity for acidosis. Therefore, application of pulse
oximetry made no significant contribution to any measures of fetal outcome.

2.3 Assessment of labour and neonate outcome

In the previous section we introduced electronic fetal monitoring as the methodology to identify
fetal distress and oxygen insufficiency. When child is born, we need to assess its status in order to
acquire additional information whether to what extent baby suffered. The commonly used methods for
assessment are Apgar score, cord acid-base analysis, and the occurrence of neonatal complications.

2.3.1 Apgar score

This method was devised by Virginia Apgar in 1953. It was not initially intended to asses neonates that
suffered from asphyxia. However, this methodology was established in clinical settings and is widely
used. The Apgar score includes five parameters that are examined at the neonate’s age of 1, 5, and 10
minutes. These parameters are heart rate, breathing, skin colour, muscular tone, and excitability. Each
parameter is given score in range of 0 - 2 points and then all parameters are summed up giving the
score at particular child’s age. The maximum score that could be achieved is 10 points. Note that the
assessment of child is subjective and a high observer variability was reported (O’Donnell et al., 2006).

There is a high correlation between low Apgar score at 5 minutes and neonates that suffered
from asphyxia during labour (Manganaro et al., 1994). However, there are also many reasons for low
Apgar score that are not related to asphyxia, such as immaturity, labour trauma, drugs, infection, the
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activation of reflexes through manipulation of the upper airways, meconium aspiration, or carbon
dioxide narcosis (Sundström et al., 2000).

The Apgar score below or equal to 7 at 5 minutes is considered as an indicator of metabolic
acidosis (Doria et al., 2007; Westerhuis et al., 2007b) and cerebral palsy (MacLennan, 1999).

2.3.2 Acid-base analysis

Analysis of blood gases from umbilical cord blood can indicate to what extent a baby suffered by
hypoxia during a labour. When a child is born, the cord is immediately doubly clamped and samples
are taken from artery and vein. From these samples the values of blood gases are calculated, offering
information on labour outcome. Many papers have studied the blood gases and their relation to adverse
outcomes of labour; a great review is provided in (Armstrong and Stenson, 2007). There are wide
controversies regarding biochemical markers (pH, base excess, and base deficit) obtained from blood
gas analyses. The most prominent being discussion on exact relation to possible further complications
for child development.

The pH is determined by presence of respiratory and metabolic acids and computed as logarithm
of hydrogen ion activity. Because of the logarithm the relation of cumulative exposure to hypoxia and
value of pH is nonlinear, e.g. the change of pH from 7 to 6.9 is almost twice as much as the change
from 7.3 to 7.2. The other biochemical markers, base excess (BE) and base deficit (BDecf), are more
linear.

There are many other factors that influence value of pH, the best example is elective caesarean
section without labour (Riley and Johnson, 1993) where the pH values are similar to adults. Another
aspect is the connection of CTG patterns to pH values. A performed caesarean section, because of suspi-
cious/pathological CTG trace, prevents a baby to get into real asphyxia and the suspicious/pathological
trace is not reflected by low pH value. Also the pH is only weakly correlated to clinical annota-
tion (Schiermeier et al., 2008b; Spilka et al., 2013a; Valentin et al., 1993).

Abnormal labour outcome There is no general agreement, which biochemical marker (pH, BE,
BDecf) is the best for identifying abnormal labour outcome, nor there is agreement on which threshold
value should be used. Different studies were performed, each focused on different biochemical
markers and slightly different outcome measures, e.g cerebral palsy (MacLennan, 1999), neonatal
encephalopathy, perinatal mortality, 5-minute Apgar scores, and neonatal unit admission (Yeh et al.,
2012), Apgar less than 7 at 5 minutes, NICU admission (Victory et al., 2004). We note here that
another aspect, not discussed here, is to relate the adverse outcome directly to intrapartum period. The
comparison on different biochemical markers is not straightforward and below we present only short
overview.

The median pH values is 7.22 (interquartile range 7.17 – 7.27) (Yeh et al., 2012) with similar values,
7.24 ± 0.07 reported earlier by (Victory et al., 2004). Thorp et al. (1989) stated that pH should be
preferred to other biochemical markers. Georgieva et al. (2013b) concluded that pH is the most robust
marker to potential adverse outcomes even though its relation to adverse outcome is weak (Georgieva
et al., 2013b; Yeh et al., 2012).

From the studies on cerebral palsy in neonates pH and BDecf are recommended as preferred
measures (Pierrat et al., 2005) even though (Low, 2005) provided the contrary. Additionally intrapartum
events and cerebral palsy are very rarely related by the intrapartum hypoxia only (Schifrin, 2004)
and the real outcome of the delivery can be seen only in several years-long follow up (Ingemarsson
et al., 1997). The base deficit was established by (Siggaard-Andersen and Huch, 1995) and Rosén
et al. (2007) stated that it is the only usable measure for assessment of metabolic hypoxia and that
base excess is erroneously used in many papers as well as in the clinical practice (Rosén et al., 2007).
Below we present a short overview of thresholds used for biochemical markers.

• pH < 7.00 together with BDecf≥ 12 (MacLennan, 1999) was found to be related to significant
increase of possibility of cerebral palsy. The pH < 7.00 was also recommend as a value that
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defines pathological acidemia (Goldaber et al., 1991).

• pH ≤ 7.05 or pH < 7.05 is used as a threshold by many authors (Amer-Wåhlin and Maršál,
2011; Costa et al., 2009; Siira et al., 2007). Even though this value is not used unanimously
it is generally accepted as the threshold between pathological and not-pathological delivery
outcomes. Combination with BDecf was used e.g. in (Keith et al., 1995; Westerhuis et al.,
2007b).

• pH ≤ 7.10 or pH < 7.10 (Cahill et al., 2012; Fulcher et al., 2012; Georgoulas et al., 2006; Yeh
et al., 2012) – this value is supported by recent works on the large Oxford database as well as
used heuristically in this thesis as a sign of severe problems with the delivery.

• pH ≤ 7.15 (Chung et al., 1995; Tommaso et al., 2013) – this value is based on the standard
deviation (or 25th percentile). For simplicity rounded to 7.15 but if adhered strictly the threshold
should be 7.17 (Victory et al., 2004; Yeh et al., 2012).

In general pH is more robust (Georgieva et al., 2013b) but is affected more by respiratory asphyxia,
BDecf is more about metabolic asphyxia. Biochemical measures are very dependent on the measuring
procedure – pH is in general considered to be more robust than the BDecf; since for the BDecf the
pCO2 has to be used, which could be measured erroneously (Kro et al., 2010).





Chapter 3

Automatic analysis of FHR – state of the
art

A lot of attempts have been made to tackle the unresolved problem of reliable automatic analysis of
CTG signal but, unfortunately, none of them were successful enough to be able to meet demands
and expectation of clinicians. The automatic classification of fetus behaviour and condition is still
challenge for many researches. In this chapter we briefly introduce solutions that were developed and
used for automatic assessment of CTG records. It is important to mention that none of the complete
systems we are going to describe is widely applied in clinical settings and obstetricians still rely on
visual assessment of CTG tracings. Each system is merely used in the place or in the country where
it was developed and a solution that would improve CTG interpretation still awaits (Bernardes and
Ayres-De-Campos, 2010).

3.1 Clinical point of view

From the clinical point of view, there are still efforts to link antepartum and intrapartum events to
adverse fetal outcomes, either regarding risk factors (Locatelli et al., 2010; Wayenberg, 2005) or
connecting to FHR (Parer et al., 2006; Westgate et al., 2007). The later paper described a link between
hypoxia and decelerations and presented possible new features like variability between decelerations
and overshoot. The different types of variable decelerations were investigated by (Hamilton et al.,
2012) and only the most serious decelerations (amplitude more than 60 BPM and length of 60 seconds
and more) were found significant to labour outcome.

There is still lack of international consensus on clinical guidelines and FIGO guidelines from
1986 are still in use – even it is well known that they are in some cases inappropriate. There are
international alternatives (ACOG, 2009; Macones et al., 2008; NICE, 2007; RCOG, 2001) but there
is lack of agreement at many key concepts (de Campos et al., 2010). There are efforts to simplify
guidelines or create ones (Parer and Ikeda, 2007; Parer et al., 2009), which are claimed superior to the
traditional guidelines (Coletta et al., 2012; Tommaso et al., 2013) but these efforts are not generally
acknowledged (Miller and Miller, 2012).

3.2 Overview of CTG databases

Most works use very small ad-hoc acquired datasets, differently sampled with various parameters
used as outcome measures. We aimed to bring as detailed overview of databases as possible but the
exhaustive description of databases was infeasible, therefore, several inclusion criteria were applied.
First, if a CTG database was used in multiple works, we included the paper where the database was
described in the most detail, e.g. we preferred paper of (Jezewski et al., 2010) rather than of (Czabanski
et al., 2012). If the description was the same, we included the most recent paper. Second, only those

17
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works that used intrapartum CTG signals were considered, e.g. we did not included the work of (Ocak,
2013) since he worked with Cardiotocography Data Set (UCI1). Third, we preferred journal papers
and works that attempted to show results with regards to objective annotation (pH, base deficit, etc.).

We do not provide exhaustive description of used databases in text since we believe that the
overview in the tables is self-explanatory. Due to the space limitation the overview had to be split
into two tables, Table 3.1 and 3.2. In Table 3.1 we present used databases regarding the CTG signals
and clinical parameters. The number of cases varies from study to study, the lowest being around
50 cases, and the highest being 7568 cases. In Table 3.2 we present the overview of databases from
classification point view, it is apparent that in each paper different criteria for classes division were
used, thus, making any comparison of results between different studies virtually impossible.

3.3 Automatic FHR evaluation – the origins

A very first attempt for automatic CTG analysis was to follow the clinical guidelines used for CTG
assessment (FIGO, 1986). The morphological (FIGO) features have become fundamental for almost
all works that have attempted to classify fetus status. Beginning with work of (Dawes et al., 1981) the
guidelines were essential for any automatic evaluation. Dawes et al. (1982b) proposed an algorithm
for baseline estimation and extraction of accelerations and decelerations. Mantel et al. (1990a,b)
also developed an iterating procedure for complete FIGO features extraction. The extraction of
morphological features were improved by (Bernardes et al., 1991) and resulted into development of
automatic system, SisPorto (de Campos et al., 2008), for CTG analysis which is briefly described
below. The first automatic classification system were described by (Nielsen et al., 1988) and further
by (Chung et al., 1995; Keith et al., 1995). From the early works of (Dawes et al., 1981) the research
efforts in the field of CTG extended into various areas and focused in detail on particular components.
The description of the research of CTG in the past years follows.

3.4 Features for FHR

FIGO features There exist many approaches to estimate a baseline of fetal heart rate, which is
the key concept in the analysis of CTG based on clinical guidelines. Initially (Dawes et al., 1982a)
proposed an algorithm for baseline estimation and extraction of accelerations and decelerations.
Among the most commonly used approaches are stable segments (de Campos and Bernardes, 2004;
de Campos et al., 2004), filtering approach (Pardey et al., 2002; Taylor et al., 2000), fetal heart rate
density approach (Georgieva et al., 2011; Jimenez et al., 2002), or others (Kupka et al., 2006; Mantel
et al., 1990a). The complete extraction of FIGO features (baseline, accelerations, and decelerations)
was first proposed by (Dawes et al., 1982b) and further in (Mantel et al., 1990a,b).

Short term variability (STV) STV is uninterpretable by naked eye and thus remains one of the few
automatically detected and assessed features FHR in clinical practice. Comparison of the most used
STV indexes is presented in (Cesarelli et al., 2009). STV is in general used mainly for antepartum
evaluation. Evaluation of STV for intrapartum period with negative outcome was done by (Schiermeier
et al., 2008a).

Frequency features The frequency features are commonly used for FHR analysis though the de-
lineation of different spectral bands is not well-studied as in the adult HRV where interpretation of
different bands was stated in (Task-Force, 1996). Frequency features were examined in (Sibony et al.,
1994; Signorini et al., 2003) and further in (Siira et al., 2007). The recent paper (Laar et al., 2008)
gives a short overview of papers, which analysed spectrum to FHR either antepartum or intrapartum.

1http://archive.ics.uci.edu/ml/datasets/Cardiotocography
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The association of frequency features to the uterine contractions was investigated by (Warrick and
Hamilton, 2012).

Nonlinear features Use of non-linear methods for FHR analysis has also its roots in adults HRV
research where these methods have proven their usefulness. The measure of fractal dimension of
reconstructed attractor was performed by (Chaffin et al., 1991; Felgueiras et al., 1998; Kikuchi et al.,
2006). Felgueiras et al. (1998) also examined waveform fractal dimension. A slightly different
approach was applied by (Gough, 1993) who measured the length of FHR at different scales and thus
estimated fractal dimension. Probably the most successful non-linear methods for FHR analysis are
approximate entropy (ApEn) and sample entropy (SampEn). They are widely used for examination
of non-linear systems and also proved their applicability in FHR analysis. Let us mention only few
studies that employed ApEn or SampEn (Georgoulas et al., 2006; Gonçalves et al., 2006a; Lake et al.,
2002; Pincus and Viscarello, 1992). Other methods for non-linear analysis are detrend fluctuation
analysis applied by (Echeverria et al., 2004) and Lempel Ziv complexity used by (Ferrario et al., 2005).
The different estimation of fractal dimension were reviewed by (Hopkins et al., 2006) and, more
comprehensively, in our work (Spilka et al., 2012). Recently a multi-fractal analysis was employed
by (Doret et al., 2011) and multi-scale analysis by (Helgason et al., 2011).

3.5 Classification methods

As well as the abundance of features used for FHR description a lot of methods were used for the
classification task. The methods were primarily based on the preference of researches the most used
were Artificial Neural Networks and Support Vector Machines. The Artificial Neural Networks were
employed in many works, e.g. in (Georgieva et al., 2013b; Jezewski et al., 2010; Keith et al., 1995;
Maeda et al., 1998; Magenes et al., 2000). The exhaustive work of CTG analysis was performed by
Georgoulas et al. For CTG classification they used Hidden Markov Models (Georgoulas et al., 2004),
Support Vector Machines (Georgoulas et al., 2005), and a hybrid approach utilizing grammatical
evolution (Georgoulas et al., 2007). They compared the classification performance of respective
methods to conventional methods, such as k-nn (k-nearest neighbours), qdc (quadratic discriminant
classifier), and ldc (linear discriminant classifier). The support vector machines were also used
in (Czabanski et al., 2010; Warrick et al., 2010) and in our work (Spilka et al., 2012).

In Table 3.3 we provide comprehensive comparison of classification results. The table is aimed to
be used in conjunction with Tables 3.1 and 3.2 where we present the used databases in more detail.
Table 3.3 present subset of works used in Tables 3.1 and 3.2. The same selection criteria applied with
additional one that we included only those work that presented any classification results. We believe
that Table 3.3 is self-explanatory and no additional comments are required.

We aimed to visualize the relationship between results reported in the literature and data size
that was used in particular work. The complete results are presented in Figure 3.1 where we plot
accuracy (ACC), area under ROC (AUC), sensitivity (SE), specificity (SP), and positive predictive
value (PPV) as a function of data size. Note that the for the x-axis the logarithm of the data size is
plotted. Because of different metrics used the relationship is unclear. For the works that reported SE
and SP we computed geometric mean, where G−mean =

√
SE ⋅ SP . A better approach would be to

use harmonic mean of SE and PPV (precision), the so called F-measure (He and Garcia, 2009) though
very few studies reported the PPV. The relationship is shown in Figure 3.2. With increasing data size
the G−mean decreases. For the regression line estimated for all papers this decrease is about 4.5%
per 100 examples. Note that the x-axis is not in logarithm scale since we excluded the largest study
of (Elliott et al., 2010) where the sensitivity and specificity was not reported.



20 Chapter 3. Automatic analysis of FHR – state of the art

Ta
bl

e
3.

1:
O

ve
rv

ie
w

of
da

ta
ba

se
s

us
ed

in
va

ri
ou

s
w

or
ks

–
C

T
G

si
gn

al
an

d
cl

in
ic

al
po

in
to

fv
ie

w
.L

eg
en

d:
"N

/A
"

–
in

fo
rm

at
io

n
no

ta
va

ila
bl

e,
"–

"
–

us
ed

fo
rc

ol
um

n
(F

H
R

si
g.

on
ly

)a
nd

ex
pr

es
s

th
at

au
th

or
s

us
ed

th
e

w
ho

le
si

gn
al

w
ith

ou
ts

pe
ci

fy
in

g
th

e
le

ng
th

.T
he

w
or

ks
ar

e
or

de
re

d
by

pu
bl

ic
at

io
n

da
te

.P
ar

am
et

er
s:

ty
pe

of
ac

qu
is

iti
on

(u
ltr

as
ou

nd
D

op
pl

er
(U

S)
,d

ir
ec

tf
et

al
el

ec
tr

oc
ar

di
og

ra
m

m
ea

su
re

m
en

t(
FE

C
G

))
;t

im
in

g
of

re
co

rd
in

g
an

te
pa

rt
um

(a
nt

e.
)

or
in

tr
ap

ar
tu

m
(i

nt
e.

)
ph

as
e;

st
ag

e
of

la
bo

ur
(I

.o
rI

I.)
;l

en
gt

h
of

FH
R

si
gn

al
(F

H
R

si
g.

);
tim

e
to

ac
tu

al
de

liv
er

y;
us

e
of

ut
er

in
e

co
nt

ra
ct

io
ns

(U
C

),
de

sc
ri

pt
io

n
of

in
cl

us
io

n
cr

ite
ri

a;
de

sc
ri

pt
io

n
of

cl
in

ic
al

da
ta

;e
va

lu
at

io
n

ty
pe

:o
bj

ec
tiv

e
(o

bj
.),

su
bj

ec
tiv

e
(s

ub
j.)

,o
rc

om
bi

na
tio

n
of

bo
th

(c
om

b.
);

nu
m

be
ro

ft
ot

al
ca

se
s.

R
ef

er
en

ce
ac

qu
is

iti
on

tim
in

g
la

bo
ur

st
ag

e
FH

R
si

g.
[m

in
.]

tim
e

to
de

-
liv

er
y

[m
in

]
U

C
us

ed
in

cl
.

cr
ite

ri
a

cl
in

ic
al

in
fo

.
ev

al
u-

at
io

n
ty

pe

#
to

ta
l

ca
se

s

(N
ie

ls
en

et
al

.,
19

88
)

N
/A

in
tr

a.
I.

30
N

/A
ye

s
no

no
ob

j.
50

(C
hu

ng
et

al
.,

19
95

)
FE

C
G

in
tr

a.
N

/A
N

/A
N

/A
ye

s
ye

s
ye

s
ob

j.
73

(K
ei

th
et

al
.,

19
95

)
N

/A
in

tr
a.

N
/A

>
12

0
un

til
de

l.
ye

s
no

ye
s

co
m

b.
50

(B
er

na
rd

es
et

al
.,

19
98

)
U

S,
FE

C
G

an
te

.,
in

tr
a.

I.,
II

.
–

un
til

de
l.

ye
s

no
ye

s
ob

j.
85

(M
ae

da
et

al
.,

19
98

)
N

/A
in

tr
a.

N
/A

50
N

/A
no

no
no

su
bj

.
49

(L
ee

an
d

D
or

ff
ne

r,
19

99
)

FE
C

G
in

tr
a.

N
/A

–
N

/A
ye

s
no

no
su

bj
.

53
(C

hu
ng

et
al

.,
20

01
)

U
S

an
te

.,
in

tr
a.

I.,
II

.
N

/A
12

0
no

no
ye

s
co

m
b.

76
(S

tr
ac

ha
n

et
al

.,
20

01
)

FE
C

G
in

tr
a.

I.,
II

.
>

30
un

til
de

l.
ye

s
no

ye
s

ob
j.

67
9

(S
iir

a
et

al
.,

20
05

)
FE

C
G

in
tr

a.
I.,

II
.

60
95

%
be

llo
w

9
ye

s
ye

s
ye

s
ob

j.
33

4

(C
ao

et
al

.,
20

06
)

U
S,

FE
C

G
in

tr
a.

N
/A

30
N

/A
ye

s
no

no
su

bj
.

14
8

(S
al

am
al

ek
is

et
al

.,
20

06
)

U
S

in
tr

a.
I.,

II
.

N
/A

un
til

de
l.

no
ye

s
ye

s
co

m
b.

74
(G

eo
rg

ou
la

s
et

al
.,

20
06

)
FE

C
G

in
tr

a.
I.,

II
.

20
-6

0
un

til
de

l.
no

no
no

ob
j.

80
(G

on
ça

lv
es

et
al

.,
20

06
a)

U
S,

FE
C

G
in

tr
a.

I.,
II

.
32

-6
0

un
til

de
l.

no
ye

s
ye

s
ob

j.
68

(C
os

ta
et

al
.,

20
09

)
FE

C
G

in
tr

a.
I.,

II
.

–
un

til
de

l.
ye

s
ye

s
ye

s
ob

j.
14

8
(E

lli
ot

te
ta

l.,
20

10
)

N
/A

in
tr

a.
I.,

II
.

>
18

0
un

til
de

l.
ye

s
ye

s
ye

s
su

bj
.

21
92

(W
ar

ri
ck

et
al

.,
20

10
)

U
S,

FE
C

G
in

tr
a.

I.,
II

.
>

18
0

un
til

de
l.

ye
s

ye
s

no
ob

j.
21

3
(J

ez
ew

sk
ie

ta
l.,

20
10

)
U

S
an

te
.,

in
tr

a.
N

/A
–

N
/A

ye
s

ye
s

ye
s

ob
j.

74
9a

(H
el

ga
so

n
et

al
.,

20
11

)
FE

C
G

in
tr

a.
I.,

II
.

>
30

un
til

de
l.

ye
s

no
no

co
m

b.
47

(C
hu

dá
če
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(Nielsen at al., 1998)

(Chung et al., 1995)

(Bernardes et al., 1998)

(Maeda et al., 1998)

(Cao et al., 2006)

(Georgoulas et al., 2006)

(Goncalves at al., 2006)

(Salamalekis et al., 2006)

(Costa et al, 2009)

(Elliott et al., 2010)

(Czabanski et al., 2010)

(Jezewski et al., 2010)

(Warrick et al., 2010)

(Helgason et al., 2011)

(Spilka et al., 2012)

(Georgieva et al., 2013b)

metrics

●

100*AUC

ACC

PPV

SE

SP

Figure 3.1: Relationship between different performance metrics and logarithm of data size – log(data size).
Legend: 100*AUC – area under the ROC multiplied by 100% for visualization, ACC – accuracy, PPV – positive
predictive value (= precision), SE – sensitivity, SP – specificity.

3.6 Fetal monitoring systems

A several systems have been developed and some of them resulted into commercial applications; the
complete systems used for fetal assessment mostly employ an expert system. A brief description of
each system follows. Based on the work of (Dawes et al., 1982b) a system for antenatal analysis was
created – System 8000 (Dawes et al., 1991). This system was further improved (Dawes et al., 1996)
and is nowadays commercially available, known as sonicadFetalCare. It uses FIGO-like features
with additional parameter of short term variability. For antepartum monitoring there is also a 2CTG2
system (Magenes et al., 2007) that is result of works (Magenes et al., 2000, 2003; Signorini et al., 2003).
NST-Expert (Non-Stress Test) (Alonso-Betanzos et al., 1995) is a non-invasive method used for fetal
assessment. The main part of this software is an expert system that is capable of proposing a diagnose
and treatment. Moreover, it might also estimate the potential problems of neonate. CAFE (Computer
Aided Fetal Evaluation) (Guijarro-Berdiñas and Alonso-Betanzos, 2002) is successor of NST-Expert.
SisPorto system has been developed by Bernardes at al. at University of Porto, Portugal, since 1990.
It consists of an expert system which evaluates individual features described according to guidelines
for CTG assessment. Today, SisPorto has matured to its 3-rd version and is known as Omniview-
SisPorto R© 3.5. (de Campos et al., 2008). The K2 Medical Systems (Greene and Keith, 2002; Keith and
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(Chung et al., 1995)

(Bernardes et al., 1998)

(Cao et al., 2006)

(Georgoulas et al., 2006)

(Goncalves at al., 2006)

(Salamalekis et al., 2006)

(Costa et al, 2009)

(Jezewski et al., 2010)

(Warrick et al., 2010)

(Helgason et al., 2011)

(Spilka et al., 2012)

(Georgieva et al., 2013b)

Figure 3.2: Performance of classification (G−mean) as a function of data size. Trend was estimated using
linear least squares. Legend: solid black line – trend using all papers present in legend, dashed black line – trend
estimated for papers with data size < 200.

Greene, 1994) has been developed by K2 Medical Systems™, Plymouth, UK. It is a distributed system
consisting of central PC and local units that are situated at the patient’s bed and gathering information,
such as CTG and results of blood sample analysis. Nowadays the system is known as INFANT®. The
alarm is evoked in case of abnormalities. The new NIHCD guidelines are employed in the monitoring
system PeriCALM™ (Elliott et al., 2010; Parer and Hamilton, 2010) , developed by LMS Medical
systems, Montreal, Canada and PeriGen, Princeton, USA. The comprehensive overview of central
monitoring system was provided by (Nunes et al., 2013).

3.7 Other techniques and alternatives to CTG

Beside the CTG analysis there is a research effort in fetal electrocardiogram using abdominal elec-
trodes (Clifford et al., 2011; Piéri et al., 2001), direct fetal electrocardiogram (ST-analysis) (Rosén
et al., 2004), phonocardiography (Kovács et al., 2011), or magnetocardiography (Kariniemi et al.,
1974; Kiefer-Schmidt et al., 2012). The magnetocardiography has not been established in the clinical
practice yet and the phonocardiography is only used in antenatal period for screening potential fetal
complications. On the other hand, the fetal electrocardiogram is used widely and has become common



Section 3.7. Other techniques and alternatives to CTG 25

in obstetrics. The so called ST analysis (STAN) of fetal electrocardiogram was employed in the
clinical practice recently. Many randomized control trials were published and, most probably, will
be published in the future on the topic whether STAN improves fetal outcomes in comparison to
sole use of CTG. The majority of studies proved that addition of STAN indeed lead to better fetal
outcomes (Amer-Wåhlin and Maršál, 2011; Amer-Wåhlin et al., 2001; Norén et al., 2003, 2006) but
there were also few studies disproving this (Ojala et al., 2006; Westerhuis et al., 2007a). A promising
research has been announced by Neoventa Medical AB; they, together with a company Nanexa AB
(nanotechnology), plan to develop a nanomaterial sensor that will measure lactate intrapartum, see
press release (Nanotechnology opens up new possibilities in perinatal care, http://nanexa.com/). It will
therefore offer a possibility to monitor oxygen insufficiency and indicate fetal complications.

http://nanexa.com/index.php?option=com_content&view=article&id=79&catid=1&Itemid=62
http://nanexa.com/index.php?option=com_content&view=article&id=79&catid=1&Itemid=62




Chapter 4

Experimental data (collection and
structure)

One of the main obstacles for improvements in the CTG analysis and classification is the lack of
any publicly available database. Based on the critical analysis presented in Chapter 3 we decided to
systematically design and develop a CTG database satisfying the following requirements: open access,
reasonable size, systematic selection, and complete clinical information.

The CTU-UHB1 database consists of two parts, CTG recordings and clinical data. In total
552 records were carefully selected from 9164 intrapartum recordings, which were acquired between
27th April 2010 and 6th August 2012 at the obstetrics ward of the University Hospital in Brno, Czech
Republic and stored in electronic form in the OB TraceVue® system. The resulting signals for the
database were selected with clinical as well as technical considerations in mind. Detailed description
of the database and reasoning behind the selection of the parameters is presented.

When reviewing literature on automatic CTG processing, two things are striking. First, there
is a large disconnection between approaches and goals in the clinical and technical papers. While
the clinical papers are mostly looking for applicable solutions to their problems (lack of agreement,
sometimes critically misclassified recordings), the technical papers often use CTG data as just an
another input to the carefully tuned classifiers. Most works use very small ad-hoc acquired datasets,
differently sampled with various parameters used as outcome measures, though we have to concede
that our previous works (Chudáček et al., 2011; Spilka et al., 2012) were done in the exact same manner.
It is hard to believe that it is more than 30 years since computer processing of CTG began (Dawes
et al., 1981) and since then, no common database of CTG records is available. There is no way how to
compare/improve/disregard among different results that hinder any progress towards the ultimate goal
of a usable and working automated classification of the CTG recordings.

In this chapter we present a novel open-access CTU-UHB database consisting of CTG records
and clinical information. The CTU-UHB database was designed and developed based on a new
methodology that is proposed for the future development of similar databases that can serve both for
extraction of medical knowledge, routine classification, and development and testing of new algorithms.
The criteria for the selection of records for the database are discussed from both a clinical and technical
point of view. We also present a detailed description of the main clinical and technical parameters,
which, in our opinion, are important for understanding and should be taken into account when using
the database. This chapter is largely based on the paper (Chudáček et al., 2013).

4.1 Ethics statement

The CTG recordings and clinical data were matched by anonymized unique identifier generated at the
side of hospital information system. The timings of CTG records were matched to stages of labour

1Czech Technical University – University Hospital Brno

27
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(first and second stage) and were made relative to time of the birth, thus also de-identified. This
study was approved by the Institutional Review Board of University Hospital Brno; all women signed
informed consent.

4.2 Data collection

The data were collected between 27th of April 2010 and 6th of August 2012 at the obstetrics ward of
the University Hospital in Brno, Czech Republic. The data consisted of two main components, the first
were intrapartum CTG recordings and the second were clinical data.

The CTGs were recorded using STAN S31 (Neoventa Medical, Mölndal, Sweden) and Avalon
FM40 and FM50 (Philips Healthcare, Andover, MA). All CTG signals were stored in an electronic
form in the OB TraceVue® system (Philips) in a proprietary format and converted into text format
using proprietary software provided by Philips. Each CTG record contains time information and
signal of fetal heart rate and uterine contractions sampled at 4 Hz. When a signal was recorded using
internal scalp electrode it also contained T/QRS ratio and information about biphasic T-wave. From
9164 intrapartum recordings the final database of 552 carefully selected CTGs was created keeping
in consideration clinical as well as technical point of view; the details about recordings selection are
provided further.

The clinical data were stored in the hospital information system (AMIS) in the relational database.
Complete clinical information regarding to delivery and fetal/maternal information were obtained. The
clinical data included: delivery descriptors (presentation of fetus, type of delivery and length of first
and second stage), neonatal outcome (seizures, intubation, etc.), fetal and neonatal descriptors (sex,
gestational week, weight, etc.), and information about mother and possible risk factors. For the final
CTU-UHB database clinical data were exported from relational database and converted into physionet
text format (Goldberger et al., 2000).

4.3 Data selection and criteria considered

The selection procedure of records was based on clinical and CTG signal parameters and performed in
steps over-viewed in Figure 4.1.

4.3.1 Clinical criteria

In the following paragraphs we describe criteria and their reasoning that were used for exclusion of
portion of recordings. Then we will shortly discuss criteria that were included in the final database but
no restrictions on creation of the final database were based upon them.

Clinical selection criteria The following parameters were taken into account for selection of record-
ings for the final database. References in this section refer to a description of particular parameter.

• Women’s Age – although the women’s high age plays significant role in the probability of
congenital diseases, for the intrapartum period no significance was found (Callaway et al., 2005).
Low age (< 18 years) could have an adverse effect and was therefore excluded (Berglund et al.,
2010).

• Week of gestation – maturity of the fetus plays significant role in the shape and behaviour of the
FHR antepartum as well as intrapartum (Park et al., 2001). Therefore the selection was limited
to mature fetuses: week_of_gestation ≥ 37 according to last menses counting, which was in
majority cases confirmed by ultrasound measurement during antepartum check-ups.

• Known fetal diseases – fetuses with known congenital defects or known intrauterine growth
restriction (IUGR) that could influence the FHR and/or outcome of the delivery were excluded
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13 621 singleton deliveries

5984 deliveries

7637 missing information/excluded
● no CTG record
● no intrapartum CTG record
● no pH values

1632 deliveries with selected
clinical parameters.

4352 clinical/excluded:
● premature (gestational weeks < 37)
● maternal age < 18 
● pCO2 out of 95% CI for pH > 7.05
● length of II. stage > 30 min.

