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Abstract

Fetal Heart Rate (FHR) is clinically used for early
detection of fetal acidosis. Despite a marked inter-
est in automatic detection procedures, FHR anal-
ysis remains a challenging signal processing task,
receiving considerable research attention. Among
other difficulties, the two stages of labor (dilation and
active pushing) produce very different FHR dynam-
ics. Most research efforts, however, have either ig-
nored these differences or analyzed only one of the
two stages of labor. In this work, we propose to as-
sess the impact of labor stages on acidosis detec-
tion performance. A state-of-the-art sparse support
vector machine classifier that performs simultane-
ously feature selection and classification is applied
to a large-size and well documented FHR database.
It shows that the selected set of features differs
for each stage and that detection performance im-
proves when the difference between labor stages is
considered.

Keywords Fetal Heart Rate, Acidosis detection labor
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1 Introduction
Intrapartum Fetal Monitoring. Fetal heart rate (FHR)
provides major information about fetal health and is thus
routinely monitored in clinical practice. It is mainly used
to assess well-being of the fetus, and to decide on an oper-
ative delivery. In daily clinical routine, FHR is examined
by visual inspection following clinical guidelines issued
by the International Federation of Gynecology and Ob-
stetrics (FIGO) [1]. However, the intrinsic complexity of
FHR makes its visual interpretation difficult and the sole
use of FIGO guidelines leads to a substantial inter and
intra observer variability [2], which is in part responsi-
ble for a growing number of unnecessary Caesarean sec-
tions [3]. There are hence numerous research efforts de-
voted to automated fetal acidosis early detection.
Automatic FHR processing. Automatic acidosis detec-
tion relies on the use of supervised machine learning,
based on features aiming to capture the relevant charac-
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teristics of FHR temporal dynamics. A wide range of sig-
nal processing techniques have been explored to devise
such features, ranging from computerized FIGO guide-
lines [1] to multifractal analysis [4]; cf. [5] for review.
Labor stages. Automatic FHR analysis is further com-
plicated by the existence of two distinct labor stages.
The first stage (dilatation), is characterized by progres-
sive cervical dilatation and regular contractions. The sec-
ond stage (active pushing), is characterized by a fully di-
lated cervix and expulsive contractions. Both stages are
characterized by largely different temporal dynamics.

State-of-the-art approach is to study either single labor
stage alone, cf. e.g. [6,7] or not to distinguish between the
stages at all [8,9]. While the former approach is method-
ologically correct, it discards data that might be useful
for detection improvement. The latter approach is im-
paired by the potential different FHR dynamics: relevant
features might thus change drastically from one stage to
the other, and negatively impact classifier generalization
ability.
Related works. There have been only few attempts to
study the impact of the transition between stages in FHR
detection. Nevertheless, some preliminary analyses have
been performed to assess how each stage impacts the
Hurst exponent [10] and entropy rates [11]. However
there is no systematic reports on how such stage differ-
ences impact supervised classification.
Goals, contributions and outline. The present contri-
bution aims to investigate the impact of labor stages in
supervised classification. Both the selection of relevant
features and classification performance are compared be-
tween the two stages, with emphasis on the existence of
features that are discriminative in both stages. To achieve
these goals, Sparse-Support Vector Machine (S-SVM),
for joint classification and feature selection, is applied to
a comprehensive set of FHR features, computed from a
large FHR database (cf. Section 2). Classification per-
formance and feature selection are compared, jointly for
both stages and independently for each one, cf. Section 3.

2 Methods
Database. FHR data were collected at Femme-Mère-
Enfant hospital, in Lyon, France, during daily routine
monitoring from 2000 to 2010. Recording were per-
formed using STAN S21 or S31 devices with internal
scalp electrodes. Clinical information was provided by
the obstetrician in charge, notably the umbilical artery



Table 1: Clinical data for both stages (acidotic vs. normal group), reported as mean (standard deviation). Statistical
differences between acidotic and normal subjects(p < 0.05) are indicated with †.

SI SII

Acidotic Normal Acidotic Normal
n=27 n=1015 n=28 n=734

Birth-weight (g) 3383 (446) 3329 (472) 3452 (400) 3366 (444)
Operative delivery for fetal distress (n) 12 (44%) 213 (21%)† 13 (46%) 151 (21%)†