  514 CTGs parameters/excluded:
● length of FHR < 30 min. in I. stage 

in 90 min. preceding delivery
● length of FHR < 40 min. in I. stage 

in 90 min. preceding delivery & pH > 7.15
● no FHR signal more than 30 min. 

before delivery

89 VAG 
& pH ≤  7.15 

417 random (VAG
 & pH > 7.15)

16 (CS 
& pH ≤  7.15)

30 random (CS
 & pH > 7.15)

552 records in CTU-UHB
database

14 492 deliveries

871 non-singleton pregnancies excluded

1118 deliveries with selected
CTG parameters

Figure 4.1: Selection of recordings for the final database.

from the database. Additionally, post-natally detected defects were consulted and two cases with
transposed large veins were left in the set, since these two particular changes should not have
influenced the FHR.

• Type of gravidity – only singleton, uncomplicated pregnancies were included.

• Type of delivery – the majority of the database consists of vaginal deliveries. Nevertheless
to increase the number of cases with pathological outcome in the database, 16 CS recordings
with pH ≤ 7.15 were included and consequently control group consisting of 30 CS with normal
outcomes was also included to enable separate evaluation if necessary.

Additional clinical criteria provided Together with criteria used for selection, following criteria
were considered and are available together with the CTG data:

• Sex of the fetus – both sexes were included even though the sex of fetus significantly influences
the outcome according to (Bernardes et al., 2009).
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• Parity – although the first delivery can be "more difficult" in general clinical sense (Singh et al.,
2008) it is the same from the point of view of the FHR recording.

• Risk factors – to be able to describe and identify the a priori high-risk pregnancies we have
included risk factors that could have influenced the state of the baby before entering the labour.
For full review of the parameters and further references we recommend paper of (Badawi et al.,
1998). The final risk-factors included in the database were gestational diabetes, preeclampsia,
maternal fever (>37.5 ○C), hypertension and meconium stained fluid.

• Drugs – especially those administered during delivery were considered only with regard to
their influence on FHR. Opiates may influence the FHR directly but are rarely used in the
Czech Republic during delivery and were not used in any of the cases included in the database.
Therefore, we do not provide information about drugs administration in the database. Note
that e.g. oxytocin used for enhancement of the uterine activity influences the FHR in majority
indirectly, via increase of uterine activity, and thus can be assessed from the CTG alone.

• Other criteria – complementary information in order to offer insight why e.g. operative delivery
was chosen. These include: induced delivery, type of presentation (occipital/breech), no progress
of labour, dystocia cephalokorporal (in-coordinate uterine activity), dystocia cephalopelvic.

4.3.2 Labour outcome measures

Since our main intention was to prepare database that could be used for comparison of different
automated approaches we have selected only those recordings that included umbilical artery pH. We
added all additional outcome measures that were available for the recording in the hospital information
system. Some of these measures are often misused and we will discuss their disadvantages below. The
measures include:

Outcome measure selection criteria To enable objective classification the pH measure was consid-
ered as essential for the evaluation of the database.

• Umbilical artery pH (pH) – is the most commonly used outcome measure, sign of respiratory
hypoxia. Records with missing pH were excluded. Following suggestion by (Rosén et al., 2007)
records, which had values of pCO2 outside 95th percentile (Kro et al., 2010) were excluded
except those with pH ≤ 7.05, which even according to (Kro et al., 2010) should be approached
with care.

Additional outcome measures provided Even though the is pH is the most commonly used mea-
sure, it is worth to include additional measures such as following:

• Base excess (BE) – is often used in the clinical setting as a sign for metabolic hypoxia, but is
often false positive (Rosén et al., 2007).

• Base deficit in extracellular fluid (BDecf) – is according to (Rosén et al., 2007) better measure
of metabolic hypoxia than BE. Still pH remains more robust measure and according to last study
of remains the most informative (Georgieva et al., 2013b).

• Neonatalogy – complete neonatological reports were acquired for all the cases in pre-prepared
database. No severe cases of neonatal morbidity were found, no hypoxic ischemic encephalopa-
thy, no seizures (for details on neonatal morbidity see (McIntyre et al., 2012)).

• Subjective evaluation of the outcome of the delivery based on Apgar’s score (Apgar), where five
categories are used to assess the newborn child in 1st, 5th and 10th minute (Finster and Wood,
2005).

The complete database was used for inter-intra observer variability study described in Chapter 6.
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4.3.3 Signal criteria

When the data were filtered according to the clinical information, we have applied the following criteria
on CTG records:

• Signal length – we have decided to include preceding 90 minutes before delivery, where delivery
time is represented by the time when the first objective evaluation of labour was acquired.

– I. stage – the length of the 1st stage was limited to maximum of 60 minutes in order to
keep recordings easily comparable. The minimal length was dependent on the pH of the
recording in question – to include as much abnormal recordings as possible. Thus minimal
length of the I. stage of 30 minutes was required for recording with pH ≤ 7.15 and 40
minutes for others. The distance to birth was not allowed to be further than 30 minutes.

– II. stage – based on our previous experience with analysis of II. stage of labour (active
pushing phase), we limited the II. stage to 30 minutes at maximum. This also limits
possibility of adverse events occurring in the II. stage, which could disconnect CTG
recording in the I. stage with objective evaluation of the delivery.

Given the restriction above the signals are 30(40)–90 minutes long depending on the length of
the II. stage and also available signal in the I. stage. No signal ends earlier than 30 minutes
before delivery.

• Missing signal – amount of missing signal was, except of the II. stage, kept to possible minimum.
Nevertheless the trade-off between having full-signal and having recordings with abnormal
outcomes had to be made. No more than 50% of signal was allowed to be missing in the I. stage.

• Noise and artifacts – these are a problem especially for the recordings acquired by the ultrasound
probe. Certainly in some recordings maternal heart rate is intermittently present. But even
though it can pose a challenge for user of the database it also reflects the clinical reality.

• Type of measurement device – the database is composed as a mixture of recordings acquired by
ultrasound Doppler probe, direct scalp measurement or combination of both – again reflecting
the clinical reality at the obstetrics ward of UHB.

4.4 Results

4.4.1 Description of the Database

Records for the CTU-UHB database were selected based on clinical and technical criteria described
above. Table 4.1 provides overview of patient and labour outcome measure statistics and Table 4.2
presents main parameters regarding the CTG signals. The CTG signals were transformed from
proprietary Philips format to open Physionet format (Goldberger et al., 2000), all data were anonymized
at the hospital and de-identified (relative time) at the CTU side. An example of one CTG record is
shown in Figure 4.2.

CTG database – vaginal deliveries

The main part of the CTG database consists of 506 intrapartum recordings delivered vaginally. It
means the deliveries got always to the II. stage of labour (fully dilated cervix, periodical contractions),
even though not all deliveries had active pushing period. Some were delivered operatively by means of
forceps or vacuum extraction (VEX). The main outcome measures are presented in Table 4.1. Please
note that column "Comment", which gives additional information either with regard to number of
potential outliers or points out interesting features of the database such as number of pathological cases
based on certain parameters or quality of the recording in each window.
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Table 4.1: Patient and labour outcome statistics for the whole CTG-UHB cardiotocography database.

506 – Vaginal (44 – operative); 46 – Caesarean Section
US = 412; DECG = 102; US-DECG = 35; N/A = 3

Mean Min Max Comment
Maternal age (years) 29.8 18 46 over 36y: 40.

Parity 0.43 0 7
Gravidity 1.43 1 11

Gestational age (weeks) 40 37 43 over 42 weeks: 2
pH 7.23 6.85 7.47 pat.: 48; abnormal.: 64
BE -6.36 -26.8 -0.2 pat.: 39; abnormal: 121

BDecf (mmol/l) 4.60 -3.40 26.11 pat.: 25; abnormal.: 68
Apgar 1min 8.26 1 10 AS1 < 3: 18
Apgar 5min 9.06 4 10 AS5 < 7: 50

Neonate’s weight (g) 3408 1970 4750 small: 17; large: 44
Neonate’s sex (F/M) 259 / 293

Table 4.2: CTG signal statistics. W1 – 30 minute window beginning 60 minutes before end of the 1st stage of
labour, W2 – 30 minute window before the end of 1st stage of labour

506 – Vaginal (44 – operative); 46 – Caesarean Section
US = 412; DECG = 102; US-DECG = 35; N/A = 3

Mean Min Max Comment

Length of I. stage (min) 225 45 648
Length of II. stage (min) 11.87 0 30

Dist. SignalEnd to Birth (min) 2.70 0 29 over 10 min: 9
Noisy data W1 (%) 12.38 0 74

Missing data W1 (%) 3.59 0 87
Overall W1 (%) 15.98 0 89 over 50%: 18

Noisy data W2 (%) 13.42 0 49
Missing data W2 (%) 0 0 0

Overall W2 (%) 13.14 0 49 over 25%: 98
Noisy data II.stage (%) 22.62 0 91

Missing data II. stage (%) 8.47 0 100
Overall II. stage (%) 31.26 0 100 over 50%: 97



Section 4.5. Conclusion 33

F
H

R
 [m

in
-1

]
time [minutes]

0 10 20 30 40 50 60 70
0

50

100

150

200

U
C

 [a
.u

.]

time [minutes]

0 10 20 30 40 50 60 70
0

20

40

60

80

100

Figure 4.2: Record of fetal heart rate and uterine contractions. An example record from the database. The end
of I. stage of labour is marked with blue line and arrow.

CTG database – deliveries by Caesarean Section

The database was selected to have the majority of intrapartum recordings with vaginal delivery.
Nevertheless due to low number of cases with severely-abnormal outcomes, we have decided to add
all recordings delivered by Caesarean Section (CS) with abnormal outcomes that conformed with the
requirements mentioned above. Additional 30 CS recordings with normal outcome were randomly
selected and added as control-group. This control should enable the user of the database to evaluate
CS recordings separately, if necessary.

4.5 Conclusion

The CTU-UHB database is the first open-access database for research on intrapartum CTG signal
processing and analysis. The database design was based on our proposed methodology that could be
used for any future development of a database of similar nature. A database that could be used for data
mining of knowledge, routine classification, or testing.

In the following paragraphs we will highlight the subjects, that could if unobserved, lead to
problems with the use of the database.

The CTU-UHB users should be aware that there is a possible noise in the clinical data, since some
information had to be mined from free text. Even though the whole data was carefully checked it is
possible that some noise is still present. However, this noise should not significantly disrupt any results
obtained. Also we note that, due to the selection process, the database is biased from normal population
but this bias is evident in all other studies and, more importantly, if we would keep the database in the
original form, the potential users would be forced to select the data themselves – resulting in different
selection criteria and making, again, any comparison across studies infeasible.

From Table 3.2 it is evident that each study used different outcome measures, or their combinations.
Again, this makes any comparison across studies infeasible. There are two main sources of evaluation:
objective e.g. by umbilical artery pH, which is a prominent example, and subjective evaluation by
experts according to their knowledge and/or guidelines used. The former is described in more detail in
Section 2.3 and the latter is described and analysed in Chapter 6.

Among undocumented parameters in the database, which could influence the shape and/or different
properties of FHR one could count e.g. smoking (Oncken et al., 2002), which can increase the heart
rate or epidural analgesia (Cleary-Goldman et al., 2005; Hill et al., 2003) responsible for intermittent
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fetal bradycardia due maternal intermittent hypotension. Some risk factors can influence the look
of the FHR such as diabetes melitus, where FHR looks more immature (Tincello et al., 2001). Also
technical parameters can influence the FHR itself – such as the size of a autocorrelation window for
deriving FHR from ultrasound (Roj et al., 2008), or the derived parameters such as power spectral
density of FHR, which can be affected by the type of interpolation (Cesarelli et al., 2011).

This question is usually limited by the availability of the data. Really long signals (spanning from
the check-in to delivery) enable us to create an individualized approach to each fetus with regard to
its starting point (Rosén et al., 2007). We have much more information to analyse, which can be
positive (Graatsma et al., 2009) or confusing based on the point of view (Sisco et al., 2009). Short
signals e.g. 70-min long (Schiermeier et al., 2008a) enable us to try to find direct relation between the
features measured and the outcome.

Another question is how to treat the II. stage of labour. General opinion on the second stage is
that it is different from the I. stage – in the shape of the signal. It is also very often noisy and it differs
even in the clinical treatment where obstetricians are much more likely to apply operative delivery in
unclear traces (Sheiner et al., 2001).

The CTU-UHB database is the first open-access database for research on intrapartum CTG signal
processing and analysis. It is available at the physionet2 (Goldberger et al., 2000). The database is
reasonably large and allows researches to test and developed algorithms/methods for CTG analysis
and classification. Using CTU-UHB database different approaches can be easily compared with one
another in the objective fashion. Intuitively, the use of common database can stimulate research in
CTG signal processing and classification.

2At the time of publication of this thesis the database was under review in the journal of BMC Pregnancy and Childbirth.
For the purpose of review a portion of database was available at: http://bio.felk.cvut.cz/users/spilkaj/CTU_UHB_database.
After the review the database will be available at http://physionet.org/.



Chapter 5

Signal processing and analysis

One of the most important aspects of signal processing is the quality of input data. Fetal heart rate
can be distorted by variety of reasons (e.g. fetal or maternal movements, misplaced electrode etc.),
leading to a corrupted or missing signal. Even though the missing intrapartum FHR is common (0-40%
missing for ultrasound measurement (US) and 0-10% for the direct measurement (DECG) (Bakker
et al., 2004)), there are no guidelines stating when a signal is unusable either for visual inspection
or for automatic analysis. The usual empirical value given by clinicians is 50%. Even though the
external monitoring using US has a lower signal to noise ratio than that recorded using DECG there
is no clinical difference between these two approaches. However, it matters for automatic analysis
as was shown in (Gonçalves et al., 2006b) and later in the similar paper (Gonçalves et al., 2013). In
this chapter we describe the three preprocessing steps: artefacts rejection, interpolation, and detrend.
The preprocessed signals were further described by features that originated from different fields. We
divided the features based on the previous works into several groups: morphological, time-domain,
frequency-domain, and nonlinear. The features described contain almost the complete set of features
used for FHR analysis.

The traditional approach to CTG analysis is to study morphological changes of signal, i.e. baseline,
variability, accelerations, and decelerations, which are used by obstetricians. These morphological
features are defined by guidelines (FIGO, 1986) and are usually estimated visually. Another type of
features are those that are either difficult to visually estimate or can not be estimated by the naked eye
at all. This category includes short/long term variability and also variety of other features (frequency,
entropy, complexity, and fractal dimension).

Chapter at a glance. First, we present the preprocessing steps and then we describe linear, frequency,
and nonliner methods for fetal heart rate analysis. The chapter brings a comprehensive review of
almost all features that were used for FHR analysis.

5.1 Signal preprocessing

Preprocessing is the main part in every signal processing task and is always the first step to be made.
Values of extracted features and further classification are highly dependent on the preprocessing quality.
For instance preprocessing steps could distorts the deterministic nature of the data and add some
stochastic components making the use of nonlinear methods unsuitable. The ideal signals for analysis
would be those measured directly in the heart. This is, however, not possible and signals are measured
either externally using Doppler ultrasound or internally by a scalp electrode. As mentioned above,
signals recorded externally have lower signal to noise ratio than those recorded internally but even
internal records are contaminant with noise and artefacts. In our case the preprocessing consisted of
the following steps: artefacts rejection, detrend, and interpolation.

Artefacts rejection The FHR signal contains a lot of artefacts caused by mother and fetal movements
or displacements of the transducer. In general the amount of data being removed as artefacts or missing
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values is in the range between 0% – 40% of all data. The algorithm suggested by (Bernardes et al.,
1991) was used for artefact rejection. Any successive five beats with a difference lower than 10 bpm
among them are considered as a stable segment. Then, whenever the difference between adjacent
beats is higher than 25 bpm, the sample is substituted by linear interpolation between the previous beat
and the new stable segment. Thus, all abrupt changes in FHR are removed and replaced. The result
of artefacts rejection is presented in Figure 5.1b. Notice that the artefacts occur mostly at the end of
labour.
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Figure 5.1: Rejection of artefacts. (a) the raw signal with artefacts, (b) signal after artefacts rejection.

Interpolation and gap treatment We used cubic Hermite spline interpolation (Kahaner et al., 1989),
implemented in MATLAB R©, to replace the missing data. We did not compute across a gap (Sprott,
2003) when the length of the missing data was 15 seconds or more – the value obtained based on our
experiments. The spline interpolation also introduces nonlinearity, however, the amount of nonlinearity
should be approximately the same for normal and abnormal FHR. Another approach, which was
recently introduced, is to replace missing data using an adaptive method (Oikonomou et al., 2013)
based on two steps: i) reconstruction step to obtain estimate of missing data using empirical dictionary,
ii) construction of the dictionary using updated values from the first step. These two steps are repeated
until convergence. This method show promising results (Oikonomou et al., 2013) and is currently
verified at the CTU-UHB database.

Detrend Physiological time series are generally considered as nonstationary, i.e. statistical properties
of physiological signal (mean, variance, and correlation structure) vary during time. We describe
stationarity and nonstationarity in Section 5.3. For the frequency and nonlinear methods that require a
signal to be stationary we carefully detrend signal using estimated baseline. The baseline estimation is
described in more detail in Section 5.2.3.

5.2 Linear time series analysis

We examine oscillation in intervals between consecutive beats and also variations in difference of
adjacent beats. For data analysis we use statistical methods in the time domain such as first and second
order statistics (Task-Force, 1996). Another approach is to examine frequency spectrum by Fourier
transform. A signal is decomposed to its single frequencies where each frequency is represented either
by amplitude or power. Let z(i) be a FHR signal for i = 1,2, . . . ,N where N is a length of FHR. The
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z(i) is expressed in beats per minute (BPM). Another, corresponding expression of z(i) used in this
work are known as RR series with time increments T (i) (in seconds).

5.2.1 Time domain

The methods described in this section are mainly based on (Task-Force, 1996) and (Magenes et al.,
2000) if not referenced. The time domain features representing the variation between consecutive R-R
intervals are as follows:

• The mean heart rate: T̄ = 1
N ∑

N
i=1 T (i) [ms]

• Standard deviation of the FHR: SDNN = ( 1
N−1 ∑

N
i=1(T (i) − T̄ )2)

1/2
[ms]

Short term variability (STV) There are two principal ways how to estimate the short term variability
depending on signal acquisition technique. For the DECG the beat-to-beat variability approach is
used, on the other hand, when CTG is acquired using Doppler ultrasound technique there is no real
beat-to-beat variability because of intrinsic smoothing due to correlation based technique. Instead
epoch-to-epoch variation is used when the FHR is averaged over short period of time. Mantel et al.
(1990a) suggests 2.5 seconds for averaging while in the Sonicaid 8000 system the period of 3.75
seconds is used (Pardey et al., 2002). The STV is estimated for signal of length 60 sec.; for longer
signals the 60 sec. estimations are averaged.

• Standard beat-to-beat variability STV = 1
N ∑

N−1
i=1 ∣T (i + 1) − T (i)∣ [ms]

• De Haan (de Haan et al., 1971): STV-HAA = IQR(arctan (
T (i)
T (i−1))) [a.u.], where IQR is

inter-quartile range with i = 1, . . . ,N − 1.

• Yeh (Yeh et al., 1973): STV-YEH =

√

∑
N−1
i=1

(D(i)−T̄ )2
N−2 [ms], whereD(i) = 1000 ⋅

T (i)−T (i+1)
T (i)+T (i+1) .

• Sonicaid 8000 STV (Pardey et al., 2002): Sonicaid = 1
M ∑

M
t=1Rt [ms], where M is number

of minutes of FHR and Rt is difference between adjacent epochs in the particular minute:
Rt =

1
H−1 ∑

H−1
j=1 ∣s̄j − s̄j+1∣, where H is number of subintervals in 60 sec (H = 60/K), K is

number of samples in 3.75 seconds, K = fs ⋅ 3.75, and s̄j is average value in 3.75 seconds for a
subinterval j = {1,2, . . . ,H}.

Long term variability (LTV) Long term variability is computed over 60 seconds and there is no
need of averaging the signal in 60 seconds as for the STV. For longer FHR than 60 sec. estimations of
LTV are averaged over each 60 sec.

• The Delta value: ∆ = 1
M ∑

M
i=1 [max

i∈M
(T (i)) −min

i∈M
(T (i))] [ms], where M is the number of

minutes of a signal.

• Total value of the Delta: ∆total = max
i∈[1,N]

(T (i)) − min
i∈[1,N]

(T (i)) [ms].

• Long term irregularity: LTI −HAA = IQR
√
T 2(i) + T 2(i − 1) [a.u.], where IQR is inter-

quartile range with i = 1, . . . ,N − 1 (de Haan et al., 1971).

Note that the total value of Delta, ∆total, corresponds to long term variability defined in the FIGO
guidelines (FIGO, 1986).
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5.2.2 Frequency domain

Signal decomposition into frequency components is a fundamental analysis technique. With this
approach we lose the notion of time and only frequency components of signal are provided. The power
as a function of frequency constitutes to what is known as power spectral density (PSD). The PSD
could be estimated by various methods. One of them is Fourier transformation which considers signal
as a composition of cosine waves with different amplitudes, phases, and frequencies.

We estimated the power spectral density (PSD) using fast Fourier transform (FFT). The PSD is
usually divided into non-overlapping energy bands. These bands represent underlying physiological
activity of either mother or fetus. The division of power spectrum into individual bands is not such
straightforward as for adult heart rate variability and exact bands for fetal monitoring still remain
unknown (Laar et al., 2008). Slightly different spectral bands were examined and described by (Sibony
et al., 1994) and (Signorini et al., 2003). The former approach divides spectra into four bands: very low
frequency VLF : 0 – 0.03 Hz, low frequency LF: 0.03 – 0.15 Hz that reflects sympathetic activity, mild
frequency MF: 0.15 – 0.5 Hz, which is associated with fetal movement and maternal breathing, high
frequency HF: 0.5 – 1 Hz that represents fetal breathing1, and LF/(MF + HF) ratio that corresponds
with balance of two autonomous systems. Other frequency bands were proposed by Sibony et.al.
They partitioned spectra similarly as Signorini et.al., with the modification that number of bands was
reduced into three and boundaries of bands changed : very low frequency VLF: 0 – 0.05 Hz, low
frequency LF: 0.05 – 0.15 Hz, high frequency HF: 0.15 – 0.5 Hz, and LF/HF ratio. Implementation
was provided by (Kaplan and Staffin, 1998).

We shall note here that power spectral density of fetal heart rate has power law scaling relationship.
The energy as a function of frequency decreases in power low fashion 1/fβ . The spectral index β is
estimated as a slope of line fitted to the spectrum estimate, see Figure 5.2 for illustration. The β equals
0 for white noise, 1 for pink noise, and 2 for fractional Brownian motion (Eke et al., 2002). Note
that spectral analysis performed on the whole record obscures detailed information about autonomic
modulation of RR intervals (Furlan et al., 1990)
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Figure 5.2: Spectrum of fetal heart rate. Estimated spectral index β as a slope of linear regression.

5.2.3 Morphological features

The following group of descriptive features is based on guidelines for CTG evaluation (FIGO, 1986).
These features and patterns are used by clinicans for CTG assessment and were previously described
in Section 2.2.1. The set of features is defined as follows:

• baseline – the mean level of fetal heart rate where acceleration and deceleration are absent
1Note that fetal lungs are non-functional and only movements are performed
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• number of accelerations
• number of decelerations

Baseline is the most fundamental morphological feature. The improper baseline estimation
destroys subsequent analysis of accelerations and decelerations. The developed algorithm for baseline
estimation was based on kernel density estimate of FHR probability density function. It was inspired
by (Georgieva et al., 2011) and compared to other algorithms (Jimenez et al., 2002; Pardey et al.,
2002; Taylor et al., 2000) in the work of (Zach, 2013). The modified algorithm was further used
in (Abry et al., 2013). The algorithm works on consecutive windows with 5 minutes overlap. In each
window a probability density function is estimated using the kernel density of certain width h. The h is
estimated for each window and depends on median and variance. The estimated baseline in the window
corresponds to maximum of the density and is employed as an anchor point of baseline in this window.
The anchor points from individual windows are then used for estimating the baseline for the whole
signal. In order to determine the stability of signal two measures were introduced (Georgieva et al.,
2011). The so called signal stability index (SSI) together with minimum expected value (MEV). The
SSI corresponds to maximum of the density function and MEV to minimum value of this distribution.
The lower SSI and MEV the less stable signal is. Clearly, when SSI and MEV are low the baseline is
not estimated and accelerations and decelerations are not considered. The details on baseline estimation
can be found in (Georgieva et al., 2011; Zach, 2013). An example of estimated baseline is shown in
Figure 5.3.
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Figure 5.3: Estimated baseline of fetal heart rate.

5.3 Nonlinear time series analysis

The nonlinear approach may reveal relevant clinical information of FHR hidden to conventional time
series analysis. Goldberger et al. (1985) observed that a human heart beat fluctuates on different time
scales and is self-similar (self-affine), see Figure 5.4. Despite that there remains ongoing controversy
over whether a normal heart rate is chaotic or not (Glass, 2009), tools used for examination of chaotic
time series could also be useful for FHR analysis. There exist several approaches for nonlinear
time series analysis; in this work fractal dimension, entropy, and complexity measures were utilized.
When analysing FHR by nonlinear methods we have to be aware of at least two major pitfalls. First,
FHR contains stochastic components induced by motion artefacts and measurement process. These
distortions could severely damage the nature of FHR; therefore we used a surrogate data test to establish
nonlinearity of FHR. Second, a certain data length is necessary to reliably estimate values of nonlinear
methods. The required data length for each method is discussed in the corresponding sections below.

Stationarity and nonstationarity Time series are considered stationary when the statistical mea-
sures, i.e. mean, variance, and correlation structure, are the same irrespective of time. On the other
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Figure 5.4: Self-affinity of fetal heart rate. Fluctuations of FHR at different time scales that are statistically
self-similar (self-affine).

hand, the nonstationary time series do not possess this property and statistical measures fluctuate over
time. According to the dichotomous model (Eke et al., 2002), signals are seen as realization of one of
two temporal processes: fractional Brownian motion (fBm) and fractional Gaussian noise (fGn). The
fBm signal is nonstationary with stationary increments. Physiological signals are generally consider as
fBm, e.g. see Figure 5.4, where statistical properties of FHR varies over time. The fGn is considered
as stationary. Since FHR is generally accepted as to be fBm methods able to overcome long-term
statistical fluctuation should be applied or the trend making FHR nonstationary could be removed.

State space reconstruction There are two approaches to estimate dimension of a signal either by
direct measurement of the waveform or by operating in reconstructed state space. The former approach
considers a signal in R2 as a geometric object and directly uses it without any further transform. On
the other hand the state space is reconstructed from coordinates representing the variables needed to
specify the state of a dynamical system.

As time evolves, a system moves from one state to another creating a trajectory, which provides a
geometrical interpretation of system dynamics. The trajectories that never intersect and touch each
other are called strange attractors and are typical for chaotic systems. Packard et al. (1980) showed
that it is possible to reconstruct state space from scalar time series and this reconstructed space is
diffeomorphically2 equivalent to the original state space. The state space can be reconstructed using
Taken’s embedding theorem (Takens, 1981). It states that it is possible to reconstruct state space from
signal z(t) delayed by time τ as long as the embedding dimension m is larger than 2d + 1, where d is
a box counting dimension, z(t) → zm,τ(t) = [z(t), z(t + τ), . . . , z(t + (m − 1) ⋅ τ)]. Different choice
of τ and m leads to different reconstruction. Optimal embedding parameters cannot be established
in general but are connected to specific application. The mutual information approach (Fraser and
Swinney, 1986) is usually used to search the time delay and Cao’s method (Cao, 1997) for examination
of the embedding dimension. For other methods see any literature about nonlinear time series analysis,
e.g. (Kantz and Schreiber, 2004). The state space reconstruction from FHR for normal and pathological
fetus is shown in Figure 5.5; see Figure caption for details.

5.3.1 Fractal dimension

Box counting dimension

The box-counting dimension is based on evaluation of signal’s capacity by covering it by N boxes
of the side length ε. A minimal number of boxes needed to cover whole signal is counted and then
the side length of boxes is decreased. Thus, repetitively descreasing size of boxes and counting them

2A diffeomorphism is a map between manifolds which is differentiable and has a differentiable inverse
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Figure 5.5: Fetal heart rate and state space reconstruction for normal and pathological fetus. The upper left
and right signals represent fetal heart rate. The corresponding state space is shown below. (a) FHR and state
space for normal fetus. The optimal delay time was τ = 2.5 s. (b) FHR and state space for pathological fetus.
The optimal delay time was τ = 5 s. The low complexity of FHR for fetus with developed acidemia, (b), is
clearly visible in both time and state space. In the state space the delayed coordinates of FHR span less area thus
showing reduced variability.

we are able to estimate box counting dimension DB as a slope of a linear regression fit to pairs on a
log-log plot of N(ε) versus 1/ε

N(ε) = (1/ε)DB ,

DB = lim
ε→0

logN(ε)

log(1/ε)
.

Higuchi’s dimension

The Higuchi method (Higuchi, 1988) calculates fractal dimension from estimated length of curve, i.e.
fetal hear rate in our case. From the time series z(1), z(2), . . . , z(N) of length N a new time series
Zsε is constructed such that

{Zsε } = {z(s), z(s + ε), z(s + 2ε), . . . , z(s + ⌊(N − s)/ε⌋ε)}, s = 1,2, . . . , ε,

where ⌊a⌋ denotes the floor function that gives largest integer lower or equal to a, s defines the initial
time, and ε the time interval. The ε represents time displacement and number of new created subsets is
equal to ε. For example, for ε = 3 and N = 100 we create following sequences

{Z1
3} = {z(1), z(4), z(7), . . . , z(97), z(100)}, (5.1)

{Z2
3} = {z(2), z(5), z(8), . . . , z(98)}, (5.2)

{Z3
3} = {z(3), z(6), z(9), . . . , z(99)}. (5.3)

The length of curve Zsε is defined as follows

Ls(ε) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

⎛
⎜
⎝

⌊N−s
ε

⌋
∑
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∣Z(s + iε) −Z(s + (i − 1)ε)∣
⎞
⎟
⎠

N − 1

⌊N−sε ⌋ε

⎫⎪⎪⎪
⎬
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/ε,
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where (N − 1)/⌊(N − s)/ε⌋ε represents the normalization factor for the curve length of subset time
series. Then the length of curve for time interval ε, ⟨L(ε)⟩, is defined as the average value over ε sets
of Ls(ε)

⟨L(ε)⟩ =
1

ε

ε

∑
s=1

Ls(ε).

The computed curve length ⟨L(ε)⟩ for different ε is related to the fractal dimension D by exponential
formula

⟨L(ε)⟩ ∝ ε−D.

The fractal dimension is estimated as a slope of fitted regression to log-log plot of ⟨L(ε)⟩ versus ε.
Note that Higuchi’s method estimates the Hurst exponent H that is related to the fractal dimension
D = E + 1 −H , where E stands for Euclidean dimension which is equal to one for time series.

Next, we estimated the two scaling regions as were described by (Higuchi, 1988). He suggested
two scaling regions on the log-log plot of some measurement function, e.g. number of boxes, versus
size of region, e.g size of box. These two regions are illustrated in Figure 5.6. Higuchi named the time
where the curve bends as critical time τc. This time separates short Ds and long Dl scale waveform
fractal dimension for ≤ τc and > τc, respectively. The region of the short scale reflects the short
time variability while the longer scale represents the long time irregularity. To standardize estimated
dimension we determined the τc for all methods. The τc was approximately same for all methods,
τc ≈ 3 s. In addition, in order to estimate both regions by one parameter, we also fitted the log-log
plot with a second order polynomial which coefficients (first order p1 and second order p2 polynomial
coefficient) correspond to the both STV and LTV.
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Figure 5.6: Short, Ds, and long, Dl, scale of waveform fractal dimension estimated by Higuchi’s method. The
curve breaks at log(ε) = 2.5. This equals to critical time τc = eε/fs ≈ 3 s, where sampling frequency is fs = 4
Hz. The estimated second order polynomial is shown in blue colour.

Dimension of Variance

The variance technique of fractal dimension calculation is based on properties of fractional Brownian
motion (fBm). It is a very useful approach because it is robust to noise. Let z(t) be a signal continuous
in time t and ∆t a time increment. The variance σ2 is then related to the ∆t according to the power
law (Kinsner, 1994)

Var{∆z(tn,∆t)} = ⟨z2
(tn,∆t)⟩ ∝ ∣∆t∣2H ,
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where ∆z(tn,∆t) = z(tn +∆t) − z(tn) and H is the Hurst exponent computed from a log-log plot
using

H = lim
∆t→0

1

2

logVar{∆z(tn,∆t)}

log(∆t)
.

Finally, the variance dimension is defined as: Dσ = E + 1 −H , where E is the Euclidean dimension
which equals to one for time series. The variance dimension is robust to noise.

5.3.2 Detrend Fluctuations Analysis

The detrend fluctuation analysis (DFA) was proposed by (Peng et al., 1995) and probes the signal at
different time scales. The result of the DFA is the fractal scaling exponent α. The whole process of
estimating α is as follows. First, the time series z(1), z(2), . . . , z(N) is integrated giving

Y (i) =
N

∑
i=1

[z(i) − z̄] ,

where Y (i) is the sum of i-th sample (cumulative sum) and z̄ is the averaged value of the entire signal.
Then Y (i) is divided into windows Yε of equal length ε. For each window Yε a least square line Ylε
representing the trend in the window is estimated. This line is subtracted from a summed Y (i) (in the
window Yε) in order to reduce possible non-stationarity. The formula for computation of fluctuations
F (ε) in a window is following

F (ε) =

¿
Á
ÁÀ

1

ε

ε

∑
j=1

[Yε(j) − Ylε(j)]
2.

This procedure is repeated for all time scale (different sizes of window ε). Then the F (ε) is plotted
on log-log graph against all size of window ε. Typically, the relationship between F (ε) and ε is
exponential F (ε) ∼ εα. This indicates the presence of self-similarity, i.e. for small windows size ε the
fluctuations are similar to those for large ε.

The resulting scaling exponent α gives us information about origin of time series. For instance,
α = 0 indicates random process (white noise), 1/f pink noise has α = 1, and α = 1.5 indicates
Brownian noise. Note the relation between α and spectral index β = 2α − 1. Also note the relationship
to the Hurst exponent H = α − 1 (Eke et al., 2002).

Peng et al. (1995) suggested the minimal data length to be N = 8200 samples. For shorter time
series, Govindan et al. (2007) provides a method to estimate DFA with help of generated phase
randomized surrogates.

5.3.3 Entropy

Entropy describes behaviour of a system in terms of randomness and quantifies information about the
underlying dynamics. Entropy is simply a fancy word for the "disorder". A stochastic, irregular, and
less predictable signal has higher entropy than a completely deterministic. In other words, entropy is a
measure of the amount of energy in a system that is unable to do work (Eckmann and Ruelle, 1985).

Approximate entropy

The approximate Entropy (ApEn) is able to distinguish low-dimensional deterministic system, chaotic
system, stochastic, and mixed systems (Pincus, 1995). It has its roots in the work of (Grassberger and
Procaccia, 1983) and (Eckmann and Ruelle, 1985). A time series z of length N is divided into a set
of m-length vectors um(i). Then the number of vectors um(i) and um(j), close to each other, in an
Euclidean sense, d[um(i), um(j)] ≤ r, is expressed by the number nmi (r). This number is used to
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calculate the probability of vectors being close according to Cmi (r) = nmi /(N −m + 1). Let us define
a function Φm(r) = 1/(N −m + 1)[∑N−m+1

i=1 lnCmi (r)]. Consequently the ApEn can be defined as

ApEn(m,r) = lim
N→∞

[Φm
(r) −Φm+1

(r)].

Sample entropy

A slightly modified estimation of approximate entropy was proposed by (Richman and Moorman,
2000) and resulted in what is known as sample entropy (SampEn). This estimation overcame the
shortcomings of the ApEn mainly because the self-matches are excluded. Secondly, conditional
probabilities are not estimated by a template-wise approach. SampEn requires only that one template
finds a match of length m + 1. The calculation of SampEn is as follows

SampEn(m,r) = lim
N→∞

− ln
Cm+1(r)

Cm(r)
. (5.4)

In the following Figure 5.7, we present simulated time series and the procedure for calculating
sample entropy. We define the template length m = 2 and r as a positive value (usually r = (0.1−0.2) ⋅
SD, where SD stands for standard deviation). The samples similar to the first sample u[1] are marked
by filled circle, to the second sample u[2] by filled square, and to the third sample by filled triangle.
Then we count occurrence of two-patterns and three-patterns. These are as follows: three two-patterns
(u[1], u[2];u[9], u[10];u[24], u[25]) and two three-patterns (u[1], u[2], u[3];u[9], u[10], u[11]).
Since we do not count self-matches, they are reduced to two and one, respectively. This is repeated for
all two-patterns and three-patterns in sequence and then computed using formula (5.4).

Figure 5.7: Simulated time series and its sample entropy estimation, for details see text. Modified from (Costa
et al., 2005).

Data length Pincus (1995) showed that ApEn is broadly applicable for data series of lengthN > 100.
Nevertheless, this was suggested for wide spectrum of applications. In our case, a meaningful data
length for ApEn is N ≥ 1000.

Parameters settings Parameters used for ApEn and SampEn estimation: tolerance r = {0.15; 0.2} ⋅
SD and the embedding dimension m = {2,3} (Liu et al., 2011; Pincus and Viscarello, 1992).

Implementation The ApEn was implemented by (Kaplan and Staffin, 1998). Implementation of
SampEn can be found at physionet web page (Goldberger et al., 2000). Note that for long time series a
fast computations of entropies are available (Manis, 2008; Pan et al., 2011).
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5.3.4 Lempel Ziv Complexity

The Lempel Ziv Complexity (LZC) (Lempel and Ziv, 1976) is widely used in data compression. It is
based on information theory approach. The LZC estimates reoccurring patterns contained in the time
series irrespective of time. A periodic signal has the same reoccurring patterns and low complexity
while in random signal individual patterns are rarely repeated and signal complexity is high. To be
more precise, (Lempel and Ziv, 1976) defined complexity as "a measure on the extent to which the
given sequence resembles a random one".

To the time series z(1), z(2), . . . , z(N) the encoding procedure is applied in order to form
sequences S of strings. For the binary encoding this sequence contains only {0,1}. The increase
in signal value z(i + 1) > z(i) is encoded by 1 and decrease z(i + 1) ≤ z(i) by 0. To indicate that
substring of S starts at position i and ends at position j we write S(i, j). The vocabulary of the
sequence v(S) contains all substring of S, e.g. for S = 101, v(S) = {1,0,10,01,101}. Let S and
Q denotes two strings and SQ their concatenation. When the length of sequence is not specified a
operator π is used to remove last string from concatenated SQ. The operator π comes as a postfix
SQπ.

The whole procedure of computation complexity c(N) is following: At the start the complexity
c(N) is set to 1, S = s1, Q = s2, SQ = s1, s2, SQπ = s1, and the vocabulary v(SQπ) is empty. For
generalization purpose, let us assume that we moved in sequence to sample r. The v(SQπ) is not
empty and strings S and Q are the following S = s1, s2, . . . , sr, Q = sr+1. If Q ∈ SQπ then Q contains
the substring of S and do not provide new information, therefore, the S remain unchanged and a new
character sr+2 is add to Q. Again we check if Q ∈ SQπ and if Q is not substring of SQπ we increase
c(N) by one and concatenate S and Q, otherwise we continue in adding the new characters to Q until
the end of the sequence is reached.

At the end the number of different strings is equal to c(N). By convention, when the sequence
reaches its last element, the c(N) is increased by 1. It is apparent that c(N) is dependent on the length
of original sequence N . We use the normalization form to avoid this dependence on the number of
data points (Lempel and Ziv, 1976). The normalized c(N) is defined as

c(N) =
c(N) log2N

N
.

Note that another coding scheme can be used in order to encode signal. The above described binary
encoding can be extended to a ternary and even more quantizing encoding. However, as (Kaspar
and Schuster, 1987) pointed out, the higher encoding should not be used in order to minimize the
dependence of results on quantification criteria and normalization procedures. The required data length
for binary encoded data is 1000 samples (Ferrario et al., 2004).

5.3.5 Poincaré plot

The Poincaré plot, also known as a return map, is useful for visualization and analysis of FHR series.
The FHR signal is embedded in dimension m = 2 with time delay τ = 1; on the x-axis is plotted z(i)
with respect to z(i+1) on the y-axis. The Poincaré plot is analysed using fitted ellipses. Two measures
are estimated SD1 as the standard deviation of points perpendicular to the line y = x and SD2 as the
standard deviation of points along the y = x line (Brennan et al., 2001).

5.4 Table of all features

In Table 5.1 we present overview of all extracted features and their settings parameters. In total we
worked with 21 features; different settings parameters yielded 49 features.

Feature groups The features were divided based on their "origin". The division into different
groups followed our previous work (Spilka et al., 2012) and is also consistent with work of others,
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Table 5.1: Table of all extracted features and their parameters.

Feature set Features parameters

FIGO-based baseline mean, standard deviation
number of accel. and decel., ∆total

Statistical STV, STV-HAA, STV-YEH, Sonicaid,
SDNN, ∆, LTI-HAA

Frequency energy03 LF, MF, HF, LF/HF
energy04 VLF, LF, MF, HF, LF/(MF+HF)

Fractal dim. FD_Variance, FD_BoxCount, FD_Higuchi,
DFA, FD_Sevcik

D, Ds, Dl, p1, p2

Entropy ApEn, SampEn r = {0.15,0.2}, m = 2
Complexity LZC
other Poincaré SD1, SD2

e.g. (Georgoulas et al., 2006; Magenes et al., 2000). In the FIGO-group we included the morphological
features (baseline, number of accelerations and decelerations) and long term variability termed ∆total.
The short term variability features are not included in the FIGO group since these are not considered in
the FIGO guidelines because they can not be estimated visually (FIGO, 1986). From the remaining
features we created two groups: HRV-based (statistical and frequency features inspired by adult HRV
analysis), and nonlinear (fractal dimension, entropy, complexity, and Poincaré plot).

5.5 Surrogate data test

So far we assumed that fetal heart rate is nonlinear driven by deterministic chaos. In order to verify
this hypothesis we used surrogate data test. In this test we formulated a null hypothesis e.g. that
data are generated by gaussian linear stochastic process. Then, if this hypothesis is rejected on some
significance level, we can conclude that data do not origin from such process and nonlinear methods
may reveal important information about underlying system dynamics. All nonlinear methods were
used as a discriminator between original data and its surrogates; the null hypothesis for rejected for all
methods on significance level p < 0.05.

Figure 5.8: Scheme of surrogate date test for the case of the null hypothesis of a linear process. Modified
from (Galka, 2000).

There are many available null hypothesis against which we can test our time series. For example,
null hypothesis could be that data are independent, identically distributed random variables of unspeci-
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fied mean µ and variance σ2. In our work, we employed general hypothesis that data are produced by
gaussian linear stochastic process (AR(p) process). During data generation we required that surrogate
and original data have the same power spectrum and probability density function. There exists broad
area of methods one can use for data generation. The main idea behind creation of surrogate data
is following: i) apply Fourier transform to original time series, ii) replace the phases by random
numbers ranging from (−π,π), iii) apply inverse Fourier transform to the Fourier coefficients. In our
work, we used iteratively refined surrogates proposed by (Schreiber and Schmitz, 1996). For more
information see referenced paper or book of (Kantz and Schreiber, 2004). The level of significance is
commonly set to be p ≤ 0.05, therefore we need at least 19 or 39 surrogate data for one- and two-sided
test, respectively. The whole scheme of surrogate data test is presented in Figure 5.8.





Chapter 6

Analysis of clinical evaluation

Interpretation of CTG recordings is an integral part of every day clinical practice though, since the
introduction of CTG, it has been a subject of many controversies. Not only because of difficulty to
interpret individual patterns of CTG but because of CTG utility in general (Sartwelle, 2012). Also,
and more importantly, the high intra and inter-observer variability still persists (Beaulieu et al., 1982;
Vayssiere et al., 2009).

In this chapter we propose a new approach for the annotation of CTG records and implement a new
software for collecting these annotations – the CTGAnnotator. We offer a detailed insight into clinical
evaluation of CTG. We analysed CTG evaluation obtained from nine clinicians where each clinician
evaluated 634 CTG records. Our study performed on unique, open access, CTU-UHB database is the
largest study ever performed when both the number of clinicians and number of records are considered.
We provided comprehensive analysis of observer agreement and, in contrast to other works, we did
not restrict the analysis to simple quantitative measures such as proportion of agreement and kappa
coefficient but we also used simple visualizations in order to provide a clear picture of clinicians
agreement/disagreement. This chapter is in part based on paper (Spilka et al., 2013a).

We proposed, implemented, and tested a novel approach for analysis of the clinical evaluation of
CTG – the latent class model (LCM) of CTG evaluation. We use this model to estimate the hidden
true class of CTG evaluation. This method provide superior results to the majority voting and, in
addition, it enables us to resolve the ongoing controversy on how many classes should be used for
CTG evaluation. The LCM offers deeper insight into clinical decision making and provides weights
of individual clinicians. We show results of sensitivity and specificity for biochemical markers and
Apgar score. Our study is the first study that provides sensitivity and specificity regarding the clinical
evaluation based on FIGO guidelines. Finally, we statistically compare the clinical evaluation to the
fetal heart rate features extracted in the same time window.

6.1 Clinical evaluation

Since the very introduction of the CTG into clinical practice its merit was widely disputed. The
method was introduced without proper clinical trials (MacDonald et al., 1985) and its evaluation
suffers from large inter-observer disagreement (Beaulieu et al., 1982; Bernardes et al., 1997; Lotgering
et al., 1982; Vayssiere et al., 2009) among others. Even though guidelines (e.g. the most prominent
FIGO guidelines (FIGO, 1986)) were introduced to tackle the heterogeneity of the CTG evaluation,
high inter- and intra-observer variability is reported frequently even today (Blackwell et al., 2011).
According to (de Campos et al., 2010), guidelines are in general too complex, with many parameters
that are hardly possible to assess precisely in the clinical environment.

Large body of literature exists where clinicians try to look for alternative approaches to the current
evaluation of the CTG according to FIGO (and from FIGO derived) guidelines. Since year 2000 the ST-
analysis (STAN) (Rosén and Lindecrantz, 1989; Rosén et al., 2004) has spread worldwide. Although
the most studies show that ST-analysis is performing better than the CTG alone (Amer-Wåhlin and
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Maršál, 2011), it is important to keep in mind that the necessary first step to correctly interpret the ST
ratio in ST-analysis is to correctly evaluate the CTG itself. Incorrect use of STAN combined with poor
CTG interpretation can have disastrous effects (Westerhuis et al., 2007a).

Secondly, tweaks to the FIGO guidelines were proposed extensively (ACOG, 2009; Macones et al.,
2008; NICE, 2007; RCOG, 2001) but no general agreement on the guidelines exists (de Campos et al.,
2010). Some more complex guidelines were proposed by (Parer and Hamilton, 2010) and even though
they claim superiority over classical guidelines in the inter-observer agreement (Coletta et al., 2012)
clinicians remain conservative. None of the major guidelines changes were studied in larger group
exceeding couple of interested hospitals.

CTG Annotator

We developed a software, the CTGAnnotator (Zach et al., 2013), which has been used to obtain
annotation of the CTG recordings from nine obstetricians working on delivery wards of six Obstetrics
and Gynaecology Clinics of all the medical schools in the Czech Republic. All clinicians have been
currently practising delivery ward doctors with median experience of 15 years (minimum 10, maximum
33).

Annotation has been acquired using stand-alone platform independent application. The application
has adopted the most commonly used display layout of CTG machines (in European format – 1 min./cm
and 30 bpm/cm), and therefore poses no difficulty for obstetricians to adjust. CTG annotator GUI is
shown in Figure 6.1.

Figure 6.1: Cardiotocographic recording (CTG) and an example screen of the CTGAnnotator software that was
used for CTG annotation.

The initial and final run of the application needs an internet connection, otherwise it is able to run
in an off-line mode. The application is able, when connected to server, synchronize the data after each
evaluated recording.

6.1.1 Annotation methodology

Simple introduction to the application was provided individually to each expert at their workplace. The
introduction included running through a test mode of the application for the expert to get acquainted
with the application interface. The test was run on specially selected CTG recordings that were not used
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later for final set evaluation. Even though we expect that all experts adhered to the FIGO guidelines
criteria (as required for the clinical decision making by the official Czech Obstetrics body) we did not
provide any special training nor did we encouraged it. Our goal was to get as close to the real clinical
evaluation as possible outside the delivery ward.

Based on the data structure in our database each CTG recording was presented for annotation in
four steps, see also Figure 6.2:

1. 30-minutes long window with beginning of the CTG signal at maximum one hour before the
end of the first stage of labour (Step/Window 1).

2. 30-minutes long window with beginning of the CTG signal at maximum 30 minutes before the
end of the first stage of labour (Step/Window 2).

3. Full second stage of labour signal which was presented for evaluation only when more than
5 minutes of CTG signal was available (Step/Window 3).

4. Evaluation of labour outcome – prediction of umbilical artery biochemical parameters after
delivery (in general training pH value was suggested) (Step 4).

Step 3Step 1

2st stage1st stage

Step 2 Step 4

deliveryend of 1st stage

Figure 6.2: Annotation work-flow. Two 30 minutes windows were evaluated in the first stage of labour and one
window in the seconds stage (if the CTG signal was longer then 5 min.). The labour outcome was evaluated in
the 4-th step.

In steps 1 to 3 the experts evaluated CTG recordings as normal, suspicious, pathological, or
uninterpretable according to their daily practice. Clinicians were provided with general clinical
information about mother’s age, gestational age, gravidity, parity, and total length of the first stage.
The clinicians were made aware à priori of the general outlines of the database as described in the
previous section and the way the records were presented to them.

In the 4-th step the clinicians stated their prediction of the delivery outcome as measured on
umbilical cord artery – divided into four tiers as no hypoxia (normal), mild hypoxia (abnormal), severe
hypoxia (pathological), or undecidable. During introduction these classes were described also in terms
of arterial pH values (severe hypoxia: pH ≤ 7.05, mild hypoxia 7.05 > pH ≤ 7.15, no hypoxia pH
> 7.15). For this last step additional clinical data, presence of risk factors, were provided. Clinicians’
evaluation of FHR and time needed for decision as well as changes in their decisions were recorded
for each step of annotation.

Number of hidden features embedded in the CTG Annotator enabled us to acquire the annotation
in the best controlled way possible. As a precaution and to limit the speedy clinicians that might have
had lost concentration, CTG Annotator application closed automatically when a number of records
annotated in a row exceeded 150. It was enabled to reopen again the following day. The order of
records was pre-set randomly, prior to the experiment, and was exactly the same for all clinicians. In
order to establish intra-observer agreement some of the records were randomly selected and presented
more than once for annotation. Additionally to acquire intra-observer agreement with respect to
particular class some of the data were selected for repeated annotation based on the previous annotation
by the expert – this was done automatically by the application. The additional occurrences of the same
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record (repeated ones) were ordered automatically to appear for the next time at the largest distance
from the first occurrence as possible. With repeated records each clinician evaluated 634 recordings.

We have examined the percentage of recordings to normal, suspicious, pathological, and non-
interpretable CTGs categories as evaluated by each clinician. We have also examined time needed to
arrive at decision for each record also with respect to category chosen by an expert. Additionally we
have collected predictions of the experts on the adverse outcome of the newborn and compared them
to objective value of the pH or BDecf, based solely on the CTG recording.

6.2 Observer agreement measures

The assessment of agreement between observers is not an easy task. Among statisticians there is no
agreement how the observer agreement should be measured. The kappa coefficient and its derivatives
has been used to measure agreement in the past but it has been shown that the kappa is influenced
by prevalence and base rate and is not suitable for comparison across different studies (populations).
There is no single measure of agreement that could outperform the others; hence, the general advice
is to use more measures until the proper will be available. For details refer to the great overview
of statistical methods of rater agreement (Uebersax, 2010). In our work we used the proportion of
agreement (PA) and for the sake of completeness also Fleiss kappa coefficient (Fleiss et al., 2004). We
computed overall PA as well as PA with respect to different categories. In addition, we also aimed to
visualize the inter/intra-observer agreement in a simple way in order to offer a clear and simple picture
of agreement rather than to use a quantitative measure.

Proportion of agreement The proportion of agreement is simply probability that clinicians agree
on evaluation. The generalized formula for proportion of agreement holds for multiple annotators
with multiple classes. We follow the description used in (Uebersax, 2010). Let N is the number of
annotated observations i = 1, . . . ,N and C is the number of classes c = 1, . . . ,C. The number of
annotations performed on observation i is defined as ni and number of times observation i is annotated
using class c is defined as nci. For example when C = 2 the i-th observation can be annotated as
1,1,2,2,2. Then n1i = 2, n2i = 3, and ni = 5. The summation across different c leads to a total number
of annotations on i-th observation

ni =
C

∑
c=1

nci. (6.1)

Intuitively, the ni equals number of annotators (if each annotator annotates each observation only
once). The number of all possible annotator-annotator pairs on class c for observation i is given by
nci(nci − 1). The number of agreements on class c across all observations is

S(c) =
N

∑
i=1

nci(nci − 1). (6.2)

Further, given nci (the number of annotations on class c for i-th observation) the number of possible
annotator-annotator pairs in agreement can be computed as: nci(ni − 1). Note that the summation
of nci(ni − 1) across all classes (∑

C
c=1 nci)(ni − 1) is equal to ni(ni − 1). Next, the sum across all

observations is termed as the total number of possible agreements on class c

Sposs(c) =
N

∑
i=1

nci(ni − 1).

Finally the proportion of agreement specific to particular class c is equal to the total number of
agreements on c divided by the total number of possible agreements on c

ps(c) =
S(c)

Sposs(c)
.
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The overall proportion of agreement, irrespective of category c, is computed in the similar way. The
summation of (6.2) across all categories

O =
C

∑
c=1

S(c)

and the total number of possible agreements

Oposs =
C

∑
c=1

Sposs(c).

The overall proportion of agreement is equal to

po =
O

Oposs
.

Confidence intervals The confidence intervals for the proportion of agreement were estimated using
bias-corrected and accelerated bootstrap method (Efron, 1994, 2003).

Kappa coefficient The kappa coefficient (Cohen, 1960) is widely used measure of observer agree-
ment though there is a great disagreement on its appropriateness. The kappa coefficient is considered
as chance corrected agreement, i.e. in its computation it corrects the agreement expected by chance.
Let pobs be observed probability of agreement and p̂e be probability of agreement obtained by a chance
(simply guessing the right class). The kappa coefficient is defined as

κ =
pobs − p̂e

1 − p̂e

with standard errors

SE(κ) =

¿
Á
ÁÀpobs(pobs − p̂e)

Np(1 − p̂e)2
,

whereNp is number of pairs of ratings. There is large quantity of papers dealing with appropriateness/inap-
propriateness of kappa coefficient. The most serious disadvantages are: i) dependence on observed
marginal proportions making comparison across different population infeasible, ii) lack of natural
extension for multiple rates and multinomial classes (Cicchetti and Feinstein, 1990; Feinstein and
Cicchetti, 1990), for details refer to great discussion on kappa coefficient (Uebersax, 2010).

6.3 Majority voting

The majority voting is the simplest voting mechanism to aggregate evaluation from multiple clinicians.
Let yji be evaluation of i-th observation i = 1, . . . ,N for j-th annotator, j = 1, . . . .J . The probability
that i-th observation is assigned to the c-th class is

µic = (1/J)
J

∑
j=1

δ(yji , c),

where δ(yji , c) is indicator function that equals 1 when yji = c and 0 otherwise. The majority voting, or
more precisely plurality voting, is simply choosing a class c for maximum of µic. In the case of ties a
flip of fair coin is performed.



54 Chapter 6. Analysis of clinical evaluation

6.3.1 Problems with majority voting

For its simplicity the majority voting is usually preferred. However, there are some limitations when
using majority voting of clinicians, the summary of drawbacks is listed below. The summary does not
only highlights the disadvantages of majority voting but touch the problems with clinical evaluation in
general.

1. There is high inter and intra-observer variability in clinical evaluation, which has been widely
reported, see (Blackwell et al., 2011; Blix et al., 2003; Lotgering et al., 1982; Vayssiere et al.,
2009) among others.

2. Each clinicians has different expertise not only based on length of his/her career (experienced
vs. inexperienced) but also influenced by labour management at working place. For example, a
clinician who is called only to the most serious cases could loose, to some extent, knowledge on
normal cases.

3. Clinicians could loose concentration/motivation or be simply distracted/inattentive during anno-
tation.

4. A wrong class could be entered by an accident.

5. The annotation was performed in an artificial settings (different from reality/practice).

6.3.2 Condorcet’s jury theorem

The different schemes of voting were thoroughly studied in social sciences. For the completeness we
describe the famous Condorcet’s jury theorem (1786), details can be found in (Boland, 1989), which
states: if voters are right with probability p > 1/2, then majority vote is likely to be right than wrong
and the probability of being right tends to 1 when number of voters goes to infinity. This theorem
holds for dichotomous voting (e.g. normal/pathological). When there is c categories for voting the so
called Condorcet’s paradox applies, however (List and Goodin, 2001) provides the contrary. For details
we refer the interested readers to the referenced article. It is intuitive that with increasing number of
voters the likelihood of correct decision increase. Below we performed an experiment with clinical
evaluation where we examined the stability of majority voting with respect to number of clinicians.

6.3.3 Stability of majority voting

The examination of stability of majority voting can be motivated in the following way. Let consider
that we have majority votes of J clinicians. We would like to know if the created majority was obtained
simply by a chance or if the majority is stable and possible variability in clinicians was cancelled out
by using high number of clinicians. We summarize the definition of stability in Proposition 1.

Proposition 1 We consider a majority vote of J clinicians stable if a majority voting of J +1 clinicians
is not different (measured by proportion of agreement).

In the proposition the term "different", our criterion, is not rigours thus offering space for possible
misinterpretation. This vague term should be replaced by proper evaluation, i.e. statistical testing.
However the created majority votes are not independent hence making any statistical comparison
impossible.

We performed a simple experiment. We computed majority votes (MV) for all combinations of
clinicians (

J
k
), where k = 3, . . . , J − 1. Then we compared this majority with majority vote of all

clinicians, J = 9. The procedure is shown in Algorithm 1.
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Algorithm 1: Procedure for comparing different majority votes.
Input: K = {3, . . . ,8} number of clinicians, Y clinical evaluation of size N × J , mvJ majority

vote of all J clinicians, mvb majority vote of combination b of clinicians

Result: pa - proportion of agreement

begin
for j ∈K do

comb← (
J
j
) – all combinations of j clinicians from J

for b ∈ comb – for all combinations do

Yb =Y(∶, b) – get evaluation for selected combination of clinicians
mvb ←majorityV oting(Yb)

pa(j, b) ← proportionOfAgreement(mvb,mvJ) – compare majority voting
end

end
end

6.4 Latent class analysis of clinical evaluation

6.4.1 A model of fetal heart rate evaluation

We described several outcome measures in Section 2.3 that are used to evaluate fetal well-being either
during delivery (clinical evaluation of CTG) or after baby is born (biochemical markers and Apgar
score). These measures could be divided into two subgroups based on their nature: subjective (clinical
evaluation of CTG and Apgar score) and objective (pH, BE, and BDecf). Regarding the both groups
there exist wide controversies and none of the measure is superior to the others. Because of their
nature they can not be used interchangeably but are not complementary either. In the first group the pH
value is the most common measure. However; it was shown that intrapartum metabolic acidosis only
slightly corresponds to adverse fetal outcomes (Yeh et al., 2012). In the second group the subjective
evaluation is too subjective and large intra- and inter-observer variability were reported in several
studies, e.g. (Bernardes et al., 1997; Blix et al., 2003; Vayssiere et al., 2009) among others. While
the difficulties with objective evaluation could not be diminished but only account for, the subjective
measure (CTG evaluation) and its high intra/inter observer variability could be reduced.

We follow the works of (Dawid and Skene, 1979; Raykar et al., 2010; Smyth et al., 1995)
and use similar notation to the most recent one (Raykar and Yu, 2012). To keep the description
general we refer clinicians as annotators and assigned clinical evaluation as a label. For simplicity
we begin the description with a simple model using random variables. Let us define the discreate
random variables Ψ representing fetal status (fetal well-being), S as a pattern of CTG (providing,
to some extent, information about fetal status), and Y j as a label assigned by an annotator j, j ∈
J . We are interested in the conditional probability of fetal status given the clinical annotation
p(fetal_status∣clinical_annotation) = p(Ψ ∣Y j). This leads to a casual model (6.3), where fetal
status is reflected by a CTG pattern which in turn is mapped to an annotation

Ψ Ð→ S Ð→ Y j . (6.3)

The conditional probability p(Ψ ∣Y j) could be expressed as

p(Ψ ∣Y j
) = p(Ψ ∣S,Y j

)p(S∣Y j
). (6.4)

Since Ψ is conditionally independent of Y j given S the above equation can be rewritten as
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p(Ψ ∣Y j
) = p(Ψ ∣S)p(S∣Y j

).

We reformulate the casual model by assuming that Ψ is reflected by an unknown (unobservable) true
category Y . We can imagine this as mapping of S into a category Y . This category could correspond
to a different classification scheme (e.g. FIGO, NICHD). A clinical annotation Y j is an estimate of
this category Y based on observation of CTG pattern S

Ψ Ð→ S Ð→ Y Ð→ Y j . (6.5)

Without any loss of information it is convenient to omit S because it is reflected by Y and does not
provide any other information. In fact Y could be viewed as quantization of S. This could seem as a
strong assumption but without it the clinical annotation would be meaningless. The casual model is
simplified to

Ψ Ð→ Y Ð→ Y j .

To rephrase above relationship in words. The fetal status corresponds to unknown ground truth (a
category), which is based on CTG pattern. Then a clinical annotation is only estimate of this ground
truth, hence fetal well-being. This leads to the following equation for posterior probability

p(fetal_status∣clinical_annotation) = p(Ψ ∣Y j
) = p(Ψ ∣Y )p(Y ∣Y j

).

However, in real world scenario the posterior probability p(Ψ ∣Y ) is not feasible to estimate or could
not be estimated at all. In the work of (Smyth et al., 1995) it was subjectively estimated by scientist
but this approach is inappropriate in our setting because it would be too subjective. Because we are not
able to estimate posterior p(Ψ ∣Y ), we are rather interested in the posterior probability

p(Y ∣Y j
) =

p(Y )p(Y j ∣Y )

p(Y j)

There are two catches however. First, Y is unknown (unobservable) truth value and, second, the Y j

suffers by high inter- and intra-observer variability. To overcome these difficulties (Dawid and Skene,
1979) proposed method to estimate Y from annotations Y j , which will be introduced below. We first
present a general mixture model and Expectation Maximization (EM) algorithm to find a maximum
of likelihood function. Then we introduce the special cases of the mixture model: the binomial and
multinomial models that are used to estimate Y from Y j .

6.4.2 Finite mixture models

The finite mixture models are used for unsupervised learning (but are not limited to) when class labels
are not available or when we do not restrict ourselves to particular class labels. Mixture models are well-
studied statistical inference technique (McLachlan and Peel, 2000) that are able to represent arbitrarily
complex probability mass functions. Finite mixture models has fixed number of parameters and a
standard method to estimate these parameters is expectation maximization (EM) algorithm (Dempster
et al., 1977) or, alternatively, one can use Markov Chain Monte Carlo (MCMC) technique (Diebolt
and Robert, 1994).

Let X = [X1, . . . ,Xd] be a d-dimensional random discreate variable, where xi ∈ X is d-
dimensional vector and N is a number of observations. Further let D = {xi}

N
i=1 be an input data set.

It is assumed that the data is from a mixture of initially specified M components in some unknown
proportions π1, . . . , πM (mixing probabilities). That is, each data point is a realization of the mixture
probability mass function

p(xi∣θ) =
M

∑
m=1

πmp(xi∣θm), (6.6)
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where θ corresponds to unknown mixing proportion πm and the elements of θm. The parameters to be
estimated are θ = {θ1, . . . ,θM , π1, . . . .πM−1}, which are needed to specify the mixture. For the π the
following must hold

πm ≥ 0, m = 1, . . . ,M, and
M

∑
m=1

πm = 1.

To estimate parameters of a distribution the maximum likelihood is commonly used (but other methods
could be used as well). The likelihood of p(D∣θ) gives probability of D under the parameters θ

p(D∣θ) =
N

∏
i=1

p(xi∣θ).

Taking the logarithm of above equation and plugging it into the mixture probability mass function
from equation (6.6) we compute the log-likelihood of mixture model as

log p(D∣θ) = log
N

∏
i=1

p(xi∣θ) =
N

∑
i=1

log
M

∑
m=1

πmp(xi∣θm).

The maximum likelihood estimate can not be found analytically and EM algorithm is powerful iterative
technique for maximizing the likelihood

θ̂ML = argmax
θ

{log p(D∣θ)}.

The Expectation Maximization algorithm

The expectation maximization algorithm (Dempster et al., 1977) is an iterative procedure to maximize
the likelihood when some variables (parameters) are unobserved. In other words, the EM algorithm
aims to find θ that maximize the log p(D∣θ) given observed data D. The algorithm starts with initial
guess of parameters and than repeats two steps: i) expectation (E-step) and ii) maximization (M-step)
until some convergence criteria is met or until a predefined number of iteration is reached.

The EM is based on the interpretation of incomplete data. We consider D as being incomplete
because of missing labels Y = {yi}

N
i=1, where N is number of observations and yi = {y1, . . . , yM} is

a binary vector of labels. A label ym is defined to be one if a sample xm was produced by the m-th
component. If we would know the labels Y the complete log likelihood would be

log p(X ,Y∣θ) =
N

∑
i=1

M

∑
m=1

ym log [πmp(xi∣θm)] .

Let t = 0,1, . . . , T be iterations of the EM algorithm, we introduce a Q-function such as

Q(θ, θ̂t) = E [log p(X ,Y∣θ)∣X , θ̂t] . (6.7)

This equation is the central part of expectation maximization algorithm; interpretation is as fol-
lows (Duda et al., 2000): the parameter θ̂t is current (best) estimate for the complete data, the θ is a
candidate improved estimate, θ ∈ Θ. The interpretation of equation (6.7) is that given a candidate θ
the right hand side computes the likelihood of data including the unknown labels Y marginalized with
respect to the current best distribution described by θ̂t. The EM algorithm selects the best candidate
from θ that maximizesQ(θ, θ̂t). The new chosen θ is denoted θt+1. The overall algorithm is presented
in Algorithm 2.
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Algorithm 2: Expectation maximization algorithm

set: stopping condition ε, max iterations T , t = 0
begin

i) initialize θ0 to an initial guess (or random values)
ii) for t ∈ T do

E-step compute Q(θ, θ̂t)

M-step Q(θt+1) = arg maxθQ(θ, θ̂t)

if Q(θt+1, θ̂t) −Q(θ̂t,θt−1) > ε then
break

end

end
iii) return θ ← θt+1

end

6.4.3 Binomial and multinomial mixture models

In this section we introduce a principal approach to estimate ground truth from multiple annotations.
We consider the clinical annotations as a mixture model of binomial and multinomial distribution. We
introduced general finite mixture model above. Here we describe the model for binary classification
(binomial distribution) and for multiclass classification (multinomial distribution).

Let N is the number of instances and yi ∈ Y is the unobservable ground truth for i-th instance,
i = 1,2, . . . ,N , yji ∈ Y is an annotation assigned by an annotator j, where j ∈ J . For the binary case
the Y = {0,1} and for the multiclass case the Y = {1,2, . . . ,C}, where C is number of categories. For
simplicity we begin description with binary classification and then extend it to multi-class classification.
We provide only a short introduction for the more details we refer interested reader to the original
work of (Dawid and Skene, 1979).

Binary classification

Let Y = {0,1} be a binary class. In the case the true class yi equals to 1, the parameter α is referred to
as sensitivity

αj = Pr[yji = 1∣yi = 1] =
Pr[yji = 1, yi = 1]

Pr[yi = 1]
.

Conversely, if the true class equals to 0 the parameter β is known as specificity

βj = Pr[yji = 0∣yi = 0] =
Pr[yji = 0, yi = 0]

Pr[yi = 0]
.

The assumption for α and β is that they are independent on the observed data. The assumption, which
is violated in practise since some instances are more difficult than the others and each annotator posses
a different expertise. The approach dealing with dependence on observed data was described in (Yan
et al., 2010).

Unlike (Dawid and Skene, 1979) we formulate the model in simplified way, that is every annotator
provides one label for each instance. With this simplification we completely rule out the possible
violation of conditional independence between two labels assigned by one annotator for one instance.
In other words, in the scenario when an annotator labels an instance for a second time, there is a
probability that he/she remembers the decision made earlier. Even thought this probability is small
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it would be different for each instance. By simplifying the model we eliminated it. Note that in the
original paper of (Dawid and Skene, 1979) the α and β are denoted by a common variable π, where
the π00 is sensitivity and π11 is specificity.

Let p = Pr[yi = 1] be prevalence of class 1. Given observations D = {y1
i , . . . , y

J
i }

N
i=1 and

parameters as θ = {α1, . . . , αj , β1, . . . βj , p} the goal is to estimate unknown ground truth yi and also
the sensitivity αj and specificity βj for each annotator j. The yi is treated as latent (hidden) variable
and EM algorithm could be used to estimate it. With assumption that observed data are independent
the likelihood can be formulated as

Pr[D∣θ] =
N

∏
i=1

Pr[y1
i , . . . , y

J
i ∣θ]

Under assumption that labels yji are conditionally independent given αj , βj , and yi, the likelihood
written for two classes is

Pr[D∣θ] =
N

∏
i=1

[
1

∑
c=0

Pr[y1
i , . . . , y

J
i ∣yi= c,θ] ⋅Pr[yi= c∣θ]] .

We assume that y1
i , . . . y

J
i are independent, i.e. all annotators make their evaluation independently.

Taking logarithm of the log likelihood yields

log Pr[D∣θ] =
N

∑
i=1

log

⎡
⎢
⎢
⎢
⎢
⎣

1

∑
c=0

J

∏
j=1

Pr[yji ∣yi = c,θ] ⋅Pr[yi = c∣θ]

⎤
⎥
⎥
⎥
⎥
⎦

.

Further we rewrite the log likelihood as

log Pr[D∣θ] =
N

∑
i=1

log[pai + (1 − p)bi], (6.8)

where

ai =
J

∏
j=1

Pr[yji ∣yi = 1, αj] =
J

∏
j=1

[αj]y
j
i [1 − α]1−yji ,

bi =
J

∏
j=1

Pr[yji ∣yi = 0, βj] =
J

∏
j=1

[βj]1−yji [1 − β]y
j
i . (6.9)

The maximum likelihood is found by maximizing the log likelihood function

θ̂ML = {α̂, β̂, p} = arg max
θ

{log Pr[D∣θ]}.

Two methods are commonly used for the maximization of log likelihood with latent variables: EM
and Markov Chain Monte Carlo simulation. The choice of the method is merely based on the researches
preference. Also it is possible to derive analytical expression as was shown in (Pepe and Janes, 2007)
but this approach has several flaws, which were summarized in the response letter (Formann and
Böhning, 2008). In our work we decided to follow the line of Dawid and Skene and use the EM
algorithm.

Estimation using EM algorithm The hidden variables to be estimated are sensitivity α, specificity
β, prevalence p, and true (unknown/hidden) label yi. If we would known the hidden labels y =

[yi, . . . , yN ] the complete likelihood would be computed as

log Pr[D,y∣θ] =
N

∑
i=1

yi log pai + (1 − yi) log(1 − p)bi.
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Since we do not know the yi, we replace it by its estimate µi. First we initialize the µi, p,α, and β and
then we repeat the E and M step until convergence.

E-step. In this step we compute the conditional expectation of yi given the observations from
annotators D under the current estimates of parameters θ:

E{log Pr[D,y∣θ]} =
N

∑
i=1

µi log pai + (1 − µi) log(1 − p)bi, (6.10)

where the expectation is with respect to Pr[D,y∣θ] and µi = Pr[yi = 1∣y1
i , . . . , y

J
i ,θ]. By Bayes

theorem the µi is computed as

µi ∝ Pr[y1
i , . . . , y

J
i ∣yi = 1,θ] ⋅Pr[yi = 1∣θ] =

aip

aip + bi(1 − p)
.

M-step. The current estimate of µi is used to maximize the conditional expectation. By taking
derivative of (6.10) and equating it to zero we compute the new estimates of αj , βj , and p

αj =
∑
N
i=1 µiy

j
i

∑
N
i=1 µi

, βj =
∑
N
i=1(1 − µi)(1 − y

j
i )

∑
N
i=1(1 − µi)

, p = (1/N)
N

∑
i=1

µi.

The EM algorithm is only guaranteed to converge to local maximum; therefore, it is usually
restarted several times with different set of starting values. Other possible solution is to use the
majority voting for initialization: µi = (1/J)∑Jj=1 y

j
i as it was proposed in (Dawid and Skene, 1979).

Multi-class classification

The extension from binary classification to multi-class classification is straightforward. Let us define
c ∈ C as a category to which yji could be assigned and αjc = (αjc1, α

j
c2, . . . , α

j
ck) as a multinomial

parameter describing a probability that annotator j assign a class k ∈ C to an instance given the true
class is c

αjck = Pr[yji = k∣yi = c],
C

∑
k=1

αjck = 1.

For the multi-class classification the sensitivity and specificity are usually computed with one-versus-all
approach, where one class is taken as positive and the other classes as negative; this is repeated for all
classes c. For binary case, C = 2, αj00 and αj11 refer to sensitivity and specificity, respectively. In order
to keep the link to the original paper of (Dawid and Skene, 1979) we note here that they denoted the
αjck by π(j)

ck .
Let δ(yji , c) be a statement that equals 1 when yji = c and 0 otherwise and pc = Pr[yi = c] be a

prevalence of category c. Furthermore, let denote observations D = {y1
i , . . . , y

J
i }

N
i=1 and parameters as

θ = {αjck, pc}. Dawid and Skene (1979) treat the unknown truth yi as latent (hidden) variable and uses
the EM algorithm to estimate it. Similarly to (Raykar and Yu, 2012) the likelihood is proportional to

Pr[D∣θ] =
N

∏
i=1

⎡
⎢
⎢
⎢
⎢
⎣

C

∑
c=1

Pr[yi = c]
J

∏
j=1

Pr[yji ∣yi = c]

⎤
⎥
⎥
⎥
⎥
⎦

=
N

∏
i=1

⎡
⎢
⎢
⎢
⎢
⎣

C

∑
c=1

pc
J

∏
j=1

C

∏
k=1

(αjck)
δ(yji ,k)

⎤
⎥
⎥
⎥
⎥
⎦

. (6.11)

If we know the missing labels y the log likelihood can be written as

log Pr[D,y∣θ] =
N

∑
i=1

C

∑
c=1

δ(yi, c) log

⎡
⎢
⎢
⎢
⎢
⎣

pc
J

∏
j=1

C

∏
k=1

(αjck)
δ(yji ,k)

⎤
⎥
⎥
⎥
⎥
⎦

.
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Estimation using the EM algorithm As in the binary case we use expectation maximization
algorithm to estimate the latent parameters. In the E-step the conditional expectation is computed as

E{log Pr[D,y∣θ]} =
N

∑
i=1

C

∑
c=1

µic log

⎡
⎢
⎢
⎢
⎢
⎣

pc
J

∏
j=1

C

∏
k=1

(αjck)
δ(yji ,k)

⎤
⎥
⎥
⎥
⎥
⎦

, (6.12)

where µic = Pr[yi = c∣y
1
i , . . . , y

J
i ,θ] is estimated probability of ground truth given the yji and θ and

can be computed as

µic ∝ pc
J

∏
j=1

C

∏
k=1

(αjck)
δ(yji ,k).

In the M-step we use the current estimates to maximize the conditional expectation. Taking gradient
of (6.12) and equating it to zero, the parameter αjck is updated using the following equation

αjck =
∑
N
i=1 µicδ(y

j
i , k)

∑
N
i=1 µic

.

The E and M step are repeated until convergence; the µic was initialized using majority voting.

Latent class analysis with different number of classes

The latent model is powerful not only for estimating the latent class from multiple, possibly noisy,
annotations but could be also used to infer the number of classes the annotators are actually using.
We discussed the FIGO guidelines in Section 2.2.1. Here we briefly discuss their alternatives. The
FIGO guidelines (FIGO, 1986) were the first recognized international guidelines. Since then many
alternatives were introduced (ACOG, 2009; Macones et al., 2008; RCOG, 2001) all employing 3-tier
classification system based on FIGO. The comparison of guidelines and their statements was performed
by (de Campos et al., 2010) with conclusion that the guidelines are, in general, too complex and hard
to follow in clinical environment. Attributing to high inter/intra observer variability. To better interpret
the CTG patterns and to lower the variability alternatives to 3-tier were devised. Schifrin (2004)
advocates a simple 4-tier system while (Parer and Ikeda, 2007; Parer et al., 2009) propose a 5-tier
system claiming its superiority over the classical guidelines (Parer and Hamilton, 2010). Tommaso
et al. (2013) showed that the NIHCD guidelines had better sensitivity and specificity over 5-tier system
but, in general, the performance of 5-tier was better. Further, Coletta et al. (2012) claimed that there is
a better sensitivity of 5-tier system though (Miller and Miller, 2012) provided the contrary.

The latent class model for CTG evaluation was properly introduced in the section above. Using
this model we can gain insight into the discrepancy of guidelines and disagreement on number of
categories, which should be used for evaluation. In the equation (6.11) we computed the likelihood of
parameters θ given the labels in set D. In this equation we supposed that number of classes is fixed.
However, the guidelines are not precise nor they are strictly followed by clinicians leaving and open
space for different evaluation. Our goal is to examine if choosing different number of classes offers
better description of clinical evaluation in terms of model fit. The extension of equation (6.11) to
encompass different number of classes is straightforward. We replace C by a number R representing
different number of classes

Pr[D∣θ] =
N

∏
i=1

⎡
⎢
⎢
⎢
⎢
⎣

R

∑
r=1

pr
J

∏
j=1

C

∏
k=1

(αjrk)
δ(yji ,k)

⎤
⎥
⎥
⎥
⎥
⎦

,

where

αjrk = Pr[yji = k∣yi = r],
C

∑
k=1

αjrk = 1.
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The αjrk are probabilities, which represent class-conditional probability that a label in r-th class
corresponds to label in k-th class given by j-th annotator. In our experiments, we varied R to be
R = {2,3, . . . ,8}, creating models Mr2,Mr3, . . . ,Mr8.

Number of estimated parameters The number of estimated parameters Λ increase rapidly with
increasing R, J , and C and is computed as

Λ = R − 1 +
J

∑
j=1

(C − 1) + (R − 1). (6.13)

For instance when C = 2, J = 2, and R = 2 the parameters to be estimated are as follows θ =

{α1, α2, β1, β2, p}. If the Λ exceeds number of observations the model will be unidentified. The
model will be also unidentified if the probabilities αjrk will be sparse.

Rank of annotators

The latent class model (LCM) is not only useful to estimate the latent class but it can be also used to
evaluate the agreement between observers or, more precisely, from the LCM model we can infer the
contribution of individual clinicians to the latent class estimate.

The ranking/scoring of individual annotators was thoroughly investigated in (Raykar and Yu,
2012). Here we provide a brief summary with addition of our devised score, which is simplest, better
interpretable, and therefore more suitable for our approach.

Recall that for the binary classification the parameters αj and βj refer to sensitivity and specificity,
respectively. To represent the αj and βj in one number, (Raykar and Yu, 2012) proposed a score to
detect spammers (bad annotators) in a crowd-sourcing task

S
j
sp = (αj + βj − 1)2.

A spammer assign labels randomly and therefore sensitivity and specificity is almost equal. The score
for spammer tends to zero while ideal annotators have Sjsp = 1.

For the multiclass classification the situation is similar but instead of sensitivity and specificity
we work with parameter αjck where the estimated latent class was c and annotator j assigned class k.
Again, note that when C = 2 the αj00 and αj11 refer to sensitivity and specificity, respectively. Let Aj

be a C ×C confusion matrix with entries [Aj]ck = α
j
ck. In the case of spammer the rows in Aj would

be equal one another. For example when C = 3 the Aj for spammer could be

Aj
=
⎛
⎜
⎝

α11 . . . α13

⋮ ⋯ ⋮

α31 . . . α33

⎞
⎟
⎠
=
⎛
⎜
⎝

0.5 0.25 0.25
0.5 0.25 0.25
0.5 0.25 0.25

⎞
⎟
⎠
. (6.14)

The score is defined as Frobenius norm of the confusion matrix to the closest rank one approximation.
For each row of Aj the mean of this row is subtracted. Then the summation of the squares of all entries
yields the final score. Equivalently

S
j
sp = ∥Aj

−
1

C
eeTAj

∥
2

F
= ∥(I −

1

C
eeT)Aj

∥
2

F
,

where e is a column vector of ones and I is identity matrix with ones on diagonal. A spammer is when
S
j
sp tends to zero, a good annotator tends to Sjsp = C − 1. The normalization of this score to C classes

yields

S
j
sp =

1

C − 1
∥(I −

1

C
eeT)Aj

∥
2

F
.
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Even though this score is effective for penalizing random annotations it does not cover situations when
an annotator assigns only one class (or uses one class prevalently). For example consider the following
confusion matrices for good annotator j = g and bad j = b

Ag
=
⎛
⎜
⎝

0.9 0.1 0
0.1 0.9 0
0 0.5 0.5

⎞
⎟
⎠

Ab
=
⎛
⎜
⎝

0.5 0.5 0
0 0.05 0.95
0 0.05 0.95

⎞
⎟
⎠
.

The good annotator Ag has performed well on the classes C = {1,2} and badly on the third class,
where the probability of correct decision was 0.5. The bad annotator Ab evaluated prevalently the third
class. Evidently the performance was good on the third class but poor on the first and even poorer on
the second class. Nevertheless the score Ssp is similar for both Sgsp = 0.49 and Sbsp = 0.45.

Accuracy based scoring In order to differentiate good and bad annotators, which are not spammers
(random evaluation) but use dominantly one class, we proposed a different scoring function. This
scoring is more intuitive and in a sense corresponds to the classification accuracy. Again, consider
matrix Aj the diagonal elements represent probabilities of correct classifications with respect to latent
class c = k and off-diagonal elements represent probabilities of misclassification c ≠ k. The proposed
score is defined as

S
j
acc =

1

C
(2 ⋅ trace(Aj

) −
C

∑
c=1

K

∑
k=1

Aj
ck) .

The score simply equal to summation of diagonal elements with subtraction of summation of off-
diagonal elements. The score for very bad annotators is Sjacc = −1 and for the good annotators is
S
j
acc = 1. For the example above the scores are Sgacc = 0 and Sbacc = 0.53. For the case of spammer,

confusion matrix in (6.14), the score is even lower Sacc = −0.33. Clearly, in these cases the proposed
score is able to differentiate the various annotators better than the Ssp.

Ranking for different number of classes The proposed accuracy based score has a limitation when
we consider that the latent variable has different number of classes than the annotators actually used.
We described this approach in the previous section. Let Aj

rk be a matrix with entries [Aj]rk = αrk,
where R ≠K. Then the Aj

rk is not square and the accuracy based score Sjacc can not be computed and
only the Sjsp can be used.

6.4.4 Model selection and fit

With the latent class analysis we can use miscellaneous techniques to evaluate model fit and to
determine, which model is more appropriate for different R. Increasing R from rmin to rmax (in our
case rmin = 2 and rmax = 8) will increase model fit but also with possibility to over-fit and need of
estimating additional model parameters, see equation (6.13). A trade-off between better model fit and
number of parameters to be estimated is usually sought and tackled by penalizing the log likelihood by
a function of parameters θ that are needed to be estimated. Criterion for selecting number of classes r
can be formulated as

r̂ = arg min
r

{C(θ̂(r)), r = rmin, . . . , rmax} , (6.15)

where C(θ̂(r)) is a model selection criterion and θ̂(r) is an estimate of parameters of r classes. The
two most common measures are the Akaike information criterion (AIC) (Akaike, 1973) and Bayes
information criterion (BIC) (Schwarz, 1978). We can express both of these criteria in the common
form

C(θ̂(r)) = − ln Pr[D∣θ̂(r)] + P(r),
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where P(r) is a function that penalizes higher number of classes r and Pr[D∣θ̂(r)] is likelihood of
θ given D. Let L is the likelihood, N is the number of examples, and ϑ is the number of estimated
parameters, the AIC and BIC are defined as

AIC(r) = −2 lnL + 2ϑ,

BIC(r) = −2 lnL + ϑ lnN.

The better model the lower BIC and/or AIC. Usually the AIC over estimates the number of r while
BIC underestimates it, the compromise between them is often sought. Though, for the latent class
models, the BIC is usually preferred because of its simplicity (Lin and Dayton, 1997).

Why AIC/BIC are preferred over cross-validation? In this stage, when choosing the best model,
we are not interested in prediction capabilities of the model. Rather we aim to select the model, which
has the best descriptive properties therefore we use AIC and BIC.

6.4.5 Statistical measures

In this chapter we use sensitivity, specificity, and precision (positive predictive value) to assess clinical
evaluation of CTG with respect to different markers (pH, BE, BDecf, and Apgar score). Let us consider
the confusion matrix in Table 6.1. TN (true negative) express number of correctly classified negative
examples, TP (true positive) is number of correctly classified positive examples, FN (false negative) is
number of incorrectly classified negative examples, and FP (false positive) is the number of incorrectly
classified positive examples.

Table 6.1: Confusion matrix. p/n – actual positive/negative, p′/n′ – predicted positive/negative.

p′ n′

p TP FP
n FN TN

Sensitivity is accuracy on positive examples SE = TP /(TP + FN), specificity is accuracy on
negative examples SP = TN/(FP + TN), and precision (PR) is proportion of predicted positive
results that are true positive PR = TP /(TP + FP ). For more information on statistical measures on
confusion matrices c.f. Section 7.4.3 or see any general textbook.

6.5 Statistical analysis of features with respect to clinical evaluation

In Chapter 5 we described set of features extracted from fetal heart rate record. The features were
extracted for the whole FHR (Step 1 plus Step 2). We evaluated the clinical evaluation without FHR
so far, here we are interested in the relationship between extracted FHR features and corresponding
clinical evaluation. The assessment is performed using statistical testing.

To be able to select appropriate statistical tests all features were tested for normal distribution using
Lilliefors test. The test operates with null hypothesis that sample comes from normal distribution.
Only features with normal distribution in all three classes (normal, suspicious, pathological) were
considered to have normal distribution in general. For the normal distributed features we used Analysis
of variance (ANOVA) and for not normally distributed we used non-parametric Kruskal-Wallis test,
which makes no distributional assumptions. We tested the null hypothesis that features comes from the
same distribution against alternative hypothesis that they don’t. The null hypothesis was rejected when
p < 0.01.

Features were divided into groups based on their origin: FIGO-based, HRV-based, and nonlinear.
Since we obtained a large amount of features we filtered them in each group using correlation. Only
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one representative feature was retained and other correlated were removed when the correlation was
ρ̂ > ∣0.9∣.

6.6 Results

6.6.1 Proportion of agreement and inter/intra observer variability

To keep the results as clear as possible we focused on presentation of the results acquired from the
second step in the first stage of labour and the prediction of the outcome based on the full CTG
recording (Steps 2 and 4 as described above). The detailed results for individual clinicians are shown
only for Step 2 since for Step 4 the results are similar.

Recall that for Step 2 the classes were: normal, suspicious, pathological, and uninterpretable and
for step 4 they were: no hypoxia, mild hypoxia, severe hypoxia, and uninterpretable.

In total, 552 unique records were presented to nine clinical experts for annotations and together with
almost 20 % of records that were presented repeatedly with random repetitions and class-dependent
repetitions amounted to 634 recordings to annotate. All clinicians were randomly assigned by a
number, which can be used to connect the respective results across all the figures in this section.

Percentage of assigned classes. We evaluated the median percentage of clinical annotation. The
results are present in first column of Table 6.2. Note that percentages do not add to 100% since we
computed median across all clinicians. We can see that evaluation in step 4 had higher percentage
of normal records than evaluation in the Step 2. The details for percentages of recordings assigned
to particular classes by individual experts are shown in Figure 6.3. Even from this figure we can see
that proportion of normal, suspicious, pathological, and uninterpretable evaluation from each clinician
differed substantially, experts 3 and 8 being the most defensive ones, the expert 6 on the other hand the
most confident one. The Figure 6.3 shows results for Step 2 only (detailed results for Step 4 are not
presented).
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Figure 6.3: Percentage of normal, suspicious, pathological, and uninterpretable evaluation based on evaluation
of Step 2 by 9 expert-clinicians.

Average time of evaluation The average length of annotation, i.e. time elapsed between evaluation
of the first and last record, was 38 days. The average time distance of records that were presented for
the second time (for intra-observer agreement) was five days; hence it is unlikely that clinicians would
remember the repeated CTGs. The median time needed for decision for all types of evaluation with
25th and 75th percentiles are shown in second column in Table 6.2. Details for individual clinicians
for Step 2 are shown in Figure 6.4. For all clinicians but 3 and 8 the pathological evaluation took
more time than normal and suspicious. All clinicians had significantly different times for each type of
evaluation on significance level p < 0.01 (Kruskall-Wallis test was used).
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Table 6.2: Assessment of clinical evaluation. Percentage of class evaluation, average time per evaluation,
intra-observer agreement, and proportion of agreement,

class median percent-
age of evalua-
tion [%]

average time (median
(25-75 perc.)) [sec.]

intra-observer
agreement [%]

proportion of
agreement (95%
CI) [%]

St
ep

2

overall — 4.1 (2.6 – 8.5) 71.2 48 (47 – 50)
normal 37.0 2.9 (2.1 – 4.2) 80.7 57 (54 – 60)

suspicious 41.7 3.8 (2.7 – 6.3) 65.7 46 (48 – 48)
pathological 12.9 7.0 (3.9 – 11.9) 50 41 (36 – 46)

uninterpretable 1.5 6.0 (4.4 – 7.5) 0 15 (10 – 21)

St
ep

4

overall — 4.8 (2.5 – 8.4) 71.6 50 (48 – 52)
no hypoxia 67.8 6.8 (3.6 – 12.1) 86.3 65 (63 – 68)

mild hypoxia 23.7 11.5 (5.2 – 24.6) 58.6 32 (30 – 34)
severe hypoxia 7.3 8.6 (6.3 – 9.7) 53.3 29 (25 – 33)

undecidable 1.8 6.1 (5.1 – 8.2) 0 20 (16 – 24)
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Figure 6.4: Average times for evaluation of the recording as normal, suspicious, pathological, and uninter-
pretable. Values presented as median with 25th and 75th percentiles.

Intra-observer agreement. The average intra-observer proportion of agreement is shown in third
column of Table 6.2. Again, detailed results for individual clinicians on Step 2 are presented in
Figure 6.5. We should stress out that from Figure 6.3, we already know that experts 3 and 8 evaluated
the data defensively – they had disproportionate amount of pathological evaluations – thus it can partly
explain the large agreement of experts 3 and 8 on pathological class in comparison to most of the
others in Figure 6.5. Similar results were obtained for the labour evaluation.
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Figure 6.5: Intra-observer proportion of agreement with 95% confidence intervals in respect to assessed CTG
category.
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Proportion of agreement. The overall proportion of agreement (PA) is present in the last column of
Table 6.2. Evidently, the PA values are low and there are two reasons for that. First, by the common
sense, the more experts asked for an opinion the less agreement we expect; second, two clinicians
could be considered as outliers since they evaluated CTG defensively, as was shown in Figure 6.3 and
also evidenced in the figures hereinafter. In order to examine inter-observer agreement in more detail
we computed PA of all clinicians and majority voting (PA1, . . . ,PA9) with results: PAj = {75.9, 78.6,
45.8, 77.2, 46.4, 78, 76.6, 35.1, 73}. We sorted the PAj in descending way and evaluated inter-observer
agreement iteratively. In each iteration we added a clinician and evaluated PA. Thus obtaining PA for
groups of two clinicians {2, 6}: three clinicians {2, 6, 4}, four {2, 6, 4, 7} and so forth. The results are
shown in Figure 6.6. It could be seen that for normal evaluation the PA decreased almost linearly.
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Figure 6.6: Inter-observer agreement with 95% confidence intervals for groups of 2, 3, 4, 5, 6, 7, 8, and 9
clinicians.

Inter-observer agreement. The more details of inter-observer PA between individual clinicians and
majority voting are shown in the matrix in Figure 6.7. The matrix is symmetric along its diagonal.
The majority voting outcome based on evaluation of all clinicians is marked by 0 and shown in the
first row and the first column. The rest of the rows and columns represent individual clinicians as in
the previous figures. For example the first clinician (marked with 1) agrees with the majority voting
(marked with 0) on 80 % and with the clinician (marked with 2) on 65 %.
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Figure 6.7: Matrix of inter-observer proportion of agreement. (Majority voting = 0, clinicians = {1,2, . . . ,9}).
On the right of the figure, bars represent levels of proportion of agreement.

For the sake of completeness we also computed Fleiss kappa coefficient, however we warn against
its improper use for comparing different populations. The overall kappa was: 0.255 with 95% CI
(0.253–0.258) being the fair agreement.
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Clinical evaluation from hospital records For 262 CTGs records we were able to obtain CTG
evaluation directly from hospital records of the delivery ward of the UHB1. The evaluation – usually of
the last segment of the first stage and second stage – was given on the printed-out CTG recording. The
proportion of agreement between evaluation of the first stage from the clinical documentation and the
evaluation using the majority voting of nine experts was 59% CI (52–64 %). With respect to different
categories the PAs were: 61 % with 95% CI:(53–70) for normal, 63% (56–69) for suspicious, and 32%
(18–47) for pathological.

6.6.2 Stability of majority voting

We analysed stability of majority voting and latent class model. The stability was defined in Propo-
sition 1. In Figure 6.8 we present overall results (irrespective the classes) of majority voting (MV)
and latent class model (LCM) stability. The stability of LCM is better for higher number of clinicians
while for the lower number the MV perform better and has also lower variance. For k ≤ 5 the MV
should be preferred and for k > 5 the LCM should be favoured. The same conclusion holds when the
overall evaluation is split into the individual classes as it is shown in Figures 6.9 for MV and 6.10 for
LCM. Recall that the comparison is not rigours but statistical testing could be hardly employed as
discussed in Section 6.3.3.
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Figure 6.8: Stability of majority voting and latent class model for all classes. Legend: mvk and mv9 is majority
voting for k and 9 clinicians, respectively; lcak and lca9 is latent class analysis of k and 9 clinicians, respectively;
pa(a,b) is proportion of agreement between a and b.
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Figure 6.9: Stability of majority voting (MV) for normal, suspicious, and pathological evaluation. Legend: mvk
and mv9 is majority voting for k and 9 clinicians, respectively; pa(a,b) is proportion of agreement between a
and b.

1University hospital in Brno
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Figure 6.10: Stability of latent class model (LCM) for normal, suspicious, and pathological evaluation. Legend:
lcak and lca9 is latent class analysis of k and 9 clinicians, respectively; pa(a,b) is proportion of agreement
between a and b.

6.6.3 Latent class analysis

Different number of classes We analysed the clinical evaluation using the latent class model for
different number of classes, thus creating 7 models: Mr2,Mr3,Mr4,Mr5,Mr6,Mr7,Mr8. The model
fit statistics are show in Table 6.3. The progression of AIC and BIC for increasing number of r is shown
in Figure 6.11. Clinicians should evaluate the CTG using three FIGO classes (normal, suspicious, and
pathological) but from Figure 6.11 we can conclude that the best fit is for model Mr4. From the model
Mr3 to Mr4 the both measures AIC and BIC climb down. The BIC starts rising from Mr4 to Mr5

while the AIC only slightly decreases, hence the best fitted model is Mr4.

Table 6.3: Fit statistics for different number of classes (df – degrees of freedom, AIC – Akaike information
criterion, BIC – Bayes information criterion).

model df AIC BIC

Mr2 515 7316 7476
Mr3 496 6842 7083
Mr4 477 6677 7000
Mr5 458 6656 7062
Mr6 439 6666 7154
Mr7 420 6669 7239
Mr8 401 6688 7340

●

●

● ● ● ● ●

6800

7000

7200

7400

2 3 4 5 6 7 8
number of classes

cr
ite

rio
n 

va
lu

e

measure

● AIC

BIC

Figure 6.11: Progression of AIC and BIC for different number of classes (r = {2,3 . . . ,8}).

In order to have better insight into models Mr3 and Mr4. We evaluated conditional clinicians
response probability with respect to latent class (outcome). Model Mr3 is presented in Figure 6.12
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and Mr4 in Figure 6.13. The clinicians are marked with numbers (1,2, . . . ,9) and their responses are
separated with respect to estimated latent class.
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Figure 6.12: Conditional clinicians response probability with respect to latent class (outcome). Model Mr3.
Estimated latent classes were as follows: normal, suspicious, and pathological (shown in grey headings). Class
population shares: P (normal) = 0.30, P (suspicious) = 0.45, P (pathological) = 0.25.
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Figure 6.13: Conditional clinicians response probability with respect to latent class (outcome). Model Mr4.
Estimated latent classes were named as follows: normal, normal/suspicious, suspicious/pathological, and
pathological (shown in grey headings). Class population shares: P (normal) = 0.25, P (normal/suspicious) =
0.38, P (suspicious/pathological) = 0.29, P (pathological) = 0.08.

For the Mr3 the latent class can be separated into normal, suspicious, and pathological based on the
majority of clinician’s evaluation. For the Mr4 the situation is more complicated. The assignment of
classes is rather intuitive and could be determined with help of knowing proportions of classes shown in
Figure 6.3. For the first class, that we ex-post assigned as normal, we can see that majority of clinicians
evaluation was normal. For the second class, ex-post assigned to normal/suspicious we can observe
discrepancy in clinical evaluation, prevalent normal evaluation (clinicians 1,6,7), prevalent suspicious
(clinicians 2, 4, 5, 8, 9), and prevalent pathological (clinician 3). Keeping in mind proportions of
evaluation, Figure 6.3, we know that clinician 6 mostly evaluated CTG as normal, while clinicians
3 mostly evaluated CTG as pathological. In this case we can neglect them for decision on class
assignment and use other clinicians. Hence we assigned it as normal/suspicious. Again, we would
like to note that the assignment of final class is based on the intuition rather than rigours classification.
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Comparing models Mr3 and Mr4 we can conclude that pathological class for Mr4 is better separated
for Mr4 that it is for Mr3. When we further increased r, model Mr5, the pathological class remained
almost identical, however the classes normal – suspicious were slightly better separated (figure not
shown). Nevertheless, the separation comes at a expense of estimating more model parameters and
hence increasing BIC.

Rank of clinicians The rank of individual clinicians contributing to the latent class estimate was
determined using Sacc score. These scores are presented in Table 6.4 and the progression of the score
during the iterations of the EM algorithm is presented in Figure 6.14.

Table 6.4: Score of individual clinicians for model Mr3.

clinician Sacc rank

1 0.182 7
2 0.184 6
3 0.008 8
4 0.456 1
5 0.396 2
6 −0.045 9
7 0.198 4
8 0.195 5
9 0.274 3
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Figure 6.14: Scoring of individual clinicians with increasing number of iterations for model Mr3. Clinicians
are represented by numbers.

From the point of view of latent class model, there are two distinct clinicians 4 and 5. Then follow
clinician 9 and further group of clinicians 1, 2, 7, and 8 with similar scores. From Figure 6.14 we can
see that after the 10th iteration the scores of clinicians remained more or less stable. We note here that
the score do not correlate with the clinicians’ experience nor it correlates with the work place. Using
the score Ssp different results were obtained (table and figure not shown), however, as we pointed out
above, this score has lower discriminability than the Sacc score.

6.6.4 Sensitivity and specificity of clinical evaluation

We evaluated the sensitivity and specificity with respect to different aggregation of clinical evaluation:
i) majority voting (MV) and ii) latent class model (LCM) of clinical evaluation. We present only
figures regarding the MV with respect to pH value, the other results are presented in tables. In order to
compute sensitivity and specificity we have to shrink the three class evaluation into two class. When a
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clinician assess a CTG recording as pathological he/she thinks that there is a serious problem with
the fetus. On the other hand, when a clinician assess it as suspicious it is likely more of a hunch and
there might be something wrong but it is most likely not that serious. We decided to compute the
sensitivity and specificity as pathological evaluation vs (normal + suspicious evaluation) even though
the assignment of suspicious to normal is not entirely correct.

Distribution of pH values regarding to majority voting of the clinical evaluation (Step 2) is shown
in Figure 6.15 and the distribution of pH with respect to labour evaluation (Step 4) in Figure 6.16. On
the both figures the pathological evaluations are scattered across the whole pH range. The interesting
records are those having low pH and normal evaluation and vice versa (e.g. in Step 2 there are normal
evaluations for pH 6.98 and 7.00 ). In accordance to Table 6.2 it could be seen that for Step 4 there is
larger proportion of normal evaluation than suspicious from Step 4.
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Figure 6.15: Majority voting vs. umbilical artery pH (Step 2).
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Figure 6.16: Majority voting vs. umbilical artery pH (Step 4).

Table 6.5 presents evaluation obtained from hospital records (262 CTGs) regarding to pH, base
excess (BE), base deficit (BDecf), and Apgar score at 5 minutes. For all markers the sensitivity is
lower than specificity. The best sensitivity and specificity was achieved for BDecf ≥ 12.

The results of sensitivity and specificity of different markers with respect to majority voting for
Step 2 and Step 4 are presented in Table 6.6. These results are inferior to the results obtained from
the clinical evaluation from hospital records (Table 6.5). However, the hospital records represent only
subset of recordings that were not selected randomly. Very similar results were obtained when we
recomputed sensitivity and specificity for the same subset of records (table not shown). Based on the
comparison, the selected hospital evaluation are not representative, hence not used further.

In Table 6.7 we present result of latent class model (LCM), Mr3, of clinical evaluation of Step 2
and Step 4. In comparison to majority voting the LCM has better sensitivity but at a price of lower
specificity. We note that the LCM model is preferred since the majority voting is less stable as was
shown above.
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Table 6.5: Sensitivity (SE), specificity (SP), and precision (PR) of clinical evaluation obtained from hospital
records (eval. hosp. recs.). Timing of evaluation corresponds to Step 2. Results are presented as pathological vs.
(suspicious + normal).

objective SE (95% CI) SP (95% CI) PR (95% CI)

eval.
hosp.
recs.

pH ≤ 7.05 41 (35–47) 94 (91–97) 32 (26–38)
pH ≤ 7.10 42 (36–48) 95 (92–98) 45 (39–51)
BE ≤ -12 44 (38–50) 94 (91–97) 32 (26–38)
BDecf ≥ 12 60 (54–66) 94 (91–97) 27 (22–32)
Apgar < 7 0 (0– 0) 91 (88–94) 0 (0– 0)

Table 6.6: Sensitivity (SE), specificity (SP), and precision (PR) of majority voting of clinical evaluation for
Step 2 and 4. Results for 533 records because for nine records the majority vote was uninterpretable. Results
presented as pathological evaluation vs. (suspicious + normal).

objective SE (95% CI) SP (95% CI) PR (95% CI)

Step 2

pH ≤ 7.05 27 (23–31) 89 (86–92) 18 (15–21)
pH ≤ 7.10 26 (22–30) 90 (87–93) 24 (20–28)
BE ≤ -12 34 (30–38) 89 (86–92) 17 (14–20)
BDecf ≥ 12 39 (35–43) 89 (86–92) 11 (8–14)
Apgar < 7 11 (8–14) 88 (85–91) 3 (2– 4)

Step 4

pH ≤ 7.05 25 (21–29) 95 (93–97) 30 (26–34)
pH ≤ 7.10 19 (16–22) 95 (93–97) 33 (29–37)
BE ≤ -12 23 (19–27) 95 (93–97) 21 (18–24)
BDecf ≥ 12 24 (20–28) 94 (92–96) 12 (9–15)
Apgar < 7 21 (18–24) 94 (92–96) 12 (9–15)

Table 6.7: Sensitivity (SE), specificity (SP), and precision (PR) of latent class model, Mr3, of clinical evaluation
for Step 2 and 4. Results for 552 records are presented as pathological evaluation vs. (suspicious + normal).

objective SE (95% CI) SP (95% CI) PR (95% CI)

Step 2

pH ≤ 7.05 50 (46–54) 78 (75–81) 16 (13–19)
pH ≤ 7.10 43 (39–47) 78 (75–81) 19 (16–22)
BE ≤ -12 56 (52–60) 77 (73–81) 13 (10–16)
BDecf ≥ 12 67 (63–71) 77 (73–81) 9 (7–11)
Apgar < 7 26 (22–30) 75 (71–79) 4 (2– 6)

Step 4

pH ≤ 7.05 39 (35–43) 93 (91–95) 31 (27–35)
pH ≤ 7.10 31 (27–35) 93 (91–95) 35 (31–39)
BE ≤ -12 38 (34–42) 92 (90–94) 22 (19–25)
BDecf ≥ 12 33 (29–37) 91 (89–93) 11 (8–14)
Apgar < 7 21 (18–24) 91 (89–93) 7 (5– 9)

In Table 6.8 we present results of sensitivity and specificity for the latent class model Mr4 for
pathological evaluation, see the conditional probability response probability in Figure 6.13. For the
pathological class all clinicians more or less agree on the evaluation. However this agreement is not
highlighted in better sensitivity and specificity for biochemical markers and Apgar score.

Progression of sensitivity and specificity with respect to pH and BDecf

In Figures 6.17 and 6.18 we present sensitivity and specificity with varying pH and BDecf levels.
The results are shown only for MV (similar progression obtained using LCM). The sensitivity and
specificity were computed for each step of pH and BDecf, starting from pH = 6.95 (BDecf = 0) up to
pH = 7.35 (BDecf = 20) with pH step of 0.025 (BDecf = 1). In Figure 6.17 we can see that specificity



74 Chapter 6. Analysis of clinical evaluation

Table 6.8: Sensitivity (SE), specificity (SP), and precision (PR) of latent class model, Mr4, of clinical evaluation
for Step 2. Results are presented as pathological evaluation vs. (suspicious + normal).

objective SE (95% CI) SP (95% CI) PR (95% CI)

Step 2

pH ≤ 7.05 23 (19–27) 93 (91–95) 21 (18–24)
pH ≤ 7.10 23 (19–27) 93 (91–95) 30 (26–34)
BE ≤ -12 28 (24–32) 93 (91–95) 19 (16–22)
BDecf ≥ 12 28 (24–32) 92 (90–94) 11 (8–14)
Apgar < 7 11 (8–14) 92 (90–94) 4 (2– 6)

remains almost constant for the whole range of pH. This almost constant specificity is because of large
proportion of normal and suspicious evaluation. The sensitivity is at maximum for pH = 7. From this
point it has started to decrease.
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Figure 6.17: Sensitivity (+) and specificity (x) with respect to different pH values. Evaluation of the Step 2.
Results presented as pathological vs (suspicious + normal). The proportions of the two classes are shown in the
bottom graph.

For the BDecf, see Figure 6.18, the behaviour of specificity is similar to the previous Figure 6.17.
The sensitivity is at maximum for BDecf = 13. The obtained maximum value more or less corresponds
to pH and BDecf cut-off points described in Section 2.3.2.
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Figure 6.18: Sensitivity (+) and specificity (x) with respect to different BDecf values. Evaluation of the Step 2.
Results presented as pathological vs (suspicious + normal). The proportions of the two classes are shown in the
bottom graph.

6.6.5 Statistical analysis – FHR features vs. clinical evaluation

We analysed the relationship of extracted features with respect to clinical evaluation. First we removed
inter-correlated features in the predefined groups: FIGO-based, HRV-based, and nonlinear. We
removed those features having correlationR > ∣0.9∣. Only one representative feature was kept from
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the correlated group. The normal distribution in each class (normal, suspicious, and pathological)
was tested using the Lilliefors test. Most of the features were found not normally distributed mainly
because of pathological class. Next, based on the results of Lilliefors test, we used either ANOVA
test or Kruskall-Wallis test. We performed tests for each clinicians and also for majority voting
and latent class model Mr3. In Figure 6.19 we present probability density for feature baselineMean
and evaluation from 4-th clinician. It could be seen that from normal to pathological evaluation the
baselineMean increases. Even though the probability density overlaps, the confidence intervals for
average values do not overlap (not show in the figure). Hence the null hypothesis was rejected for this
clinician.
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Figure 6.19: Probability density function of feature baselineMean for evaluation from clinician 4.

In Table 6.9 we present only those features for which the null hypothesis was rejected for at least
eight clinicians and for both MV and LCM.

Table 6.9: Significant features to clinical evaluation. Features organized by their origin: FIGO-based, HRV-
based and Nonlinear.

Feature set Significant features

FIGO-based baselineMean, number of decelerations, ∆total

HRV-based energy04_VLF, energy04_LF, LF/(MF + HF), LF/HF, LTI-HAA
Nonlinear ApEn(2,0.15), FD_BoxCountP1, FD_HiguchiDl, Poincaré_SD1, Poincaré_SD2

We would like to highlight here an important conclusion that the listing of significant features corre-
sponds to the (Chudáček et al., 2011, Table 2) where features were extracted on different database and
with different clinicians but one used for evaluation.

6.7 Discussion and conclusion

In this chapter we described and implemented a new methodology for annotation of CTG records. The
clinical annotations were obtained using developed CTGAnnotator software. We gathered clinical
evaluation from nine practising clinicians where each clinician evaluated 634 records (approximately
691 hours of CTG records). We provided a comprehensive analysis of clinical evaluation of CTG
using common statistical measures as well as using a novel approach of latent class analysis. In terms
of number of clinicians and number of evaluated records our study is the largest study that has been
performed providing broader insight into clinical evaluation and its variability.
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Proportion of agreement and inter/intra observer variability. We showed that there is large intra
and inter observer variability, which support the results of previous studies (Blackwell et al., 2011;
Vayssiere et al., 2009). Obstetricians using FIGO guidelines or its derivatives struggle with the
consistency of their assessment of CTG recordings. The low average intra-observer agreement of
71.5% was mainly because of agreement on pathological class (50%). For the normal class the
intra-observer agreement was 80.7%. The large inter-observer agreement is clearly apparent even
from the proportion of evaluation (normal, suspicious, and pathological) in Figure 6.3. The inter/intra
observer variability is large irrespective of clinicians experience or work place. The detailed view on
inter observer agreement offered inter-observer matrix in Figure 6.7, where two clinicians (3,8) are
distinct (defensive) in their decision for the CTG evaluation in Step 2 and three clinicians (3,5,8) are
distinct for the labour outcome evaluation in Step 4. The overall proportion of agreement (PA) was
48 % (95% CI: 47–50%). There are two contributing factors behind the low PA: i) two clinicians (3,8)
evaluated CTG distinctly and ii) the more clinicians asked for evaluation the more heterogeneous the
evaluation is expected. The PA with increasing number of clinicians decreased almost linearly as it
was shown in Figure 6.6. The direct comparison of inter/intra observer variability to the state of the
art publications is rather difficult. In other works the size of the population ranges from 3 (Devane
and Lalor, 2005) to 845 (Blix et al., 2003) with 30 to 50 recordings being the most common size
e.g. (Bernardes et al., 1997; Keith et al., 1995; Vayssiere et al., 2009). Regarding the number of
annotators, again, wide range and professional background of the experts can be found from 3 experts
of (Ojala et al., 2008), 28 midwives in (Devane and Lalor, 2005) to 116 ob/gyn residents in (Lidegaard
et al., 1992). Generally, the outcome of the studies is presented using the kappa coefficient, of which
the use is inappropriate since it can not be compared across different populations. Also the limited
space of journal articles does not allow authors to present a comprehensive set of figures offering a
clear and simple picture of observer agreement as was shown in this chapter.

Latent class analysis We described a novel approach for the FHR evaluation – the latent class
model (LCM). With the LCM model with varying number of classes we contributed to the controversy
how many classes should be used for CTG evaluation. We showed that the model has the best fit for
4-tier classification. The difference between 3 and 4 classes lied in better separation of pathological
records from the other ones. In other words, there is a clear pathological group for which there is
good agreement among clinicians; for the other classes the evaluation is more diverse and splitting
these classes to more and more finer classes did not contribute to better model fit and lower clinicians
variability.

For the latent class model we assessed the contribution of each clinicians using proposed scoring
function. For the Mr3 model the clinicians were ranked in the following order (score Sacc presented in
brackets): 4 (0.456), 5 (0.396), 9 (0.274), 7 (0.198), 8 (0.195), 2 (0.184), 1 (0.182), 3 (0.008), and 6
(-0.045).

Stability of majority voting We proved that even with a high number of clinicians the consensus
(simple majority voting) can not be reached. The unreached consensus is because of large inter/intra
observer variability. We employed a novel approach using the latent class model, which achieved better
consensus than the majority voting. A large improvement was obtained for the pathological evaluation.

Sensitivity and specificity of clinical evaluation The sensitivity (SE) of clinical evaluation to pH,
BE, BDecf, and Apgar score at 5 min. was low. In Figure 6.17 it was shown that the pathological
evaluation was scattered across the whole pH range. The highest SE for majority voting was achieved
for BDecf ≥ 12. The results were: SE: 39% (95% CI 35 – 43), specificity (SP): 89 (95% CI 86 –
92). The LCM model, Mr3 improved SE (67%, 95% CI 63 – 71) but at the price of lower SP (77%,
95% CI 73 – 81). The precision (PR) was slightly better for the majority voting than for LCM model.
In general the SE was higher for the Step 2 than for the labour outcome (Step 4) since at this step
clinicians rather tend to assign normal class. To the best of our knowledge there is no other work
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that presents results of SE and SP to clinical evaluation according to FIGO guidelines. Most of the
works evaluates only single patterns: baseline, accelerations, decelerations (Cahill et al., 2012; Donker
et al., 1993; Valensise et al., 1997). The different guidelines were compared in (Tommaso et al., 2013)
though they used a different pH threshold value (pH ≤ 7.15) and did not use FIGO guidelines. They
concluded that the best SE and SP were achieved for NIHCD guidelines, SE 67%, SP 92%, and Parer
& Ikeda system (Parer et al., 2009), SE 55% and SP 67%. The FIGO guidelines were compared only
using a computer system (Schiermeier et al., 2008b) with SE 85% and SP 22%. The results are in
contrast to ours, highlighting the fact that clinicians do not strictly follow the guidelines and rather use
their experience in evaluation.

Statistical analysis – FHR features vs. clinical evaluation We showed that clinical evaluation is
statistically significant to clinical features: baselineMean and number of decelerations. The statistical
significance was not proved for a number of acceleration and for all of the short term variability indices.
Intuitively, the short term variability could not be assessed visually; hence it is unlikely to be significant.
On the contrary, the quantity of significant non-linear features suggest that the "intuition" based part of
the decision process is rather large and there is a contributing factor of pattern-like memory acquired
during working experience. The important finding is the correspondence of statistically significant
features with our previous work (Chudáček et al., 2011) that used a different database and different
clinicians but one.





Chapter 7

Classification using the pH

This chapter follows the most used "traditional" approach of fetal heart rate classification where a pH
value is used to discriminate between normal and abnormal recordings. This approach has several
advantages and disadvantages. We discuss them in context and detail at the end of this chapter. Briefly
speaking, the "traditional" approach is simple and easy reproducible at the first glance. However,
in almost every work a different pH level is used and almost every research work is performed on
different, usually small (50-100 recordings), database. Another disadvantage of the "traditional" is
the relationship between CTG and pH, which is not fully understood and, finally, it is not natural that
there would be a simple separating point between the normal and abnormal (pathological) group. For
instance, when choosing pH threshold to be pH ≤ 7.10, the probability the two fetuses, one having
pH = 7.09, the other having pH = 7.11, belong to two different groups is small.

In general the main idea of this chapter is not novel many of the building blocks were used before.
We followed the traditional approach in order to gain an insight into the new experimental database
(CTU-UHB database) and provide results regarding the pH classification. Our study is the largest
study that presents results of sensitivity and specificity of FHR classification. This study also evaluates
behaviour of almost a complete set of features used for FHR analysis on the largest CTG database. The
results are evaluated in terms of ability to discriminate normal (pH > 7.10) and abnormal (pH ≤ 7.10)
fetuses. The level of pH threshold was thoroughly discussed in Section 2.3. The results are presented
in the context of the three published papers: first, analysis of features and their link to the degree of
hypoxia – estimated by pH value (Spilka et al., 2012, 2013b). second; investigation of useful features
suitable for mimicking obstetricians evaluation (Chudáček et al., 2011).

7.1 Correlation of features

The correlation of features could provide the first insight into a relationship between them. Even
though the correlation assess linear dependence it is useful method to discover redundancy in the
feature set. There are many ways to compute correlation coefficient each one suitable for different task.
We choose Pearson correlation coefficient for its general applicability. Let consider two features x1

and x2 with N examples written as x1(i) and x2(i) where i = 1,2, . . . ,N . The population correlation
coefficient is defined as

ρ =
cov(x1, x2)

√
var(x1)var(x2)

,

where cov stands for the covariance and var for the variance. The estimate of correlation coefficient is
given by

ρ̂ =
∑
N
i=1(x1(i) − x̄1)(x2(i) − x̄2)

√
(∑

N
i=1(x1(i) − x̄1)

2) (∑
N
i=1(x2(i) − x̄2)

2)

,
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where x̄1 and x̄2 are mean values of x1 and x2, respectively. The coefficient ranges from −1 to 1. For
coefficient values of [ − 1,0) the two variables have negative correlation and for values of (0,1] they
have positive correlation. When ρ̂ = 0 the x1 and x2 are uncorrelated. The two variables have the
so called complete positive correlation if ρ̂ = 1. The following hypothesis are used to test statistical
significance of correlation

H0 ∶ ρ̂(i) = 0, there is no correlation between the features.

H1 ∶ ρ̂(i) ≠ 0, there is a correlation between the features.

To perform t-test we compute t value as

t = ρ̂

√
N − 2

1 − ρ̂2
.

Then using t we find p-value for N − 2 degrees of freedom. The p-value is the smallest level of
significance that would lead to rejection of the null hypothesis H0 with the given data. We used the
significance level p = 0.01. Next, we created a correlation matrix that describes relationship of all
measured features by correlation coefficient. We also included the pH values and observed, which
features are best correlated to the pH.

7.2 Statistical analysis of features with respect to pH

We perform similar testing as in Chapter 6 (Section 6.5) though, here we use pH value instead of
clinical evaluation. The methodology of statistical testing is the same. All features were tested for
normal distribution with Lilliefors test. For the normally distributed features we used Analysis of
variance (ANOVA) and for not normally distributed we used non-parametric Kruskal-Wallis test. We
tested the null hypothesis that features comes from the same distribution against alternative hypothesis
that they do not. The null hypothesis was rejected when p < 0.01.

7.3 Feature selection

Feature selection (FS) reduces the input dimensionality, because in real world applications we tend
to extract more features than necessary in an effort to include all possible information. However,
sometimes some of the extracted features can be correlated, hence redundant information is likely to
be included or sometimes some features are irrelevant to the application at hand and may negatively
affect the performance of the classifier. The term performance refers to the discriminative capability of
a classifier.

Let N is number of examples and xi is a feature vector, xi ∈ Rd. In feature selection a search
problem of finding a subset of l features from a given set of d features, l < d has to be solved in
order to optimize a specific evaluation measure, i.e the performance of a classifier. There are number
of approaches that try to tackle this problem, which could roughly be divided into three categories:
filters, wrappers, and embedded methods (Guyon et al., 2006). The filter approach ranks features
based on a performance evaluation metric calculated directly from the data, the wrapper approach
employs a predictive model and uses its output to determine the quality of the selected features, and
the embedded approach integrates the selection of features in model building. In our work we used the
simplest filter approach since we did not want to be restricted to a particular classifier. We incorporated
several filter techniques and then used feature meta-selection. A feature was selected when a majority
of methods selected this feature. Note that because of filter approach we restricted each method to
select at most ten best features. We employed a simple measure to assess the performance of feature
selection methods. In each fold of cross-validation the individual methods created candidate sets of
selected features {Si}

E
i=1, whereE is a number of FS methods used. Then a meta-selection was applied
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to create the resulting set Sms. In order to assess the feature selection methods we evaluated the
intersection Sms⋂Si. The cardinality of intersection provides information how a particular method
was used in the feature selection.

We worked with features separated based on their "origin" into following groups: FIGO-based
(features based on FIGO-guidelines), HRV-based (features inspired by adult HRV analysis), Nonlinear,
and complete that contained all of the features. The details on the division can be found in Section 5.4.
The purpose of features division based on their "origin" was to prove that within each group there are
features with information value and, hence, their computations were performed correctly.

Below we present the five feature selection methods that were used for selecting the most appropri-
ate features.

Information gain

The information gain evaluates an attribute by measuring the amount of information gain with respect
to a class. The mutual information termed InfoGain, is computed using entropy H:

InfoGain(Class,Attribute) =H(Class) −H(Class∣Attribute)

Correlation based feature selection

Correlation based feature selection (CFS) uses a heuristic evaluation function to rank feature subsets.
This algorithm chooses features that are in strong relationship with a class while having low inter-
correlation (Hall, 1998). It is similar to already used correlation coefficient but with difference that
subsets of features are used.

Maximum relevance and minimum redundancy

The maximum relevance and minimum redundancy (mRMR) (Peng et al., 2005) algorithm finds a
feature set S with l features from the set of all features U , where S ⊆ U . It attempts to maximize
relevance (features’ dependence on target class) while minimizing redundancy (excluding features with
same information value). The relevance could be determined by correlation coefficient, as described
above, or using mutual information, also described above using entropy. The mutual information
between two features x1 and x2 is defined as

I(x1, x2) = ∑
x1

∑
x2

p(x1, x2) log
p(x1, x2)

p(x1)p(x2)
,

where p(x1, x2) is the joint probability distribution and p(x1) and p(x2) are the marginal probability
distribution functions. A maximally relevant feature xi has the largest mutual information with a class
c, I(xi, c). The global measure of relevance (dependence) D(S) with respect to c is defined as

D(S) =
1

∣S∣
∑
xi∈S

I(xi, c).

The global measure of features redundancy in S is defined by

R(S) =
1

∣S∣2
∑

xi,xj∈S
I(xi,xj).

The maximum relevance minimum redundancy algorithm combines D and R to optimize the both of
them simulatneously. To find a good subset of features a maximum is sought

S∗ = argmax
S⊆U

(D(S) −R(S)).
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Relief

Relief (RELevance In Estimating Features) (Kira and Rendell, 1992) is a popular feature selection
algorithm based on a weight vector over all features, which is updated according to the sample points
presented (the higher the weight the better the feature). The scoring function for binary class can be
expressed as

Rr(xi) =
1

2

N

∑
j=1

(xi(j) − nearmiss(xi))
2
− (xi(j) − nearhit(xi))

2) ,

where N is the number of examples and nearmiss(xi) and nearhit(xi) denote the nearest point to
xi(j) from xi that belongs to the other and the same class, respectively.

Fisher score

The Fisher score (Duda et al., 2000) is widely used feature selection technique. It is related to principal
component analysis (PCA), which will be described in detail in Chapter 8. The PCA finds projection
of d dimensional space into l dimensional by minimizing the quadratic mean square error. The Fisher
score selects features such that in the space spanned by l features, the distance between data points
from different classes is maximal while the distance from points within class is minimal. The PCA
uses a combination of features while the Fisher selects (ranks) features individually. The Fisher score
is computed as follows

F (xi) =
∑
C
c=1 nc(x̄i,c − x̄i)

2

∑
C
c=1 ncσ

2
i,c

where nc is number of examples for class c, x̄i is the mean of feature xi, x̄i,c and σi,c are the mean
and variance of feature xi for class c, respectively.

Implementation The Information gain, Correlation based feature selection, and Relief were imple-
mented in WEKA (Witten and Frank, 2005) and wrapped in Matlab code (Zhao et al., 2010). The
Fisher score was implemented in (Zhao et al., 2010) and the Maximum relevance minimum redundancy
in (Peng et al., 2005) and used from (Zhao et al., 2010).

7.4 Classification

Recall that by a classification we consider a classical learning task of finding a function that maps
feature space X to class labels Y as follows f ∶ X → Y . The f should generalize well on unseen data.
Below we a present technique for balancing the dataset and description of three classifiers: Naive
Bayes, Support Vector Machine, and C4.5.

7.4.1 Imbalanced data

The data we are using are strongly imbalanced. The abnormal (pathological) class is heavily under-
sampled in comparison to the normal one. This creates an extra challenge to the already difficult task
of fetus well-being diagnosis. The class imbalance is a fundamental problem arising when pattern
recognition methods are dealing with real life problems and many approaches have been proposed
to overcome this situation (Chawla et al., 2004; He and Garcia, 2009). There are two dominating
approaches for handling the class imbalance: i) sampling methods that under-sample the majority
class or oversample the minority class, ii) cost sensitive learning when a penalty of misclassification
of minority class is higher than misclassification of majority class. We used the sampling method
Synthetic Minority Oversampling Technique (SMOTE) (Chawla et al., 2002) because of its general
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applicability and based on our previous experience (Spilka et al., 2010, 2013b). For other methods
refer to (He and Garcia, 2009) and references therein.

Synthetic Minority Oversampling Technique (SMOTE) is popular technique to compensate for
imbalance in data. It operates on the minority class creating artificial data. SMOTE is based on
real data belonging to the minority class and it operates in the feature space rather than the data
space (Chawla et al., 2002). The algorithm for each instance (in feature space) of the minority class
introduces a synthetic example along any/all of the lines joining that particular instance with its k
nearest neighbours that belong to the minority class. Usually after the SMOTE the training set has
approximately equal numbers of examples in each class.

7.4.2 Classifiers

The features sets were used to train the following classifiers: Naive Bayes, Support Vector Machine
(SVM), and C4.5 decision tree. For more information about classifiers, see e.g. (Duda et al., 2000).
The Naive Bayes and SVM were implemented in Pattern Recognition Toolbox (PRTools)1, version
4.1.10 and C4.5 (J48) was implemented in WEKA (Witten and Frank, 2005) and used from (Zhao
et al., 2010).

Naive Bayes

Naive Bayes classifier is based on the Bayes theorem where posterior probability is computed as

p(Y ∣X1, . . . ,Xd) =
p(Y )p(X1, . . . ,Xd∣Y )

p(X1, . . . ,Xd)
,

where Y is the class variable and X1, . . . ,Xd are features. The Naive Bayes uses this theorem but with
strong (naive) assumption that features are conditionally independent given the class. Therefore, we
can estimate posterior probability as

p(Y ∣X1, . . . ,Xd) =
p(Y )

p(X1, . . . ,Xd)

d

∏
i=1

p(Xi∣Y ).

Then, to minimize error classification, we chose the decision rule with maximum a posterior probability
referred as MAP

YMAP = argmax
y

p(Y = y)
d

∏
i=1

p(Xi = x∣Y = y).

Decision tree – C4.5

The C4.5 algorithm was proposed by (Quinlan, 1992) and is used to generate a decision tree. Generally,
decision tree divides data into subgroups where it is desired that one class prevails in each subgroup.
The C4.5 employs the concept of information entropy for choosing an attribute. First, we create root of
tree using the attribute with highest information gain (difference in entropy). Then we make decision
and move to the sub-lists of the tree until every example is covered. The decision tree is prone to
over-fitting, hence it has to be pruned in order to ensure the generalization capabilities. The C4.5
utilises error based pruning. The algorithm goes backwards and removes branches that do not help
towards the goal by replacing them with leaf nodes.

1http://www.prtools.org/

http://www.prtools.org/
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Support Vector Machine

The main purpose of Support Vector Machine (SVM) is to minimize the structural risk, i.e. the risk
of error prediction on unseen data. Given N observations and input set, D = {xi, yi=1}

N , where xi
are features and yi = {−1,1} the resulting class. The SVM algorithm searches a hyperplane w, which
maximize the distance (margin) between the hyperplane and instances closest to it (Vapnik, 1995).
These instances are called support vectors. The goal is to find a vector w and a constant b such that
they satisfy the constraints

wTxi + b ≥ +1, yi = 1, (7.1)

wTxi + b ≤ −1, yi = −1, (7.2)

and the vector has the smallest norm, i.e. solution minimize ∣∣w∣∣2. The problem can be solved either
in primal space (space of parameters w and b) or in dual space (space of Lagrange multipliers). The
purpose is to find αi that are solution of dual optimization task

αi = argmax
αi

N

∑
i=1

αi −
1

2

N

∑
i,j=1

αiαjyiyjx
T
i xj ,

under the constraints ∑Ni=1 αiyi = 0 and αi ≥ 0. Points that satisfy condition αi > 0 are called support
vectors and determine the hyperplane. Classification of an instance x is then obtained as the sign of
following function

f(x) = sign(
N

∑
i=1

αiyix
T
i x + b) .

The features can be mapped into another space using a kernel function ϕ(). For nonseparble case
the so called slack variables ξi can be introduced that allow the margin constraints to be violated,
for details on different choice of kernel functions and slack variables, cf. (Vapnik, 1995). In our
experiments we used the radial basis function kernel γ = 1/2σ2.

7.4.3 Performance evaluation

The classification task is to generalize well on unseen/independent data. A classifier is learned on
training/learning data and then tested on data that has not been used for learning (unseen test data).
There exist many measures to assess performance of a classifier and a lot of techniques to create
training and test data in order to estimate generalization ability of a classifier on test (unseen) data. For
overview of measures suitable for imbalanced data refer to (He and Garcia, 2009) and for overview
on error estimation techniques refer to (Dougherty et al., 2010). In this section we briefly introduce
the most common measures (sensitivity, specificity, precision, and F-measure) and the most common
methods for error estimation (hold-out sample, cross-validation, and leave one out cross validation).

Statistical measures

The most common form to represent performance is by a confusion matrix shown in Table 7.1. In the
confusion matrix, TN (true negative) expresses number of correctly classified negative examples, TP
(true positive) is number of correctly classified positive examples, FN (false negative) is number of
incorrectly classified negative examples, and FP (false positive) is the number of incorrectly classified
positive examples.

The overall classification accuracy can be computed as a = (TP + TN)/TP + FP + TN + FP .
This could be further divided into accuracy observed separately on positive examples (sensitivity) SE =
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Table 7.1: Confusion matrix. p/n – actual positive/negative, p′/n′ – predicted positive/negative.

p′ n′

p TP FP
n FN TN

TP /(TP + FN) and accuracy observed only on negative examples (specificity) SP = TN/(FP +

TN). When dealing with imbalanced dataset, the negative class has usually larger proportion than
the positive class and the sensitivity is not good measure to assess the performance on the negative
class. The number of TN is usually high thus masking the number of FP . For example when negative
class amounts for 95 examples and positive class for 5 examples. The results of classification in a
form of confusion matrix can be: TP = 5, TN = 90, FN = 0, FP = 5. Then the sensitivity and
specificity would be 100% and 95%, respectively. Nevertheless, the positive classification has only
50% accuracy. To better assess the FP a precision (positive predictive value) could be used, where
PR = TP /(TP + FP ).

In order to combine sensitivity (also referred as recall (RE)) and precision to one number a
harmonic mean can be used. The harmonic mean is referred to as F-measure

Fβ =
(1 + β2)(PR ⋅RE)

β2 ⋅ PR +RE
,

where the parameter β is usually set to one. The F-measure penalizes the low numbers of PR or RE
and, therefore, better assess the performance on positive and negative class.

Other approach for classifiers comparison is to use receiver operation characteristic (ROC) or
simply ROC curve. The ROC curve is shown in Figure 7.1. In this graphical plot the sensitivity is
plotted as a function of (1 - specificity).

Figure 7.1: The receiver operation characteristic. Sensitivity is plotted as function of (1 - specificity). Ideal
classifier is marked in the upper left corner with coordinates (0,1)

The line of random classification (random guess) is a straight line at a 45○ diagonal. Successful
classifier is placed above this line and tends to upper left corner with coordinates (0,1) That is, all
positive examples are classified correctly and no negative example is misclassified. Another useful
value for comparison is area under the ROC curve (AUC). The AUC expresses probability that classifier
rank randomly chosen positive instance higher than randomly chosen negative instance.

The similar plot offers the so called PR curves where recall (sensitivity) is plot as a function of
precision (positive predictive value) (Davis and Goadrich, 2006).
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Error estimation

A classifier should be general enough to perform well on unseen data. e.g. when a classifier is
implemented in real application and is used to classify a new data. The generalization ability of a
classifier could be estimated using various techniques (Dougherty et al., 2010) where the test ("unseen")
data are used to estimate classification performance (error).

The computed classification error is an estimate of the true (generally unknown) error. There are
two related properties of the estimated error: bias and variance. The bias is a difference between
estimated value and true (unknown) error value. The low bias means that we accurately estimate
the true error. The variance express how the estimated error changes under different training sets.
Intuitively bias and variance are tight together and we are seeking a technique, which estimates the
error on unseen data with low bias and low variance.

The largest bias and lowest variance provides the hold-out sample method where data set is split
into training and test set. This method has a disadvantage that a portion of data is not used for learning.
The cross-validation (CV) method overcomes this problem. The CV has determined number of folds,
e.g 10-fold CV. In each step, the data set is divided into training and test data. Then a classifier is
learned on training set and performance evaluated on test data. This procedure is repeated in each
fold of CV with differently divided data sets. The CV is commonly used and recommended technique
to estimate classification performance (Kohavi, 1995). The bias and variance for CV is different for
different number of folds. Kohavi (1995) recommended to use 10-fold CV for its general applicability.
When number of folds is equal number of examples the CV is called leave-one-out CV where in each
fold on example is left as test set and the rest is used for learning. The leave-one-out CV is unbiased
but can have high variance since the training data are very similar to each other.

Statistical testing

The difference between individual classifiers trained using different feature sets should be statis-
tically confirmed. Although there is no unified framework the use of McNemar’s test is recom-
mended (Salzberg, 1997). However, when dealing with a relatively small dataset there is not enough
data to acceptably minimize both errors: (i) when estimating classification performance, (ii) in statis-
tical testing. Apparently, the better way is to minimize the former error and refrain from statistical
testing. In addition, a statistical comparison is usually needed when introducing a new classifier where
the new classifier is compared against other classifiers on various datasets – a scenario not pursued in
this work.

7.5 Proposed experimental methodology

We worked with the CTU-UHB database described in Chapter 4. Based on the literature review we
considered recordings as abnormal when pH ≤ 7.10 (61 records), and normal when pH > 7.10 (491
records), for more details on chosen pH threshold refer to Section 2.3.2.

The features described in Chapter 5 were extracted on the last 60 minutes of the first stage of
labour. The extracted features were represented by feature set and served as an input to the procedure
depicted in Figure 7.2. The procedure consists of 50×q-fold cross validation (CV) where data were
50 times randomly split for q-fold CV and results for each run were aggregated. Since the SMOTE
technique involves random sampling we executed the training branch (SMOTE→ feature selection →
classifier learning) 5 times. For the sake of simplicity this inner loop is not shown in the procedure in
Figure 7.2. The prediction of a classifier, in the inner loop, were grouped using majority voting.

In our experiments we first sought for such q when bias and variance were minimal. We found the
best number of folds to be q = 4 and used it for all experiments. Note that in this initial experiment we
did not use the SMOTE for balancing the training data and also used only the Naive Bayes classifier.
The 50×4-fold CV was used for all feature groups (FIGO-based, HRV-based, nonlinear, complete set).
The feature set was 50 times split for 4-fold CV. For the training set and the SMOTE was applied in
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order to approximately balance the number of normal and abnormal examples (9 nearest neighbours
were used to create new samples along 6 randomly chosen lines). Then the features were selected
using five different methods. The feature meta-selection consisted of choosing those features that were
selected by a three methods, at least. The selected features were used to train Naive Bayes, SVM, and
C4.5 classifiers. Then, performance of classification was estimated on the test set.

50 times
randomly
divide for
q-fold CV

q-training/
test sets

training set

test set

SMOTE

feature
selection

classifier
learning

performance
evaluation

performance
of 1 x q-fold CV

fold cross validation

fold cross validation50 x q

q

data
(feature set,
class labels)

aggregated
performance

of 50 x q fold CV

Figure 7.2: Experimental methodology for classification, where q is the number of cross-validation folds.

7.6 Results

7.6.1 Feature correlation

First, we examined inter-correlation between features and with features and pH values. The results
form the correlation matrix where rows and columns are equal to number of selected features plus pH.
To be able to better distinguish data we picture the correlation matrix as an image where colour scales
and shape of ellipses are used to symbolize the values of correlation coefficient ρ̂. In Figure 7.3 we
present correlation matrix for representative features and pH.

The features originating from different domains: (morphological, time, frequency, and nonlinear)
were presented in Chapter 5. In general, we can conclude that features are more or less correlated in
the domain they operate. There is interesting correlation between Sonicaid and LTI-HAA, the former
represents short term variability while the later long term irregularity. Also these features have good
correlation to energy in spectral bands. The ApEn(2,0.2) and ApEn(2,0.15) are in strong correlation,
as expected. They also correlate with SampEn(2,0.2) and SampEn(2,0.15), not show in the figure.
The interesting features are baselineMean and LZC. They have strong inter-correlation but with other
features the correlation (except the correlation of LZC and STV-HAA) is much lower.

In general the correlation of features and pH was low. The highest positive correlation ρ̂ = 0.18 was
found for ApEn(2,0.15) and lowest negative correlation ρ̂ = −0.29 for energy03_LF. These correlations
were statistically significant p < 0.01.
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Figure 7.3: Correlation matrix (map) of representative features. The blue colour marks positive correlation
while the red colour marks negative correlation. The scale of colour and shape of ellipses represent the value of
correlation. The darker the colour and thinner the ellipse the more correlated features.

7.6.2 Statistical analysis of features

In Table 7.2 we present only those features for which the null hypothesis was rejected on significance
level p < 0.01. To keep the table brief we removed those features that had inter-correlation ρ̂ > ∣0.9∣
and kept only one representative from such correlated group of features. For example ApEn(m,r) and
SampEn(m,r) were highly correlated, therefore we included only ApEn(2,0.15) in the table.

Table 7.2: Significant features to pH ≤ 7.10. Features organized by their origin: FIGO-based, HRV-based, and
Nonlinear

Feature set Significant features

FIGO-based ∆total

HRV-based STV-HAA, Sonicaid, energy04_VLF, energy04_LF, energy04_MF, energy04_HF,
energy03_LF/HF

Nonlinear ApEn(2,0.15), Poincaré_SD1, Poincaré_SD2

The number of significant features was high (in total 18 but only 11 representative features are
presented in Table 7.2). It is interesting that, from FIGO-based features, only long term variability,
∆total. was significant to the pH. The highest number of significant features was from frequency
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domain. Even-though the frequency features are correlated the correlation did not reach the ρ̂ > ∣0.9∣
threshold. In Figure 7.4 we provide density of energy03_LF regarding to pH. Because of lower
proportion of abnormal cases with pH ≤ 7.10 the density is smaller. In Figure 7.5 we sub-sampled
the normal class to have equal proportion as abnormal class. The confidence intervals for the normal
class were estimated using bias-corrected and accelerated bootstrap method (Efron, 1994, 2003). The
normal and abnormal class is "separated" but the true normal class density, Figure 7.4, have to be
considered.
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Figure 7.4: Density function of energy03_LF and pH.
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Figure 7.5: Density function normal class (pH > 7.10) and abnormal class (pH ≤ 7.10) with equal proportions
for feature energy03_LF and pH.

7.6.3 Feature selection/classification

The complete feature set was used to determine the bias and variance of classification performance
(sensitivity, specificity, and F-measure) for different number of folds of cross validation (CV), (q ∈
{2, . . . ,20}). In this experiment the normal and abnormal class in training set were not balanced using
SMOTE (in order not to be dependent on the SMOTE) and only Naive Bayes classifier was used for
learning. The results for sensitivity and specificity are present in Figure 7.6. The variance of estimated
error increased with increasing q since very few examples remained in the test set. For example, when
q = 20, the test set consist only of 57 or 58 examples. Therefore the variance, especially on abnormal
class, is very large.

Figure 7.7 provides good example of bias and variance of the estimated F-measure. When q = 2
and q = 3 there is a bias in the estimated error. From the 4-fold CV to 10-fold the median of F-measure
remains almost the same while variance increases. Therefore, for further experiments, we choose the
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Figure 7.6: Progression of sensitivity and specificity for q-fold cross validation (q ∈ {2, . . . ,20}). Naive Bayes
learner with original dataset.

4-fold CV since it provides the lowest bias and variance, c.f. Figure 7.6. Note that the chosen number
of folds (q = 4) is, again, only an estimate of the best number of folds since the true error is unknown.
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Figure 7.7: Progression of F-measure for q-fold cross validation (q ∈ {2, . . . ,20}). Naive Bayes learner with
original dataset.

The features were divided into four groups based on their origin. For each group we performed
the 50×4-fold cross validation using procedure depicted in Figure 7.2. The same procedure was done
using the whole feature set (termed Complete set hereinafter). In order to evaluate the feature selection
methods, we assessed them in each fold of cross-validation. On average the CFS method selected 6
features that were further used for the classifiers learning. Other methods: mRMR, Fisher score, Relief,
and InfoGain selected 4,5,6,7 features, respectively. The numbers of selected features are presented for
the Complete set only since, for the other groups, the results were similar. In Table 7.3 we present
features selected; only those features selected more than 50% of times are included. In the individual
groups the features are order based on the number of times they were selected except for FIGO-based
group. In this group there is only five features and all were selected in each fold of CV. The feature
selection from all available features showed dominance of frequency features, from which very low
frequency (VLF) and low frequency (LF) were used in almost every fold of cross-validation.

The distributions of selected features from the Complete set are present in Figure 7.8. The
discrimination between normal and abnormal examples is most apparent for the following features:
energy04_VLF, energy03_LF, and Poincaré_SD2. The distribution of energy03_LF was already shown
in Figure 7.5, here we use another representation using boxplot.

Each feature set was used to train Naive Bayes, SVM, and C4.5 classifiers. The results, shown in
Table 7.4, were aggregated from each fold of 50×4 fold CV and median, 25th, and 75th percentiles
were estimated. The best results were achieved using the SVM and Naive Bayes with features selected
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Table 7.3: Selected features organized by their origin: FIGO-based, HRV-based, Nonlinear, and Complete set.

Feature set Selected features
FIGO-based baselineMean, baselineSD, accNumber, decNumber, ∆total

HRV-based energy04_VLF, energy04_LF, energy03_LF, STV-HAA, energy03_MF,
energy04_MF, SDNN

Nonlinear Poincaré_SD2, SampEn(2,0.15), ApEn(2,0.15), Poincaré_SD1,
FD_Sevcik

Complete set
(all features)

energy04_VLF, energy03_LF, accNumber, Poincaré_SD2, decNumber,
energy04_LF, STV-HAA

●
●

●

●

●

●●
●

●

●

●●

●●

●

●
●

●
●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

0

200

400

600

800

0 1

en
er

gy
04

_V
LF

 [m
s2 ]

●

●

●
●
●

●
●
●

●

●

●

●

●

●

●
●

●
●

●
●
●

●

●

●

●

●●
●

0

300

600

900

1200

0 1

en
er

gy
03

_L
F

 [m
s2 ]

●

●

●

●

●

●●●

●

●●

●

●

●

●

●●

●

●

●

●

0

5

10

15

0 1

ac
cN

um
be

r 
[−

] ●

●

●●●

10

20

30

40

0 1

P
oi

nc
ar

é_
S

D
2 

[bp
m

2 ]
● ●

●●●

0

5

10

15

20

25

0 1

de
cN

um
be

r 
[−

] ●

●
●

●●●
●●●●
●

●

●

●
●
●

●

●

●

●
●

0

200

400

600

800

0 1

en
er

gy
04

_L
F

 [m
s2 ]

●

●

●●

●

●

0.00

0.05

0.10

0.15

0 1

S
T

V
−

H
A

A
 [a

.u
.]

Figure 7.8: Distributions of selected features; 0 – normal class, 1 – abnormal class.

from all available features (Complete set).

7.7 Discussion and conclusion

In this chapter we analysed an almost complete set of features used for FHR analysis. The features
originated from different domains (in total 49 more or less distinct features). In contrast to previous
works we evaluated the behaviour of features on a reasonably large database. In general, the analysis,
feature selection, and classification performed in this chapter are not novel. Many of the buildings
blocks were used before though employed on ad-hoc created and small databases. Therefore we
followed the classical approach in order to gain an insight into the new experimental database (CTU-
UHB database) and provide results regarding the pH classification.

Correlation of features Intuitively, the features were correlated in the domain in which they operate.
The only exceptions are LZC and baselineMean, they are strongly correlated but with other features they
are not correlated (with the exception of correlation of LZC and STV-HAA ). The correlation between
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Table 7.4: Classification results for selected features from different groups: FIGO-based, HRV-based; Nonlinear,
and Complete set. The results are averaged across all folds of CV (50×4 folds CV) and presented using median
(25th – 75th) percentiles. (SE – sensitivity, SP – specificity, PR – precision, F – F-measure).

Feature set [%] Naive Bayes SVM C4.5 Tree

FIGO-based

SE 38 (31–44) 53 (47–60) 20 (13–27)
SP 77 (74–80) 68 (66–72) 90 (86–94)
PR 17 (14–20) 17 (15–20) 19 (13–27)

F 23 (19–27) 26 (23–29) 19 (13–26)

HRV-
based

SE 53 (47–63) 53 (44–60) 50 (40–60)
SP 74 (71–77) 76 (72–79) 78 (73–82)
PR 21 (18–24) 21 (18–24) 22 (19–25)

F 30 (27–34) 29 (25–34) 31 (26–35)

Nonlinear

SE 53 (47–63) 53 (47–63) 31 (20–40)
SP 67 (63–72) 76 (74–80) 83 (79–85)
PR 17 (15–20) 22 (19–26) 18 (14–22)

F 26 (23–29) 32 (27–36) 23 (16–28)

Complete
set

SE 60 (53–67) 53 (47–60) 33 (27–47)
SP 75 (72–77) 78 (75–80) 84 (80–87)
PR 23 (20–25) 23 (20–26) 21 (17–26)

F 33 (29–36) 33 (28–37) 26 (21–32)

the features and biochemical marker (pH) was low. The highest positive correlation of ρ̂ = 0.18 had
ApEn(2,0.15) and the lowest negative correlation had energy03_LF, ρ̂ = −0.29. These correlations were
significantly different from zero. Even though the correlation is small, similar results were reported
in (Fulcher et al., 2012). They found the correlation coefficient of ρ̂ = −0.28 for second order coefficient
of variation (σ/µ)2 and ρ̂ = −0.28 for median absolute deviation, median(∣x −median(x)∣).

Statistical evaluation of features We analysed which features are statistically significant to the
normal and abnormal recordings determined by pH value. From the FIGO-based features, only long
term variability ∆total was significant. The frequency features were the most prevalent type of features
significant to pH. About half of the significant features corresponded to the analysis presented in the
previous Chapter 6 where we examined features significance with respect to clinical evaluation, c.f.
Table 6.9.

Results of classification Our study is the largest study, which shows the results of sensitivity and
specificity with respect to pH. We compared a full spectrum of features for fetal heart rate analysis.
Three different classifiers were used to discriminate between normal and abnormal recordings for
three types of features groups (FIGO-based, HRV-based, and nonlinear). We showed that in each
group there are features able to discriminate between normal and abnormal recordings. The worst
classification results were obtained for the FIGO-based features and the best results for a combination
of all groups (the Complete feature set) with sensitivity (SE) 60% (25th and 75th percentiles: 53–67),
specificity (SP) 75% (72–77), precision (PR), 23% (20–25), and F-measure 33% (29–36). The most
useful features for classification were frequency features; the very low (energy04_VLF) and low
(energy03_LF) were selected in almost every fold of 50×4 CV. These features correspond to activation
(dominance) of sympathetic system ( part of autonomous nervous systems), which is responsible for
an increase in fetal heart rate. The additional features were number of accelerations and decelerations,
Poincaré_SD2, and STV-HAA.

Comparison to other works The comparison to other works is difficult if not impossible. We have
provided a comprehensive overview of classification performance presented in other works (Chapter 3,
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Table 3.3). Most of the works used very small and ad-hoc created databases the typical size is 50 –
100 records. In addition, in every work a seemingly similar, yet different criteria was used to define
normal/abnormal (pathological) recordings as shown in Table 3.2. Despite the difficult comparison
our results compare favourably to studies using "large" databases (N ≈ 100). Our results are slightly
inferior to (Costa et al., 2009); they achieved SE 57%, SP 97%, and PR 50% but they used a four times
smaller sample size. The work of (Georgieva et al., 2013b) is the most appropriate for comparison
because of the same pH threshold used. They reported better sensitivity of 61% but lower specificity
of 68%, the precision was not used in their work. Achieved precision in our work was low, about 23%
for the Naive Bayes classifier. There are two contributing factors. First, the precision in other works is
also low, 50% (Costa et al., 2009), 36% (Salamalekis et al., 2006) with the exception of 70% (Spilka
et al., 2012). Also the clinical evaluation of CTG has low precision (approximately 20 – 25%) as
documented in Chapter 6 (Table 6.6) or 44% as reported in (Cao et al., 2006). Other factor for low
precision is the utilization of SMOTE technique where a new minority abnormal samples were created.
These new samples possibly overlapped into the normal group causing the false positive results. We
performed a simple verification using uniformed sub-sampling of the normal group. We used 500×4
CV where in every repetition (1,2, . . ., 500) the normal group was randomly sub-sampled to have
equal proportion as the abnormal group. The approach improved the precision but yielded very poor
generalization on the test set, a problem well known (He and Garcia, 2009).

Comparison to our previous work Our previous work (Spilka et al., 2012) on presumably large
database (217 records) showed promising results, though, the verification of this approach on a larger
database has not confirmed the results and provided inferior ones. The reason for worse performance on
the current database is unclear. One possibility is different pH threshold. In this work we followed the
recent studies (Georgieva et al., 2013b; Yeh et al., 2012) and used pH ≤ 7.10, in contrast to threshold
pH ≤ 7.15 in (Spilka et al., 2012). We verified this hypothesis by setting pH level to pH ≤ 7.15. The
results were essentially similar to those obtained using the pH ≤ 7.10 (higher sensitivity with similar
specificity and precision, detailed results are not present). However, the difference was insignificant.
Thus the different choice of pH threshold did not affect the results significantly. We believe the main
reason behind the worse performance is inappropriate sampling of the previous database when we
focused on acquiring as many abnormal records as possible and aimed to keep normal and abnormal
groups balanced. It seems that we neglected the sampling of the normal groups and included too
few normal examples. It is tempting to include the previous database (Spilka et al., 2012) and use
it, for instance, as the test set. But previously we worked with much shorter signals, whose length is
insufficient for some features we are using now, e.g. Detrend Fluctuation Analysis. Also, and more
importantly, we did not have information about begin/end of first/second stage of labour. Many works,
including our previous papers, do not differentiate between first and second stage of labour. Although
in the second stage the shape of CTG is different and the signal has much lower quality (Dupuis
and Simon, 2008). Another problem is incomplete clinical information of the previous database (e.g.
neonatology, BE, BDecf, etc.) making the post-analysis infeasible.

Issues with the pH (the target class) Regarding the classification results there is an important
questions that need to be carefully considered. How to interpret the classification results? The answer
is not straightforward since there are distinct approaches to processing and classification of intrapartum
CTG. The first one is a more technical approach that uses the objective evaluation (pH, BE, and/or
BDecf) of the data. Another approach is subjective evaluation (Apgar score, clinicians assessment of
CTG). Yet another approach is to combine the both (objective and subjective) together.

The approaches utilizing objective evaluation (pH) suffers from, at least, two major drawbacks. The
relation of hypoxia to the fetal cord arterial pH after delivery is widely discussed in several papers (Cao
et al., 2006). The predominant conclusion is that only an overall examination of the baby at about four
years of age can bring a confident enough conclusion on the occurrence of effective asphyxia during
the delivery. In addition, in many cases where timely interventions based on suspicious/pathological
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FHR signal is made, the arterial pH values of the instrumentally delivered baby will be above the
pathological threshold.

A second approach is to use subjective evaluation (Apgar score, CTG assessment by clinicians)
and use it for the classification process to try to adopt clinicians behaviour. Nevertheless, this approach
has several drawbacks as well. First, the inter and even the intra observer variabilities are substantial,
as document in Chapter 6. Second, clinicians categorize the signals usually according to FIGO-based
guidelines into the three classes (normal, suspicious, and pathological). Large subset of signals are
evaluated as suspicious, but suspicious class does not exist after delivery, there is usually normal or
(possibly) asphyxiated baby (about whom, there will likely not be any decisive proof for at least the
next several months). Third, the sensitivity and precision of clinical evaluation to pH values are low, as
was shown in the previous Chapter 6. Hence, simple joining of subjective (clinical evaluation) and
objective (pH) might not be appropriate. For instance, whom to trust when pH and clinical evaluation
are distinct, e.g. when clinicians are saying that FHR is pathological but the pH is clearly normal? The
answer to this question is subject of the next chapter.



Chapter 8

A hierarchical model for FHR evaluation

The main advantage of the fetal heart rate monitoring is a continuous surveillance of fetal well-being.
Despite the research efforts the automatic evaluation of fetal status is still not used widely in clinical
practice. One of the possible causes is improper and imprecise evaluation of labour outcome by
individual markers and their relation to FHR.

In this chapter we propose and implement a novel hierarchical model for FHR evaluation. The
model is organized in a hierarchical structure and is made of a combination of biochemical markers,
Apgar score, and latent class model of clinical evaluation. This novel model is able to overcome
the discrepancies in biochemical markers and also suppress the inter-observer variability of clinical
evaluation. The model simultaneously produces the latent class (hidden truth) of labour outcome and
a classifier of FHR features. The results of the model are in all measures superior to those achieved
using pH value.

This chapter is organized as follows: first, we introduce the unsupervised learning as a tool to
discover the underlying unknown structure of a data. Second, we define the most difficult examples
for the classical scenario when the pH is used as a discriminator. We show that there are examples
constantly misclassified irrespective of classification technique used. Third, we thoroughly describe the
disadvantages of different markers used for evaluation of labour outcome. Next, we propose a novel
hierarchical model able to suppress the disadvantages of these markers. Last we show the classification
performance of the hierarchical model and thoroughly describe the difference between the model and
the scenario when a pH is used solely as global (singular) marker for labour outcome.

8.1 Unsupervised learning

8.1.1 Feature extraction/ dimensionality reduction

In the previous Chapter 7 we described a feature selection as a tool for reduction of feature space
dimensionality. The performed feature selection required class labels. In the scenario when we either
do not have the class labels or we do not want to be restricted to particular choice of classes, we can
use unsupervised technique for lowering dimensionality of feature space. One of the most common
methods is the principal component analysis (PCA).

Principal component analysis

The principal component analysis (PCA) (Bishop, 1995) approximate data with linear model (system
of linear equations) and transform the data into a new coordinate system with lower dimension. Let
N is number of observations and d is number of features (typically d ≪ N ), the aim is to lower
dimensionality so that each observation can be represented using l variables 1 ≤ l < d. In other words,
we want to linearly transform the data into another coordinate system with dimensionality l. The PCA
minimize quadratic mean square error and maximize the variance of projected vectors. Below we
present PCA by minimizing the mean square error (Hyvärinen et al., 2001). Let xv is a column vector

95
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of d features xv = (x1, . . . , xd)
T and b1, . . . ,bl are basis vectors spanning the l-dimensional subspace.

Each vector xv represents a single observation with d features. The vectors representing individual
observations could be arranged in a data matrix X of size d ×N , the basis vectors could be arranged
into matrix B of size l×d. Without loss of generality we assume rows of X to have zero mean. Further,
we assume for basis vectors b1, . . . ,bl ∶ b

T
i bj = δij . The PCA can be viewed as linear transformation

y = Bxv

⎛
⎜
⎝

y1

⋮

yl

⎞
⎟
⎠
=
⎛
⎜
⎝

b11 . . . b1d
⋮ ⋯ ⋮

bl1 . . . bld

⎞
⎟
⎠

⎛
⎜
⎝

x1

⋮

xd

⎞
⎟
⎠
,

where y are projected data and yi = ∑dk=1 bikxk = bixv is i-th projected data. The projection of xv on
the subspace spanned by basis vectors is

x̂v =
l

∑
i=1

(bTi xv)bi.

The mean square error to be minimized (with respect to b1, . . . ,bl)

ε2
= E {∣∣xv − x̂v ∣∣

2} = E {∣∣xv −
l

∑
i=1

(bTi xv)bi∣∣
2
} .

This can be further expressed as

ε2
= trace(Cx) −

l

∑
j=1

bTj Cxbj ,

where Cx is a covariance matrix. The minimum of ε2 under orthonormality condition on bi is given
by any orthonormal basis spanned by the l first eigenvectors.

Choosing the number of principal components The order of l principal components is given by
vector of eigenvalues λ. The physical unit of λi is power of i-th component, i.e. its variance. Hence,
by sorting the eigenvectors by eigenvalues give us the order (importance) of principal components.
Since λi represents variance we can choose l in the way that variance of chosen components with
respect to overall variance is above some predefined threshold, u:

∑
l
i=1 λi

∑
d
i=1 λi

≥ u.

The typical value of u is 0.95 when 95% of variance of the original data is retained. Note that the value
of mean square error is equal to ε2 = ∑

d
i=l+1 λi, i.e. the sum of eigen values (components) that were

not used.

8.1.2 Gaussian mixture model

In Chapter 6 we described a finite mixture model for random discrete variable, eq. (6.6). Here we
assume the random variable to be continuous. A general, convenient, practice is to assume the variables
are multivariate normal (Gaussian) distribution. The normal density is a convenient choice because
of its complete theory, analytical tractability, and natural occurrence. Let X be a continuous random
variable. We define the probability density function f(x) as a derivative of a distribution function
F (x), that is f(x) = F ′(x). Further we assume that f(xi∣θ) is multivariate probability density given
as
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f(xi∣θ) =
1

(2π)d/2∣∑ ∣1/2
e−

1
2
(xi−µ)T ∑−1(xi−µ),

where xi represents a d-dimensional feature vector, θ = {µ,∑}, µ is a mean value and ∑ is covariance
matrix. For the full rank covariance matrix ∑ a number of distinct elements has to be estimated
1
2d(d + 1). As for the general mixture model the log likelihood function is given as

log f(D∣θ) =
N

∑
i=1

log
M

∑
m=1

πmf(xi∣θm).

where πm is mixing parameter, the prior probability, for m-th component, m = 1, . . . ,M and θm are
parameters for m-th component. For finding a maximum of the log likelihood function we take its
derivative with respect to the parameters θ and equal it to zero

∂ log f(D∣θ)

∂θ
= 0.

Model selection and fit

In Chapter 6 (Section 6.4.4) we described the two most common measures for a model selection: the
Akaike information criterion (AIC) (Akaike, 1973) and Bayes information criterion (BIC) (Schwarz,
1978). For the convenience we provide their computation below. For the details on these measures
refer to Section 6.4.4. The AIC and BIC are computed as

AIC(r) = −2 lnL + 2ϑ,

BIC(r) = −2 lnL + ϑ lnN,

where r is number of classes, L is likelihood, N is number of examples, and ϑ is number of estimated
parameters. The better model the lower BIC and/or AIC.

8.1.3 Clustering of FHR using Gaussian mixture model

Quantization of fetal behaviour using FHR

The fetal heart rate is the main information channel of the fetal behaviour, which is very complex
and during pregnancy undergoes a great changes that are reflected by fetal heart rate (Van Leeuwen
et al., 2003, 2013). In this section we aim to infer the underlying structure of FHR and to quantize the
FHR features into m-finite states. The clinical "quantization" is performed using the guidelines into
three classes (ACOG, 2009; FIGO, 1986; Macones et al., 2008), four classes (Schifrin, 2004), or five
classes (Parer and Ikeda, 2007; Parer et al., 2009). Without any restriction to particular guidelines we
examine the fetal behaviour using the Gaussian mixture model (GMM) of fetal heart rate features. The
GMM is unsupervised technique and this procedure is commonly know as clustering.

The clustering is used to infer underlying unknown structure and to describe/explain the data by a
model. Let xi ∈ X is a d-dimensional feature vector for i = 1, . . . ,N , where N is number of examples.
Our goal is to describe X ∈ Rd by a model that helps us to better explain the data. In Section 6.4.2 we
described a general finite mixture model and above we focused on the special case of mixture model
being the Gaussian mixture model. We use this model to represent the feature space X by mixture of
Gaussians. The GMM is described by following parameters (for m = 1, . . . ,M components): mixing
proportions αm, mean values µm and covariance matrices Σm. The feature space is high-dimensional
where individual features are highly correlated or some are even identical. In order to remove correlated
features and, more importantly, to reduce the d dimension to lower dimension l, we used the principal
component analysis. Using the PCA we linearly transformed the features into a new coordinate system
with lower dimension.
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Recall that in Section 6.6.3 we sought the appropriate number of classes for clinical evaluation.
Here, we search for the number of components, m̂ that best represents the feature space X so that AIC
and BIC are minimal: m̂ = argminm{AIC;BIC}. We use the procedure shown in Algorithm 3. We
note here that finding minimum of AIC and BIC is often a compromise. AIC tends to overestimate m̂
while BIC underestimates it.

Algorithm 3: Procedure for finding best model fit for m = 2, . . . ,M

Input: l principal components (PCs), maximum number of iterations I = 100, maximum
number of components M = 8

Result: m̂ optimal number of components

begin
for m ∈M do

for i ∈ I do

i) gm← EM(PCs,m) (run EM algorithm with random initialization)
ii) AIC(i,m) ← gm.AIC
iii) BIC(i,m) ← gm.BIC

end
end
v) return m̂← argmin

m
{median(AIC); median(BIC)}

end

Clusters with respect to different classes

The best model with the lowest AIC and/or BIC is compared against to different markers (classes) of
labour outcome (pH, BE, BDecf, Apgar score) or directly to the clinical evaluation of fetal heart rate.
The comparison helps us to link the patterns of FHR, represented by m̂ components, directly to classes
assessing fetal well-being.

The model was estimated for m̂ components using the l principal components. The resulting class
for individual examples were assigned using the posterior probability where a class c ∈ {1, . . . ,C}

was determined by the largest posterior probability

ŷ = argmax
c

p(c∣x,θc).

The given components (classes) were unordered and their order did not correspond to the ordering
of the classes based on, e.g. pH (normal, suspicious, and pathological). Knowing the dataset we ordered
the components based on their prior probability (the mixing parameter αm). The ordering corresponded
to the distribution of pH in individual classes. The different target classes were determined as follows
(order pathological; suspicious; normal) pH: {pH ≤ 7.10; pH > 7.10 ∧ pH ≤ 7.15; pH > 7.15}.

8.2 In search of the most difficult examples

In the previous Chapter 7 we presented results on classification using the target class determined by pH
level. The achieved results compared favourably with other works (Costa et al., 2009; Georgieva et al.,
2013b) and also with the results of clinical evaluation presented in Chapter 6 (Tables 6.6 and 6.7).
Nevertheless, the precision of the classification was very low and sensitivity was inferior to specificity.
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The analysis of the results in each fold of 50×4-fold CV revealed that there were examples constantly
misclassified. In this section we analyse classification results in more detail and with addition of two
independent techniques: unsupervised classification using GMM and latent class model (LCM) of
clinical evaluation. We aim to find distinct records that are difficult with respect to classification and/or
clinical evaluation. We use the pH as a target class and, in contrast to the previous Chapter 7, we utilize
additional suspicious class.

The misclassified examples are called difficult hereinafter. A record is considered as difficult if
is simultaneously misclassified in: i) unsupervised learning scenario (clustering of fetal heart rate
using GMM), ii) supervised learning scenario (classification using Naive Bayes, SVM, and C4.5), and
iii) clinical evaluation of CTG. There are another criteria, which could be considered for definition
of difficult examples but, for simplicity, we do not pursue them in this work. A record could be also
considered as difficult if: lies near a separating boundary in the supervised/unsupervised learning
scenario, the biochemical markers (pH, BE, BDecf) are largely different, i.e. each of the biochemical
marker points to a different class, or clinicians do not agree on evaluation (either the votes for different
classes are equal or there is a weak plurality).

The difficult records represent the most serious errors in the classification, i.e. errors spanning
across one class (misclassified normal to pathological and vice versa).

8.2.1 Unsupervised learning

We used GMM model with m̂ components. We estimated the model for the l principal components
that accounted for 95% variance in data in order to include as much information as possible into the
model but also keep the dimensionality low and reduce redundant information. The learning of GMM
was restarted 20 times and a model with the best likelihood was chosen. After the model was estimated,
the classes were assigned using posterior probability as we described above for the clustering of FHR
(Section 8.1.3).

8.2.2 Supervised learning

In the previous Chapter 7 we used the procedure depicted in Figure 7.2 for classification. In this
section we employ this approach but we replace the 50×4 cross-validation (CV) by leave-one-out cross-
validation (LOOCV) method. That is in each fold of CV the whole dataset but one example is used
for training and the remaining one for testing. In this scenario a classifier is supplied with maximum
of information. We used the three classifiers (Naive Bayes, SVM, and C4.5) and combined their
predictions by majority voting. It is possible that results could be biased to the used methods (feature
selection and classification). Therefore, we verified results with more straightforward technique by
employing instance based learning (the Adaboost algorithm).

Adaboost is powerful technique to discover difficult examples. The Adaboost (Freund and Schapire,
1996) is an iterative procedure where in each iteration the so called weak learner is used to learn a
new rule. This new rule is created in the way that the most difficult examples (misclassified) from the
previous iteration are weighted more than the correctly classified examples. At the end of the learning
the weights of individual examples could be used to assess the difficulty. As the weak learner we used
the simple decision stump. The basic steps of the algorithm are summarized in Algorithm 4.

8.2.3 Clinical evaluation

We proposed and described the latent class model (LCM) for clinical evaluation and its advantages
over the simple majority voting in Chapter 6. Here we compare the model predictions (outcome) to the
classes determined by pH levels (normal, suspicious, and pathological). The classes are assigned based
on the maximum of posterior probability given by the LCM, similarly as for the unsupervised learning.
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Algorithm 4: Adaboost algorithm

Input: a data set D = {xi, yi}
N
i=1, where N is number of examples, xi ∈ Rd and yi ∈ {−1,1}

T – the maximum number of weak learners to be included in the ensemble
h – a weak learner
begin

i) initialize the weight vector v1 = (1/N,1/N, . . . ,1/N)

ii) for t = 1, . . . , T do

train weak learner ht sampling D according to vt
εt = ∑i vt(i)[ht(xi) ≠ yi], where ht(xi) is the weak classifier

αt =
1
2 ln (1−εt

εt
)

vt+1 =
vt
Zt
× {

ε−αt , if ht(xi) = yi
εαt , if ht(xi) ≠ yi

, Zt is normalizing constant

end
iii) classify any new instance x using H(x) = sign (∑

T
t=1 αtht(x))

end

8.3 Building a hierarchical model for FHR evaluation

In this section we introduce a hierarchical model for fetal heart rate evaluation, which main idea is to
better model the imprecise definition of adverse labour outcome.

The main purpose of fetal heart rate monitoring is to prevent a baby from adverse short term and
long term (years) sequels though the long term progress of a baby is difficult to monitor for years and
it is even more difficult to link a baby’s possible complications to the intrapartum period. Therefore, in
virtually all works, the adverse labour outcomes are replaced by more readily obtained indicators. The
most used are pH, BE, BDecf, and Apgar score. Despite their common usage, they have many flaws,
which could be divided roughly into common problems and individual issues related to a particular
marker. Below we briefly introduce these from both angles. The proper description is beyond the
scope of this work; more information can be found in (Armstrong and Stenson, 2007; Malin et al.,
2010) among others.

The common issues with biochemical markers Briefly, the common problems for biochemical
markers are: improper measurement, swapped samples from vein and artery, unclear relationship
between FHR and a marker (e.g. pH), and miscellaneous thresholds to define a pathology. The
biochemical measures are very dependant on the measuring procedure, for example the BDecf is
dependant on a correct measurement of the pCO2. The main difficulty lies in the exact relation of
biochemical markers to fetal heart rate, which is not fully understood. Time between the recording
and actual delivery plays a crucial role. The best example to understand the connection is timely
Caesarean section (CS) due to suspicious CTG – the CTG is suspicious/pathological but an intervention
prevented baby to get into real asphyxia that would be reflected in the pH value. In addition (Yeh et al.,
2012) proves on 51519 cases that pH is weakly associated to adverse outcomes. The published meta-
analysis (Malin et al., 2010) showed significant relationship between low pH and neonatal mortality,
hypoxic ischaemic encephalopathy, intraventricular haemorrhage or periventricular leucomalacia, or
cerebral palsy.

Disadvantages of individual markers Despite the common problems, there are individual problems
related to each marker. The pH does not change linearly even though changes in the fetus are almost
linear (Ross, 2011), additionally the value deteriorates "automatically" with time (Lynn and Beeby,
2007). The BE is claimed as obsolete (Rosén et al., 2007) providing false positives but it is still used
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widely (Roemer, 2007). The recent study (Georgieva et al., 2013a) showed that pH is better than BDecf
for predicting seizures and other cerebral problems. The Apgar score, although very simple and old,
has still its merit (Finster and Wood, 2005). However, it is subjective measure with high inter-observer
variability (O’Donnell et al., 2006).

8.3.1 The hierarchical model and its components

Why all models are imprecise The models used for analysis and classification of FHR are just
approximation of real situation. There are two major sources of imprecisions: i) the FHR contains
noise and artefacts caused by the measurement techniques and ii) the measurement of labour outcome
is obscured by imprecise fetal well-being classification. In general the common practice is to use some
marker (pH, BE, BDecf) and choose a threshold/s as a separating boundary for normal/suspicious-
/pathological or any other type of classes. Many different thresholds have been used in the past as
documented in Tables 3.1 and 3.2. The abundance of these resulted into the situation in which any
comparison across different works is impossible. Even more, to use a single value as a separation
boundary between normal/suspicious/pathological is simple but imprecise. The strict boundary is
necessary for being able to, at least, quantify newborn and evaluate labour in general but, on the other
hand, it attributes for mixing or separating different types of fetuses, especially those lying near to
boundary, e.g. fetuses with pH 7.09 and 7.11 for pH threshold pH = 7.10. This is clearly present in
the histograms of pH provided by (Yeh et al., 2012) or by EveREst plot (visualisation of population
percentiles) by (Georgieva et al., 2013a).

The inability to select a proper, singular, marker that should be used, lead to their combination
performed in many works, as documented in Tables 3.1 and 3.2. However, the markers are combined
using strict logical conjunction/disjunction (and/or) but it is unlikely that markers are equally good.
A solution is a scoring system that weights individual markers and their values, such a system was
proposed for predicting neonatal morbidity (Portman et al., 1990). In this system the Apgar score at
5 min., BDecf, and patterns of FHR were assigned a score, which was combined to predict neonatal
morbidity. The higher the score the more probable the neonatal morbidity was.

In this section we propose and describe a simple yet effective way how to combine the markers in
a hierarchical structure and infer the weights of individual markers from available data. The resulting
class is modelled as latent class model where biochemical markers, Apgar score, and clinical evaluation
of CTG are hierarchically structured and used for latent class estimation. Initially our model was
designed without knowing the scoring system of (Portman et al., 1990) despite that the models have
common ground. Though, in contrast to the scoring system, our model captures the uncertainty in
biochemical markers and clinical evaluation using a hierarchical structure. The main idea and purpose
of the model is to better model the imprecise classification of labour outcome.

The hierarchical model is composed of majority voting of biochemical markers, Apgar score at 5
min., and latent class model of clinical evaluation of CTG. The model is presented in Figure 8.1. In
order to simplify the model and improve its interpret-ability we categorized biochemical markers and
Apgar score into three, commonly used, categories: normal, suspicious, and pathological. Below we
present details for individual components of the model.

Biochemical markers There is a strong linear relationship between biochemical markers (pH, BE,
and BDecf) as shown in Figure 8.2. The BDecf has negative correlation to pH and BE. If we consider
the absolute value of correlation the pH is less correlated to BDecf than to BE.

We used the following thresholds to define pathological, suspicious, and normal categories. The
pH was considered as pathological pH ≤ 7.10 (Georgieva et al., 2013b; Yeh et al., 2012), suspicious
with pH of one standard deviation from median value pH > 7.10 ∧ pH ≤ 7.15 (Victory et al., 2004),
and normal with pH > 7.20 (Bernardes et al., 1998; Maharaj, 2008). For the BE the following
thresholds were used: pathological BE ≤ 12, suspicious with BE of one standard deviation from
median value BE > −12 ∧ BE ≤ −8 (Roemer, 2007; Victory et al., 2004) and normal with BE > −8.
The categories for BDecf were inverse to BE: pathological BDecf ≥ 12 (MacLennan, 1999), suspicious



102 Chapter 8. A hierarchical model for FHR evaluation

pH BE BDecf
Apgar score
- AS(5 min.)

clinical
eval. (1)

clinical
eval. (n)

Majority
voting - MV(bm)

...........

Latent class
model - LCM(ce)

Latent class
model - LCM(hm)

resulting
class

Figure 8.1: Hierarchical model of biochemical markers, Apgar score, and clinical evaluation.
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Figure 8.2: Relationship between pH, BE, and BDecf. Correlations between the biochemical markers are shown
in the upper triangle.

BDecf ≥ 8 ∧ BDecf < 12 (Roemer, 2007; Victory et al., 2004) and normal BDecf < 8. In order
to group biochemical markers together we used majority voting on the categories. The relationship
between pH, BE, and BDecf with class determined by the majority voting is present in Figure 8.3.
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Figure 8.3: Scatter plot of pH, BE, and BDecf where the majority vote of biochemical markers determines the
resulting class. Legend: normal (blue ○), suspicious (green △), pathological (red ◻). The figure is simplified so
that negative BDecf (only for normal class) are set to zero.
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Apgar score at 5 min. The categorization of Apgar score (AS) was more complicated than for the
biochemical markers. The definition of pathological Apgar score is clear, AS < 7 (MacLennan, 1999).
On the other hand, the boundary for suspicious/normal is unclear. Based on the distribution of the
Apgar score we chose suspicious Apgar score as AS > 7 ∧ AS < 9, and normal AS ≥ 9.

Clinical evaluation The categories of clinical evaluation were based on FIGO guidelines. Nine
clinicians provided annotation of CTG in the last 60 minutes of the first stage of labour. Since there is
high inter observer variability we used the latent class model to estimate a latent class. This model was
implemented and thoroughly described in Chapter 6.

8.4 Classification using the hierarchical model

The hierarchical model was used to estimate a latent class (the resulting class in the LCMHM model, see
Figure 8.1). Then the estimated latent class was used for learning a classifier in the classical learning
scenario when class assignment is known prior to learning. Despite that this approach has been shown
as inferior to the latent class regression (Raykar et al., 2010) we used it in order to gain a knowledge
on possible classification. We employed exactly the same classification procedure as we described
in Chapter 7, see Figure 7.2. To follow Chapter 7 we joined the normal and suspicious classes. Let
D = {(xi, yi)}

N
i=1 be a dataset, where N is number of observations, xi ∈ X is d-dimensional feature

vector, and yi ∈ {0,1} is estimated latent class (0 – normal, 1 – abnormal). The 50×4 cross- validation
was utilized. In each fold we balanced the normal and abnormal cases using SMOTE and then selected
the best features that were used for classification. We did not divide the features into several groups but
used the whole feature set. The results on each fold were aggregated and final results were computed.
For more information on the classification refer to the previous Chapter 7.

8.5 Latent class regression using the hierarchical model

In Section 6.4.3 we showed that it is possible to estimate class labels from multiple noisy and imprecise
annotations. We treated the unknown (hidden) class as latent variable and used the latent class analysis
for its estimation. As we have said above the estimated latent class can be further used for learning a
classifier. Here, we present a simple yet effective extension to the latent class analysis by employing
the so called covariates (covariate can be considered as another explaining variable), in which not
only a hidden class is estimated but a classifier is learned as well (McLachlan and Peel, 2000). The
extension on the latent class analysis is straightforward.

8.5.1 Latent class regression

The goal of a latent class regression (LCR) is the same as for the classical learning scenario; find
a function f ∶ X → Y which generalizes well on unseen data. In the typical scenario the labels yi
are known before learning a classifier. In our case however, it is infeasible/impossible to obtain the
class labels for training. Instead we have a variety of noisy labels y1

i , y
2
i . . . , y

J
i from multiple sources

J , which are imprecise and prone to errors. The latent class regression simultaneously estimate the
unknown class labels yi and a classifier f as well. The structure of model is similar to the model shown
in Figure 8.1, however in the latent class regression model the feature are employed as it is shown in
Figure 8.4.

Classification model The method could be used for any classifier that produce soft probabilistic
estimates, for ease of exposition and to keep a link to the paper (Raykar et al., 2010) we use logistic
regression. The logistic regression introduce a non-linearity to a linear classifier. Consider a linear
discriminant function fw(x) =wTx, where x,w ∈ Rd. For the binary classification, Y = {0,1}, the
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classifier is written in a form ŷ = 1 if wTx > γ and 0 otherwise, where threshold γ defines decision
boundary. The probability of positive class is modelled using logistic sigmoid

Pr[y = 1∣x,w] = σ(wTx),

where the logistic sigmoid is defined as

σ(u) = 1/(1 + e−u).

For the multiclass classifier, Y = {1, . . . ,C}, the probability of class is computed as

Pr[y = c∣x,w] =
ew

Tx

1 + ewTx
c < C

Pr[y = C ∣x,w] =
1

1 + ewTx
,

the resulting class is given to that with maximum probability ŷ = argmax
c

(Pr[y = c∣x,w]).

Binary classification

The proposed model is very similar to the model we already described in Section 6.4. The likelihood
function of the parameters θ = {w,α,β} given the observations D is defined as

Pr[D∣θ] =
N

∏
i=1

Pr[y1
i , . . . , y

J
i ∣xi,θ].

The derivation is the same as described above. Recall the likelihood equation, (6.8), where we used
prevalence of a class p. Here we use output of a classifier and computed probability pi = σ(wTx)
instead. The log likelihood is computed as

log Pr[D∣θ] =
N

∑
i=1

log[piai + (1 − pi)bi], (8.1)

where ai and bi are defined by equations (6.9). The maximum-likelihood estimator is found by
maximizing the log likelihood

θ̂ML = {α̂, β̂, ŵ} = argmax
θ

{log Pr[D∣θ]}.

pH BE BDecf
Apgar score
- AS(5 min.)

clinical
eval. (1)

clinical
eval. (n)

Majority
voting - MV(bm)

...........

Latent class
model - LCM(ce)

Latent class
regression - LCR(HM)

resulting
class

FHR features

coefficients of
logistic regression

Figure 8.4: Hierarchical model using the latent class regression of biochemical markers, Apgar score, clinical
evaluation and FHR features.
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Estimation using EM algorithm We use expectation maximization algorithm to estimate model
parameters and hidden variables. We described the EM algorithm in Section 6.4.2, here we offer brief
summary. The EM algorithm is iterative procedure that first uses an initial estimate of hidden data, and
than repeat two steps. First, the expectation step (E step) where the initial values are used to estimate
the maximum likelihood for the interested variables. Second, the maximization step (M step) where
new estimates of hidden variables are computed. The E and M step are repeated until convergence.
The details of derivation were presented in Section 6.4, here we present only final equations.

E-step: We compute the conditional expectation

E{log Pr[D,y∣θ]} =
N

∑
i=1

µi log piai + (1 − µi) log(1 − pi)bi,

where µi is defined as

µi =
aipi

aipi + bi(1 − pi)
.

M-step. The current estimate of µi is used to maximize the conditional expectation

αj =
∑
N
i=1 µiy

j
i

∑
N
i=1 µi

βj =
∑
N
i=1(1 − µi)(1 − y

j
i )

∑
N
i=1(1 − µi)

.

The classifier weights w need to be updated for every iterations of EM algorithm. Since sigmoid
function is nonlinear and we don’t have the closed form solution we have to use the gradient ascent
based optimization method. The Newton-Raphson update is given by

wt+1
=wt

− ηH−1g,

where g is a gradient vector, H is a Hessian matrix, and η is a length of step. The gradient is

g(w) =
N

∑
i=1

[µi − σ(w
Txi)]xi

and the Hessian matrix is defined as

H(w) = −
N

∑
i=1

[σ(wTxi)] [1 − σ(w
Txi)]xix

T
i .

Two steps of EM are repeated until convergence, i.e. when difference between iterations is smaller
than a predefined threshold Q(θt+1, θ̂t) −Q(θ̂t,θt−1) > ε, see Algorithm 2.

Multi-class classification

The extension to the multiple classes is straightforward. Instead of αj and βj representing the
sensitivity and specificity, we use a common parameter αjck, representing accuracy of classification k to
a class c for an element/annotator j. For binary case, αj00 equals sensitivity and αj11 equals specificity.
The likelihood function of the parameters θ = {w, αjck} given the observations D:

Pr[D∣θ] =
N

∏
i=1

⎡
⎢
⎢
⎢
⎢
⎣

C

∑
yi=1

J

∏
j=1

Pr[yji ∣yi = c,w] ⋅Pr[yi = c∣xi,w]

⎤
⎥
⎥
⎥
⎥
⎦

.

The derivation is similar as to the approach described in Section 6.4. Recall equation (6.12), which
were used to compute the conditional dependence in the E-step. In this equation we replace the
prevalence pc with output of multinomial logistic regression, pic.



106 Chapter 8. A hierarchical model for FHR evaluation

E{log Pr[D,y∣θ]} =
N

∑
i=1

C

∑
c=1

µic log

⎡
⎢
⎢
⎢
⎢
⎣

pic
J

∏
j=1

C

∏
k=1

(αjck)
δ(yji ,k)

⎤
⎥
⎥
⎥
⎥
⎦

,

where µic = Pr[yi = c∣y
j
i ,θ] is estimated probability of unknown ground truth

µic = pic
J

∏
j=1

C

∏
k=1

(αjck)
δ(yji ,k).

In the M-step we use the current estimates to maximize the conditional expectation; the parameter αjck
is updated using the following equation

αjck =
∑
N
i=1 µicδ(y

j
i , k)

∑
N
i=1 µic

.

Similarly to the binary classification we update weights w using the Newton-Raphson update, which
is given as

wt+1
=wt

− ηH−1g,

where g is a gradient vector, H is a Hessian matrix, and η is a length of step.

8.6 Proposed experimental methodology

In this chapter we use the hierarchical model for CTG evaluation. We utilize two experimental
methodologies. First, the classical learning scenario when the resulting class is estimated using
the latent class analysis of hierarchical model (LCMHM) and used for learning a classifier. The
classification approach was re-used from Chapter 7 and briefly summarized in Section 8.4. The second
approach use the latent class regression (LCR) when not only the class labels are estimated but a
classifier is learned as well (the LCRHM model). The methodology for this approach is described in
detail below. Both approaches works with the CTU-UHB database (Chapter 4) using the same FHR
features extracted on the last 60 minutes of the first stage of labour.

The whole procedure for using LCR is presented in Figure 8.5. The input is data set (feature set
and class labels from multiple sources). The procedure consisted of 50×q-fold cross validation (CV)
where data were 50 times randomly split for q-fold CV and results for each run were aggregated. We
used the same number of folds q = 4 as in Chapter 7. The training set consisted of d features and,
because of high dimensionality, we used the principal component analysis to reduce the dimensionality
to l principal components, where l < d. The number of l was determined in each fold of CV. The same
transformation was applied to the test dataset, where the test set was transformed using the matrix of
basis vectors B obtained from the training set. Then the LCR was used to estimate the latent class
and coefficients of logistic regression on the training set. The model parameters learned using the
LCR were used to estimate the labels for the test set: the parameters [A]ck = α

j
ck and prevalence for

individual classes p. Then the learned classifier w on training data set was tested on the test set. The
results on each fold of 50×4-fold CV were aggregated.

8.7 Performance evaluation

In this chapter we used the same metrics for performance evaluation as we used in Chapter 7. The
statistical measures such as sensitivity, specificity, precision, and F-measure were described in Sec-
tion 7.4.3. These measures can be used for binary classification only. For more than two classes the
classification performance is computed as one class versus group of the other classes – the so called
one-vs-all approach.



Section 8.7. Performance evaluation 107

50 times
randomly
divide for
q-fold CV

q-training/
test sets

training set

PCA

RLCA

performance
evaluation

performance
of 1 x q-fold CV

aggregated
performance

of 50 x q fold CV

test set

apply B

apply
A, p

data
(feature set,
class labels)

fold cross validation

fold cross validation50 x q

q

B

A, p

Figure 8.5: Experimental methodology for the latent class regression. The notations are not printed in
mathematical symbols, they are as follows: q = 4 is the number of CV folds, B = B is matrix of basis vectors,
A = [A]ck is matrix of parameters, and p = p is prevalence of estimated classes.

Confusion matrix For the analysis of difficult examples and classification performance we used
visualisation using a confusion matrix, see Table 8.1. In this matrix the correct classification is present
on the diagonal line, TPck, where c = k, c = {1,2,3} and k = {1,2,3}. Misclassifications are present
by off diagonal elements. The classes are: 1 – normal, 2 – suspicious, and 3 – pathological. The most
serious misclassifications are those the most distant from the diagonal: FP13 and FN31.

Table 8.1: Structure of confusion matrix used in this chapter. (n/s/p – actual values, n′/s′/p′ – predicted values,
n – normal, s – suspicious, p – pathological). The classes are 1 – normal, 2 – suspicious, and 3 – pathological.

n′ s′ p′

n TP11 FP12 FP13

s FN21 TP22 FP23

p FN31 FN32 TP33

The overall classification accuracy for the three classes can be computed as ACC = (TP11 +

TP22 + TP33)/N , where N is number of instances. When we evaluate sensitivity and specificity
on three classes we shrink three classes into two (one versus all approach). We assess pefromance
on pathological versus joined normal and suspicious classes. For such created two classes the same
metrics could be used as described in Section 7.4.3.

The similar confusion matrix is used for visualisation of the probability of an estimated la-
tent class to a particular component [A]ck = αck, where αck is probability of the estimated latent
class c when the predicted class was k. The estimated latent classes are marked as n/s/p (nor-
mal/suspicious/pathological) and the predicted classes as n′/s′/p′ (normal/suspicious/pathological).
The matrix has structure as follows
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Aj
=
⎛
⎜
⎝

αnn′ αns′ αnp′

αsn′ αss′ αsp′

αpn′ αps′ αpp′ .

⎞
⎟
⎠

8.8 Results

8.8.1 Clustering of FHR using GMM

We used the Gaussian mixture model (GMM) to model the fetal heart rate represented by features
in a space X ∈ Rd. The feature space was high dimensional and most probably contained redundant
information, therefore we used the principal component analysis to transform it into a lower dimension
l, where l < d. Then we aimed to find a model that best described the FHR patterns, hence the
behaviour of fetus. The model with m̂ components minimizing AIC and BIC was sought.

Feature extraction/ dimensionality reduction

Choosing the dimension l is a trade off between number of components retained and information
(variance) lost. Generally the l is sought to contain 95% variance of data. In Figure 8.6 we show a
cumulative sum of sorted eigenvalues (λ1 ≥ λ2, . . . ≥ λd,). The biggest λi corresponds to greatest
variance. From Figure 8.6 it can be seen that the great proportion of variance is contained in the firsts
principal components. Each added principal component comes at expense of higher dimensionality and
need of estimating bigger covariance matrices, where (l[l + 1]/2) is the number of estimated elements
in Σk for l features). Therefore we sought l as a trade off between low l with as much variance retained
as possible. If we rather prefer low l we can chose l = 7 when λi "stops decrease" while, on the other
hand, the variance is preferred we chose l = 13 to contain 95% of variance. In our experiments we use
range of l = {7, . . . ,13}, we comment on different performance below.
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Figure 8.6: Values of eigen values and their cumulative sum in percentage of their variance.

Quantization of fetal behaviour using FHR

We aimed to quantize the fetal behaviour using fetal heart into m-finite states. The optimal number of
components m̂ was found as value of m that minimizes the AIC and BIC. In practice however, the
balance between AIC and BIC has to be sought (AIC overestimates m̂ while BIC underestimates it).
The results for m = {2, . . . ,8} are shown using box-plots in Figure 8.7. Clearly, the AIC decreased
for increasing m and BIC increased. Nevertheless, from m = 2 to m = 3 BIC climbed up slightly
while the AIC sharply decreased. Apparently the good choice was to chose m̂ = 3 when there was
the small change in BIC but the large in AIC. The chosen m̂ was the same irrespective of number of
principal components l = {7, . . . ,13}. However, intuitively, when choosing lower number of principal
components, l = 7, the model had better fit than for l = 13 because of lower dimensionality.
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Figure 8.7: Number of components m with respect to AIC and BIC (for 13 principal components).

8.8.2 The most difficult examples

We searched for the difficult examples using various techniques. First, the unsupervised learning
(GMM model from the previous section) with three components, m̂ = 3. We estimated the model
for the l = 13 principal components to include as much information as possible into the model. The
learning of GMM was restarted 20 times and model with the best likelihood was chosen. Second, we
employed supervised learning (Naive Bayes, SVM, and C4.5) classifiers with the LOOCV method. The
prediction of classifiers were combined using majority voting. Third, we re-used the latent class model
from Chapter 6 (Section 6.4) to obtain an estimate (unknown "ground truth") of clinical evaluation.
The model worked with three classes, c = 3. We were interested in the most serious errors in the
classification, i.e. those errors spanning across one class. The results of classification are presented
using the confusion matrices in Table 8.2.

Table 8.2: Confusion matrices for unsupervised learning, supervised learning, and LCM of clinical evaluation,
The difficult false negatives, false positives, and easy true positives are presented in the lower left, upper right,
and lower right corner, respectively. (n/s/p – actual values, n′/s′/p′ – predicted values, n – normal, s – suspicious,
p – pathological).

(a) unsupervised learning

n′ s′ p′

n 174 161 104
s 21 17 14
p 24 10 27

(b) supervised learning

n′ s′ p′

n 336 29 74
s 35 3 14
p 25 6 30

(c) LCM of clinical eval.

n′ s′ p′

n 149 191 99
s 15 26 11
p 11 24 26

The number of "easy records" (true positives) TP33 is similar for all methods (unsupervised,
supervised, and clinical evaluation). The number of false positives FP13 varies for all methods, while
the number of false negatives FN31 is similar for unsupervised and supervised technique and is the
lowest for the LCM of clinical evaluation (LCMce). In order to examine FN31 in more detail we plot
their relationship to pH and BDecf. The similar plot to Figure 8.3 only the BE is not included since
it is highly correlated to BDecf. The relation can be seen in Figure 8.8. The misclassified FN31 are
more concentrated at the boundary between pathological and suspicious. This holds especially for
the LCMce. On the one hand there is higher density while, on the other hand, the examples next to
boundary are similar to the examples lying at the other side of the boundary.

The misclassified examples in the supervised scenario could be biased towards the used feature
selection and classification methods. We verified the results by employing instance based learning (the
Adaboost algorithm), which is more "natural" way to assess the difficulty of examples for classification.
We used the LOOCV with tmax = 100 iterations (= 100 weak learners). From each q-th fold of LOOCV
we obtained the weights vqtmax . Then these weights were averaged across all folds v̄ = 1

N−1 ∑
N−1
q=1 vqtmax

giving an estimate of examples difficulty. The distribution of weights is depicted in Figure 8.9. The
threshold for choosing difficult examples is marked by an arrow (|→).
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(a) unsupervised learning
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(b) supervised learning
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(c) LCM of clinical evaluation

Figure 8.8: The relationship between pH and BDecf with marked false negatives FN31 for different techniques.
Classes: normal (blue ○), suspicious (green △), pathological (red ◻), false negative (black ◾).

0

50

100

150

200

0.00 0.01 0.02
weight of examples, v

de
ns

ity

Figure 8.9: Adaboost weights of difficult examples. The threshold for difficult is marked by an arrow (|→).

The application of selected threshold identified 77 examples as difficult. We verified their corre-
spondence to the supervised learning scenario. In the TP33 group the adaboost identified 22 (from
30) same examples. In the FN31 group the number of same examples was 24 (from 25) and for the
FP13 was 12 (from 74). The adaboost identified almost the same set of easy/difficult examples as
supervised learning for TP33 and FN31 while for the FP13 group agreed with supervised learning only
on 12 examples.

Combination of the methods We examined the intersection of the records obtained from the three
methods: unsupervised, supervised, and LCM of clinical evaluation (LCMce) for the true positives
TP33, false positives FP13, and false negatives FN31. Let U,S,C be sets that contain TP33, FP13, FN31
records for the supervised, unsupervised scenario, and clinical evaluation, respectively. In Table 8.3
we present pair-wise intersection of methods, where e.g. ∣U ⋂S∣ denotes the cardinality of intersection
(number of the same examples) for unsupervised and supervised scenarios.

The cardinality of intersection shows that there are 14 records that are distinct and easily classified,
TP33, for all three methods. The number of FP13 is high irrespective the method used while, interest-
ingly, the intersection of FP13 for all three methods is small. This imply that using different techniques
the number of false positives could be reduced. Also the cardinality of intersection for FN31 is low
mainly because of small number of FN31 for the LCMce. This suggest that by using the LCMce we can
lower the number of false negatives.

We searched for similar patterns in the TP33, FP13, and FN31 groups. For example if among the
TP33 were vaginal deliveries only or any other dominating factor, which could affect the results. In
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Table 8.3: Number of records that are the same with respect to different approaches. FN31 and FP13 represent
the most difficult false negatives and false positives, respectively. On contrary, the TP33 marks the most easiest
records, i.e. records identified as true positive.

FN31 FP13 TP33

∣U ⋂S∣ 10 42 19
∣U ⋂C ∣ 5 52 20
∣S⋂C ∣ 11 33 17

∣U ⋂S⋂C ∣ 5 26 14

the TP33 and FP13 there were no common patterns. The FN31 group contained only babies delivered
vaginally and FHR recorded only by Doppler ultrasound. Nevertheless these factor should not attribute
to misclassification. The more important finding is that for the FN31 group the BDecf and BE are not
pathological but one example. Average values of the biochemical markers for FN31 were: pH = 7.06,
BE = -10.9, and BDecf = 8.4. The distribution of the FN31 with respect to pH and BDecf is shown in
Figure 8.10. Clearly the FN31 examples are close to suspicious class but one example.
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Figure 8.10: The relationship between pH and BDecf with marked false negatives FN31 for the intersection of
unsupervised, supervised, and LCM (∣U ⋂S⋂C ∣). Classes: normal (blue ○), suspicious (green △), pathological
(red ◻), false negative (black ◾).

8.8.3 The hierarchical model – latent class analysis and regression

We have designed a hierarchical model in order to improve the imprecise classification of labour
outcome when we must account for uncertainty related to the individual markers.

In this section we describe the learning of hierarchical model (HM) and weights of individual
components. First, we estimated the HM without regression (LCMHM) and used the estimated latent
class (the resulting class in Figure 8.1) for learning a classifier. The latent class was estimated using
approach described in Chapter 6 and the classification was performed as described in Chapter 7.
Second, we estimated the latent class of hierarchical model and coefficients of logistic regression using
the latent class regression LCRHM. We used three latent classes (normal, suspicious, pathological) for
LCMHM and LCRHM.
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Latent class analysis using the hierarchical model

The HM was learned using the EM algorithm (see Algorithm 2) that was iterated until convergence,
i.e. while the log-likelihood was decreasing, expressed using the Q-function, eq. (6.7). The rate of
convergence was determined by setting the ε = 10−3. The Sacc score as a function of iterations is
shown in Figure 8.11.
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Figure 8.11: Progression of Sacc score for the majority vote of pH, BE, and BDecf (MV(bm)), Apgar score at 5
min. (AS(5 min.)), and latent class analysis of clinical evaluation LCM(ce).

The initial settings for latent class µic was determined by majority voting. Then for the growing
number of iterations, the MVbm increased rapidly while the LCMce decreased. For the higher number
of iterations the AS5 min. and LCMce are inferior to the µic. The AS5 min. because of poor results on
pathological class and LCMce because of poor distinction between normal and suspicious classes.
Details for the final model can be observed in the following confusion matrices

Abm
=
⎛
⎜
⎝

0.91 0.09 0
0.01 0.72 0.27
0.19 0.00 0.81

⎞
⎟
⎠

AAS
=
⎛
⎜
⎝

0.87 0.11 0.02
0.00 0.74 0.26
0.53 0.47 0

⎞
⎟
⎠

ALCM
=
⎛
⎜
⎝

0.34 0.44 0.22
0.33 0.44 0.23
0 0.32 0.68

⎞
⎟
⎠
.

Recall that [A]ck = αck, where αck is probability of the estimated latent class c when the predicted
class was k. In these matrices the correspondence of estimated latent class to a particular component is
on the diagonal when c = k while on the off-diagonal elements are present "misclassification’s", c ≠ k.
It can be seen that latent class corresponds to the MVbm for all classes. For the AS5 min. the results are
inferior to the estimated pathological (p) class (c = p, k = p′), when αpp′ = 0 (the lower right corner
of AAS). In contrast to the AS5 min. the LCMce has a good performance on the pathological class
while poor on the normal and suspicious, where the LCMce could not distinguish between normal and
suspicious. For the sake of clarity the confusion matrices are presented in Figure 8.12.

Clustering with respect to different elements (components) In order to examine the individual
elements of the model we compared them to the unsupervised GMM model. Such comparison helps
us to understand, which elements of the model corresponds best to the FHR features respective their
clusters. The biochemical markers compared were: pH, BE, and BDecf. We do not included into
comparison individual clinicians but we used their majority voting (MVce) instead. In addition we
included the three main components: majority voting of biochemical markers (MVbm), Apgar score
at 5 min. (AS5 min.), and latent class model of clinical evaluation (LCMce) and also the resulting
hierarchical model (LCMHM). The results are present in Table 8.4.
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Figure 8.12: Probability of estimated latent class µic by individual components αck. Components: 1 = MVbm, 2
= AS5 min., 3 = LCMce. The µic is present in the upper grey horizontal bar, the classes given by the components
are marked as predicted. For example when µic was normal the MVbm, AS5 min., and LCMce predicted normal
with probabilities 0.91, 0.87, and 0.34, respectively.

Table 8.4: Clustering results with respect to different elements (components). (ACC – accuracy, SE – sensitivity,
SP – specificity, PR – precision, F – F-measure). The accuracy assess all classes. The SE, SP, PR, and F assess
the pathological class versus joined normal and suspicious class.

element
(component)

overall pathological vs. (normal + suspicious)
ACC [%] SE [%] SP [%] PR [%] F [%]

pH 39 44 76 19 26
BE 38 53 76 12 20
BDecf 39 56 75 7 13
MVce 41 71 80 32 45
MVbm 40 54 76 14 23
AS5 min. 39 32 74 4 7
LCMce 41 58 84 54 56
LCMHM 41 61 76 14 22

Note that the proportion of of normal/suspicious/pathological classes are different for each element
and therefore the results on pathological vs. (normal + suspicious) are slightly misleading. If we
consider the F-measure, the LCMce has the best performance with F = 56%. Then follow the MVce
with F = 45%. Thus, the clustering of FHR features best corresponds to the clinical evaluation (LCMce,
MVce). This results were expected since the clinicians actually used the FHR patterns for evaluation.
Considering the both, the overall results and results on pathological class, the LCMHM is in the middle
of the individual elements. It has better sensitivity than biochemical markers (pH, BE, BDecf, or
MVbm) but lower precision than pH. In other words the number of false negatives was decreased
while the number of false positives was slightly increased. The LCMHM model best corresponds to
the MVbm component, which coincide with Figure 8.12 and confusion matrices presented for the
individual components above. We have to keep in mind that clustering is unsupervised technique and
might not well relate to the actual fetal status/well-being. On the other hand, it helps to understand the
data and mapping between the FHR features and different labour outcome measures.

The relation to difficult examples The ability of hierarchical model to explain pH false negatives
examples (showed in Figure 8.8a) is depicted in Figure 8.13, where the LCMHM is used to determine
the resulting class.

The boundary between different classes (normal/suspicious/pathological) is not clear and individual
classes overlaps, compare to Figure 8.8a. About half of the false negative examples (pH) is not truly
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Figure 8.13: The false negatives FN31 from unsupervised learning when compared to pH classes, i.e. those
examples there were clustered into normal class but pH was pathological. The underlying class is determined by
hierarchical model: normal (blue ○), suspicious (green △), pathological (red ◻), false negatives (black ◾).

false negative when the LCMHM is considered (the normal ○ and suspicious ▽ examples marked as
false negatives ◾). To better explain the LCMHM model and to understand how the imprecise definition
of labour outcome is treated, consider the the left out-most false negative example (resulting class is
suspicious). The biochemical markers (pH = 6.87, BE = -20.5, and BDecf = 16.9) and Apgar score
(AS5 min. = 4) imply the labour outcome being really pathological. However, the clinicians in majority
considered the FHR as normal. There is a clear disconnection between outcome measures and FHR.
The LCMHM assigned the suspicious class to this example because, in the final model, the Apgar
score is not sensitive to pathological cases αpp′ = 0, hence not contributing to this class and the final
decision on this case was strongly determined by MVbm and LCMce and rather inclined to the clinical
evaluation.

Classification using estimated class from the hierarchical model We performed the same experi-
ment as in Chapter 7 with the estimated latent class from the LCMHM. We employed the 50×4-fold
cross validation using the procedure depicted in Figure 7.2. In each fold of CV we used the feature
meta-selection to select the best features for classification. The features selected more than 50% of
folds are present in Table 8.5. The selected features were similar to the features selected using pH
(Table 7.3). The exceptions were energy03_LF_HF and ApEn(2,0.15) that were not selected for pH
but were found useful for the class estimated by the hierarchical model. Again, the frequency features
dominated over the other types of features.

Table 8.5: Selected features sorted based on the importance.

Feature set Selected features
Complete set
(all features)

energy04_VLF, energy03_LF, Poincaré_SD2, accNumber, en-
ergy03_LF_HF, STV-HAA, decNumber, ApEn(2,0.15), energy04_LF

The selected features were used to train the Naive Bayes, SVM, and C4.5 classifiers. The results,
shown in Table 8.6, were aggregated from each fold of 50×4 fold CV and median, 25th, and 75th
percentiles were estimated.

The best results were achieved using the Naive Bayes. In contrast to results in Chapter 7 (Table 7.4),
the results were better for both, sensitivity and specificity, confirming that number of false negatives
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Table 8.6: Classification results for resulting class estimated by the hierarchical model LCMHM. The results
are averaged across all folds of CV (50×4 folds CV) and presented using median and (25th – 75th) percentiles.
The results were evaluated as pathological vs. (normal + suspicious). (SE – sensitivity, SP – specificity, PR –
precision, F – F-measure).

Feature set [%] Naive Bayes SVM C4.5 Tree

Complete
set

SE 63 (56–75) 44 (33–63) 25 (13–38)
SP 78 (76–81) 84 (82–87) 92 (89–94)
PR 16 (14–19) 15 (12–19) 14 (8–21)

F 25 (22–29) 23 (18–29) 17 (10–25)

FN31 was reduced. On the other hand, the precision decreased (because of higher FP13) and hence the
F-measure decreased.

Latent class regression using the hierarchical model

In the previous section we presented results when we estimated the latent class first and then learned a
classifier. In this section we simultaneously estimated the latent class and learnt a classifier as well
using the latent class regression. First we describe the model that was estimated on the whole dataset.
Second, we present the performance of the model and prediction error.

The properties of LCR The latent class regression model (LCRHM) was estimated iteratively using
the EM algorithm (Section 8.5.1), where the limit of log-likelihood convergence was set to ε = 10−3.
The whole database was used for learning the LCR model. The number of principal components for
learning was set to l = 13 (95% variance of data retained). Initial setting of latent class was determined
using majority voting. In Figure 8.14 we present the progression of accuracy based scoring Sacc of the
main model components. Because of the initial setting based on majority voting the first iteration of
the LCRHM corresponds to LCMHM, c.f. Figure 8.12. However, from the second iteration the models
differ. The accuracy score Sacc of individual components computed over all classes changes slightly
with increasing iterations.
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Figure 8.14: Progression of Sacc score for the main components of hierarchical model: majority vote of pH,
BE, and BDecf (MV(bm)), latent class analysis of clinical evaluation (LCA(ce)), and Apgar score at 5 min.
(AS(5 min.)).

Even though the Sacc for the first iteration t1 is similar to the Sacc for the last iteration t28 the
parameters (weights) for individual components have changed. This change can be observed in the



116 Chapter 8. A hierarchical model for FHR evaluation

confusion matrices of A[ck] showed for the first iteration A(t1) and the last iteration A(t28). The
abbreviations are as follows: bm = MVbm, as = AS5 min., and ce = LCMce.

A(t1)
bm

=
⎛
⎜
⎝

0.93 0.06 0.1
0.60 0.31 0.09
0.56 0.12 0.32

⎞
⎟
⎠

A(t1)
as

=
⎛
⎜
⎝

0.91 0.08 0.01
0.55 0.40 0.05
0.59 0.27 0.14

⎞
⎟
⎠

A(t1)
ce
=
⎛
⎜
⎝

0.45 0.36 0.19
0.12 0.76 0.12
0.03 0.13 0.84

⎞
⎟
⎠

A(t28)
bm

=
⎛
⎜
⎝

0.93 0.07 0
0.23 0.49 0.28
0.73 0.12 0.15

⎞
⎟
⎠

A(t28)
as

=
⎛
⎜
⎝

0.88 0.10 0.02
0.37 0.50 0.13
0.74 0.22 0.04

⎞
⎟
⎠

A(t28)
ce
=
⎛
⎜
⎝

0.46 0.51 0.04
0.25 0.69 0.07
0 0.15 0.85

⎞
⎟
⎠

The confusion matrices are also present in Figure 8.15. It can be seen that mainly the suspicious
and pathological latent classes were changed during the learning. The normal class corresponds
to the MVbm and AS5 min. while the pathological mainly corresponds to the LCMce. The created
LCRHM model is similar to the model without regression (LCMHM) for normal class but for the
suspicious class and mainly for the pathological these model do differ significantly. For the LCMHM
the MVbm contributed more than for LCRHM. The prevalence of estimated latent classes were as
follows: P (normal) = 0.65, P (suspicious) = 0.11, and P (pathological) = 0.24.
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Figure 8.15: Probability of estimated latent class by individual components αck for the first iteration and the
last iteration of EM algorithm. The latent class is present in the upper grey horizontal bar the classes given by
the components are marked as predicted. (1 = MVbm, 2 = AS5 min., 3 = LCMce).

The classification performance of LCR We used the 50×4-fold cross-validation procedure pre-
sented in Figure 8.5. The number of principal components l retained for the LCR was determined in
each fold of CV. The threshold was set to u = 0.95 so that 95% variance was retained. The average
number of l across all folds of CV was l = 13. The transformed feature set was used for learning
the model parameters θ = {αjck,w}. The classification accuracy was estimated on the test set and
aggregated from all folds of CV and median with 25th – 75th percentiles were computed.

In Table 8.7 we present the results of latent class regression for the pathological class versus joined
normal and suspicious class. In Figure 8.16 we show ROC and PR curves. The threshold γ determined
the resulting class ŷ = 1 if wTx > γ and ŷ = 0 otherwise (1 – pathological, 0 – suspicious + normal).
In Figure 8.16 it can be seen how the value of γ affects the performance of the classification. The best
value in terms of the F-measure is γ = 0.5. Imagine that we desire a better sensitivity, then the red
point would move up to the point were sensitivity is approximately 80% and specificity is 75%. In the
PR curve the point would climb down to 80% of sensitivity and 50% of precision leading to decrease
in F-measure from 65% to 62%.
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Table 8.7: Classification results for latent class regression using the hierarchical model. The results are averaged
across all folds of CV (50×4 folds CV) and presented as median with (25th – 75th) percentiles. The results
were evaluated as pathological vs. (normal + suspicious). (SE – sensitivity, SP – specificity, PR – precision, F –
F-measure)

type [%] median (25th-75th)

pathological vs.
(normal + suspicious)

SE 66 (59–71)
SP 89 (86–92)
PR 66 (59–73)

F 65 (60–70)
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Figure 8.16: Receiver operation characteristic (left) and precision-recall curve (right). The median is presented
in blue with 25th and 75th percentiles in grey. The threshold γ between two classes is marked with the red point
(●).

The presented results were superior, in all measures, to the Naive Bayes classifier learned using the
LCMHM. The sensitivity, specificity, and precision were greatly improved. These results were expected
since the classification probabilities pic were, in part, used to estimate the latent class µic. In order to
clarify the LCRHM prediction capabilities we evaluated the model performance using all elements of
the model. These results are presented in Table 8.8 for pathological vs. (normal + suspicious) class
and in Table 8.9 for overall performance on all classes. In the two class scenario the performance of
LCRHM is similar to LCMce because the probability of estimated pathological latent class αpp′ was
the highest for the LCMce component. However, the accuracy of LCMce is much lower than accuracy
of LCRHM. Note that results in Table 8.8 are slightly misleading because of different proportion of
normal/suspicious/pathological cases for each element.

The connection between LCMHM and LCRHM Intuitively the both models LCMHM and LCRHM
are different. For the latter model the features were used as covariates and helped to model the latent
class. It is not surprising that pathological class for LCRHM yielded to LCMce since this model of
clinical evaluation had the best performance for unsupervised learning, see Table 8.4 where the LCMce
corresponded the best to the FHR clusters. In Table 8.10 we present confusion matrix between LCMHM
and LCRHM. The both models are similar for the normal and suspicious class. The included covariates
altered mostly the pathological class.

The hierarchical model and its relation to pH There are two aspect that have to be considered.
First the LCRHM produced the class labels µic and also coefficients of logistic regression w. The
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Table 8.8: Classification results for latent class regression with respect to different elements (components). The
results are averaged across all folds of CV (50×4 folds CV) and presented using median (25th – 75th) percentiles.
The results were evaluated as pathological vs. (normal + suspicious). (SE – sensitivity, SP – specificity, PR –
precision, F – F-measure).

element SE [%] SP [%] PR [%] F [%]

pH 36 (28–44) 77 (74–80) 16 (12–21) 22 (17–27)
BE 43 (30–50) 77 (74–80) 11 (9– 6) 18 (14–24)
BDecf 43 (25–50) 77 (74–79) 7 (4–10) 13 (7–17)
MVce 77 (69–83) 83 (80–85) 38 (32–42) 50 (44–55)
MVbm 43 (30–50) 77 (74–80) 11 (9–16) 18 (14–24)
AS5 min. 31 (18–40) 76 (73–79) 4 (3– 6) 7 (5–11)
LCMce 67 (60–72) 89 (86–92) 67 (60–73) 66 (62–70)

Table 8.9: Classification results for LCRHM with respect to different elements (components). The overall
measure that asses all classes (ACC – accuracy).

element ACC [%]

pH 62 (58–65)
BE 64 (61–68)
BDecf 57 (54–60)
MVce 50 (48–53)
MVbm 61 (57–64)
AS5 min. 58 (55–61)
LCMce 49 (46–52)
LCRHM 71 (69–75)

Table 8.10: The confusion matrix of estimated latent classes for LCMHM and LCRHM models. nr/sr/pr nor-
mal/suspicious/pathological from the LCRHM and nm/sm/pm normal/suspicious/pathological from the LCMHM.

nr sr pr
nm 353 20 106
sm 5 26 9
pm 0 13 20

ability of logistic regression to learn the µic was tested using the 50×4 CV and shown in Table 8.8.
Below we present the estimated latent class µic with respect to the classes determined by pH, see
Table 8.11. We can observe that the pathological pH class (p) is largely in the suspicious (s′) (27
records) or pathological (p′) (26 records) class given by the LCRHM.

Table 8.11: Confusion matrix for the µic estimated by LCRHM to classes determined by pH. (n′/s′/p′ determined
by LCRHM, n/s/p determined by pH).

n′ s′ p′

n 335 8 96
s 15 24 13
p 8 27 26

In order to highlight the strength of the LCRHM to model the uncertainty of evaluation of labour
and to give an example of discrepancy of pH to the main components we show the details of the last
row of Table 8.11, i.e. we analyse the pathological examples determined by pH. Following our notation
we define the false negatives FNpn′ (pH pathological, LCRHM normal) and FNps′ (pH pathological,
LCRHM suspicious) and true positives TPpp′ . In Table 8.12 we present detailed results for each category
for the main components of the model.
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Table 8.12: Confusion matrices for the false negatives FNpn′ (pH pathological, LCRHM normal) and FNps′ (pH
pathological, LCRHM suspicious) and true positives TPpp′ . The false negatives and true positives were obtained
by comparing the LCRHM to pathological class determined by pH, see the last row of Table 8.11. (n′/s′/p′ –
normal/suspicious/pathological for individual components of the model).

(a) FNpn′ (8 recs.)

n′ s′ p′

MVbm 1 7 0
AS5 min. 6 2 0
LCMce 5 3 0

(b) FNps′ (27 recs.)

n′ s′ p′

MVbm 0 10 17
AS5 min. 10 13 4
LCMce 6 20 1

(c) TPpp′ (26 recs.)

n′ s′ p′

MVbm 0 5 21
AS5 min. 10 12 4
LCMce 0 1 25

For the FNpn′ there were 8 records determined by pH as pathological but the LCRHM resulted
to normal class. In Table 8.12a we can see that the MVbm was not pathological for any case, either
BDecf or BE was normal/suspicious. The presence of normal and suspicious only holds also for
the AS5 min. and LCMce. For the FNps′ there were 27 record determined as pathological by pH. In
Table 8.12b we can see the higher occurrence of pathological for MVbm but low number of pathological
for AS5 min. and LCMce highlighting the discrepancy of evaluation. The true positive TPpp′ are present
in Table 8.12c. The number of pathological given by MVbm and LCMce is prevalent in contrast to the
AS5 min., which proportion remained almost the same as for the FNps′ .

Comparison of the model to the supervised learning (pH based) The classification using the
pH is the most common and followed approach. In this chapter we showed that this approach is
imprecise; however, for the sake of completeness, we present the results of the LCRHM regarding
the pH classification below and compare the results to the supervised learning of Naive Bayes. The
procedure for classification was the same as describe above only for the test set the pH labels were
used. Note that, in contrast to Chapter 7 (Table 7.4), the Naive Bayes was learned with the three
classes (normal/suspicious/pathological). The confusion matrices estimated on the test set are present
in Table 8.13 and the results of classification are present in Table 8.14.

Table 8.13: Comparison of classification to pH for the latent class regression and supervised learning using
Naive Bayes. The confusion matrices are computed for the test set on 50×4 fold CV. n/s/p – actual values,
n′/s′/p′ – predicted values, n – normal, s – suspicious, p – pathological

(a) LCRHM

n′ s′ p′

n 78.7 6.7 24.4
s 8.3 0.9 3.8
p 8.4 1.3 5.6

(b) Naive Bayes

n′ s′ p′

n 71.2 13.2 25.4
s 7 1.3 4.7
p 5.7 1.8 7.7

Table 8.14: Results of the LCRHM and Naive Bayes (NB) to classes determined by pH. The results are presented
as pathological vs. (normal + suspicious).)

SE [%] SP [%] PR [%] F [%]

LCRHM 36 (28–44) 77 (74–80) 16 (12–21) 22 (17–27)
NB 50 (48–57) 79 (70–81) 23 (16–29) 30 (24–38)

The results of LCRHM are worse in all measures than the results of Naive Bayes though this was
expected since the LCRHM was learned with the hierarchical model and tested on pH labels.
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8.9 Discussion and conclusion

In this chapter we presented a novel hierarchical model for fetal heart rate evaluation. We showed
that the model is able to overcome the uncertainty in the biochemical markers (pH, BE, and BDecf).
The model does not weigh individual markers equally and, in addition, minimizes the inter-observer
variability of clinical evaluation of CTG using the latent class model.

The most difficult examples When the pH is considered as a singular discriminant between classes
there are a number of records that are constantly misclassified in the classical learning scenario. The
same misclassified examples across one class (normal to pathological and vice versa) for unsupervised
learning, supervised learning, and clinical evaluation were considered as difficult. The lowest number
of difficult (false negative) records was for the clinical evaluation. There was no common characteristic
of the difficult examples from the clinical point of view nor was there a technical factor that would be
significant. In addition, the difficult false negatives were not pathological when a BE or BDecf was
considered. From the supervised point of view (Naive Bayes, SVM, C4.5, and Adaboost) the difficult
false negatives and easy true positives were almost identical while the false positives were different
in majority. Probably, the high ratio of false positive results is caused by class imbalance where the
minority class were oversampled using SMOTE. The number of false positives could be reduced by
addition of pathological examples or by using another technique (an alternative to the SMOTE).

Clustering of fetal heart rate We described the fetal heart rate with comprehensive set of features
and used Gaussian mixture model (GMM) to model the feature space. The best model was found to
have three components, m̂ = 3. The GMM is an unsupervised technique and helps to discover the
underlying structure of the data. The created model best corresponded to the latent class model of
clinical evaluation, the LCMce.

Latent class regression using the hierarchical model The classification using the latent regression
analysis yielded the best results. The features were modelled with logistic regression (LCRHM model)
and the latent class was simultaneously estimated with coefficients of logistic regression. For the
pathological latent class the LCRHM most inclined to the LCMce model. This behaviour was expected
since also the GMM model best corresponded to the LCMce. On the other hand, the normal and
suspicious latent class were better modelled using MVbm and AS5 min..

The results of sensitivity 66% (59–71) specificity 89% (86–92), precision 66% (59–73), and
F-measure 65% (60–70) were superior to the results when a latent class was estimated first (LCMHM
model) and, more importantly, the results were superior to those achieved when a pH was used as the
singular, fool proof, marker of labour outcome. The comparison to other works is impossible since the
concept of the model is novel and has not been used in any other work so far. More importantly, in
other works a much smaller and ad-hoc created databases were used. Most of the works use a database
size of lower than 100 records. It is unlikely that database of this size would reflect the inter-individual
differences in very complex fetal behaviour and mechanism of their defence to the labour stress. Even
the database presented in our work might be insufficient.

The hierarchical model and its use The hierarchical model presented in this chapter is simple
and intuitive. The model could be easily used in any other work. Only the probabilities of the
model A(t28)

bm, A(t28)
as, and A(t28)

ce and prevalence of classes p = {P (normal), P (sus-
picious), P (pathological)} are required. The limitation of the model is the need of multiple clinical
evaluations of CTG though the annotation of CTG by clinicians is not that time consuming (approx-
imately 4 seconds for 30 min. of CTG). The hierarchical model provided encouraging results for
automatic classification of CTG records and overcome the variability in different markers used for
labour outcome evaluation. We showed that it is possible to automatically analyse the CTG and provide
information, which could be used as a support for clinical decision making.



Chapter 9

Conclusion and discussion

In this work we described and implemented a novel classification system for fetal well-being evaluation.
The system includes preprocessing of fetal heart rate and its analysis using a comprehensive set of
features. Further, the system combines different sources of information in order to properly evaluate
fetal well-being during labour. The developed system considers biochemical markers, Apgar score, and
clinical evaluation of CTG as imprecise sources of information and is able to overcome discrepancies
between them. This work clearly met the goals set in the Introduction (Chapter 1). We summarize our
objectives in Section 9.1 and in the next Section 9.2 we detail the thesis contributions to the state of
the art of CTG field.

9.1 Accomplishment of the objectives

In this section we summarize the achieved goals of the thesis stated in Section 1.1 (Chapter 1). The
objectives of this thesis were as follows:

1. We performed a critical analysis of used databases and algorithms. In the review (Chap-
ter 3) we showed that in most of the works a small, ad-hoc created, databases are used. Even
more, in almost every work different criteria are applied for division into target classes. We
showed that classification performance decrease with increasing data size.

2. We introduced the first open-access database for research on intrapartum CTG signal process-
ing and analysis in Chapter 4. The database is reasonably large and allows researches to develop
algorithms/methods for CTG analysis and classification. Using the CTU-UHB database different
approaches can be easily compared with one another in the objective fashion. We firmly believe
that this unique database will stimulate the research in CTG processing and classification.

3. We proposed a novel model for clinical evaluation of CTG in Chapter 6. The model better
accounts for high inter-observer variability and is able to estimate the unknown truth from
multiple noisy clinical annotations. The model also allows us to analyse different number of
classes than clinicians commonly use and provide more stable results than majority voting.

4. We classified the FHR features using pH that was used as a discriminator between two types
of FHR records (normal and abnormal) in Chapter 7. We showed that frequency based features
are good descriptors of abnormal fetal heart rate. We performed the classification using different
techniques and provided unique results on the largest database.

5. We designed and developed a novel hierarchical model for fetal heart rate evaluation in
Chapter 8. The model defines the labour outcome as a mixture of biochemical markers (pH,
BE, BDecf), Apgar score, and latent class model of clinical evaluation of CTG. The model is
able to overcome the discrepancy between the individual components and model the imprecise
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definition of labour outcome. Moreover, the model provides accurate information about fetal
well-being and relates the FHR patterns to adverse labour outcome using the logistic regression.

9.2 Scientific contributions

In addition to the presented achievements the thesis contributed scientifically to the CTG analysis,
evaluation, and classification as follows:

Analysis of clinical evaluation We performed the largest study on clinical evaluation (largest
in terms when both, number of clinicians and number of evaluated records are considered). We
gathered clinical evaluation from nine practising clinicians, where each clinician evaluated 634 records
(approximately 691 hours of CTG records). We showed that there is a large inter and intra observer
variability and, more importantly, even with a large number of clinicians, the consensus (simple
majority voting) can not be reached. This problem we refer to as stability of majority voting and, in
Chapter 6, we showed how to improve the clinicians’ consensus (stability of consensus) using a latent
class model.

Latent class analysis of clinical evaluation We contributed to the unresolved controversy of how
many classes should be used for CTG evaluation in Chapter 6. We showed that clinicians evaluate
the CTG into 4 classes, despite the fact that they should use 3 classes based on FIGO guidelines. The
difference between 3-tier and 4-tier classes lies in better separation of pathological records from the
other ones. In other words, there is a clear pathological group for which there is a good agreement
among clinicians; for the other classes the evaluation is more diverse and splitting these classes to
more and more smaller classes would not contribute in lowering clinicians variability.

Link between FHR features and clinical evaluation In Chapter 6 we showed that clinical evalua-
tion was in accordance to clinical features such as decelerations and baseline. Intuitively, these features
must perform the best. The clinical evaluation was not significant to the short term variability features,
which are impossible to assess visually. On the other hand the quantity of frequency and nonlinear
found significant suggests that the ‘intuition’ based part of the decision process is rather large. The
general approach to the FHR/CTG assessment is indeed based on the official FIGO guidelines. But the
guidelines contain crisp and clear thresholds and rules which are difficult to precisely adhere to in a
clinical setting.

Clustering of fetal behaviour via FHR We showed that fetal behaviour represented by fetal heart
rate could be the best quantized into three categories (Chapter 8). However, the three groups (clusters)
of FHR features, represented by a mixture of multivariate Gaussian model, only vaguely corresponded
to the biochemical markers. The correspondence was better for clinical evaluation. This supports the
conclusion that the link between FHR and biochemical markers is imprecise.

Methodology of database development and annotation We designed and developed the database
based on a new methodology that is also proposed for the development of similar databases that can be
used for extraction of medical knowledge, classification, and design and testing of new methods and
algorithms. We also developed a new software (the CTGAnnotator) to obtain clinical annotations to
the existing database. The CTGAnnotator and process of annotation used the methodology designed
for annotation of clinical data.
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9.3 Future work

When directing further research many works use a similar sentence that could be formulated as follows:
"we obtained promising results for future research, which should be confirmed on a larger database".
Even though we worked with one of the largest database in the field and provided unique results we
must use the same words. More data is needed to confirm our encouraging results. In particular, the
estimated trend (see Figure 3.2) between data size and quality of results would be of great interest.
Another direction would be to further study the difficult (misclassified) records from a clinical point of
view and try to discover an underlying relationship.

In the design of the novel hierarchical model we aimed to use simple techniques in order not
to encapsulate the model into complicated structure and provide a clear picture of its interpretation
capabilities. For the hierarchical model we used the latent class model when we categorized the pH
into three classes. Possibly the latent trait model that would use the original continuous pH might
offer additional information. Another improvement of the model might be gained by using latent
class model of multiple Apgar score evaluations, i.e. to obtain several estimates of Apgar score from
practitioners. On the input side of the model, there could be benefit of using other features to describe
the complex behaviour of fetus. Especially the multi-fractal features seems to be promising lately. For
the feature extraction another technique could be used instead of principal component analysis. A
technique that would be able to also map a nonlinear relationship between the individual features and
for the classification part a more powerful classifier instead of logistic regression could be employed.
A better classifier or combination of classifiers might provide even better results than those achieved.
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