Umbilical cord arterial pH 7.01 (0.03) 7.24 (0.07)† 7.01 (0.04) 7.22 (0.06)†

Apgar score at 5 minutes 9.37 (0.93) 9.89 (0.53) 9.57 (0.79) 9.90 (0.43)
Length of second stage (min) 8.67 (5.02) 6.82 (5.09) 27.86 (9.67) 27.64 (9.85)
Time from end of rec. and birth (min) 1.61 (2.72) 0.81 (1.87)† 1.93 (3.36) 0.96 (2.08)

pH after delivery and the decision for intervention due to
suspected acidosis [12]. Subject inclusion criteria were
detailed in [7, 12], leading to a set, S, of N = 1804
recordings, gathering: acidotic subjects, N+ = 55, with
pH ≤ 7.05 and normal cases, N− = 1749, with pH >
7.05 [13]. For the purpose of first vs. second stage com-
parison, subjects were further split into two groups based
on the second stage duration (tII ): set SI with tII ≤ 15
min and set SII with tII > 15 min. Relevant clinical data
are reported in Table 1. FHR analysis was systematically
conducted on the last 20 minutes of FHR recordings, as
illustrated in Fig. 1.
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Figure 1: Analyzed regions. Rectangles indicate the last
20 min under analysis SI (left) and SII (right).

Features. The set of 20 features as described in [7] is
used. They are organized in three groups labeled auto-
mated FIGO, spectral and scale-free dynamics.
FIGO enhanced and automated FIGO features. They
are based on FIGO guidelines, used by obstetricians to
evaluate FHR: baseline evolution, variability and char-
acterisation of accelerations/decelerations [1]. Baseline
evolution is modeled by a linear regression: B(t) =
β0 + β1t. Long and short term variability (LTV and
STV , respectively) are computed with the standard pro-
cedures detailed in [1]. The number of accelerations and
decelerations (#acc and #dec) are counted using the
definitions in [1]. Finally, decelerations are further quan-
tified by their average depth MADdtrd, average duration
Tstress and average area Adec.
Spectral features. Spectral behavior of FHR is quan-
tified by computing the energy in predefined frequency
bands. Since no consensus has been reached on the def-
inition of such bands for fetuses (cf. [14, 15] for discus-
sions), the definitions for adults [15] are used: very low
frequency EV LF ([0.003, 0.04] Hz), low frequency ELF

([0.04, 0.15] Hz), and high frequency EHF ([0.04, 0.15]
Hz). Finally, the ratio of ELF and EHF , denoted as
LF/HF , and the spectral index α [15], estimated over
both LF and HF bands, are computed. All spectral esti-

mates are computed using the Welch periodogram.
Scale-free dynamics features. Following [4, 7, 15],
scale-invariance/multifractal features are computed to
quantify the multiscale and complex FHR temporal dy-
namics. All these features are estimated using linear
regressions based on relevant multiresolution quantities.
Features H and hmin are computed from the moments of
wavelet coefficients. Features c1, c2, c3 and c4 are com-
puted from the cumulants of wavelet leaders [16]. Fea-
tures H and c1 are related to the correlation structure of
FHR, while hmin, c2, c3 and c4 measure information con-
tained in its higher-order statistics. see also e.g. [4, 15].
Feature preprocessing. Outliers were removed by Win-
sorization in the interval [Q1 − 3IQR,Q3 + 3IQR],
where Qi is the i-th quartile and IQR = Q3 − Q1 is
the interquartile range. All features were standardized.
Sparse Support Vector Machine. S-SVM is a machine-
learning tool that performs jointly classification and fea-
ture selection [17]. Like traditional SVM, S-SVM com-
putes an optimal hyperplane that separates normal and
acidotic cases. In addition, S-SVM performs feature se-
lection by imposing an `1-norm regularization that leads
to a decision rule that effectively involves only a limited
subsets of features regarded as relevant. S-SVM thus out-
puts a feature-weight vector w = (wi) that quantifies the
importance granted to each feature: wi = 0 indicates
features that are poorly discriminant and thus not used
in classification, whereas larger wi indicates a large dis-
criminative power of feature i. Training of S-SVM de-
pends on a regularization parameter C that controls the
trade-off between decision rule (or feature) sparsity and
misclassification rate (with higher values of C decreasing
sparsity). For further details on S-SVM, see [7, 17] and
references therein.
Performance assessment. Performance is quantified by
the specificity (SP), sensitivity (SE) and balanced error
rate: BER = (SP + SE)/2. Selection of C, com-
putation of weights wi and performance assessment are
performed using double-loop stratified k-fold cross vali-
dation (CV), where k is chosen as the number of acidotic
cases (see [7] for details).

3 Comparisons between the labor stages
Pairwise correlation. Fig. 3 displays the pairwise corre-
lations of all features, for each stage, and reveals several
interesting characteristics. First, the correlation structure
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Figure 3: Correlation. Pairwise correlation matrix of all
the features for the two labor stages: a) SI , b) SII .

is similar for both stages, but overall correlation is higher
during SI than during SII . Second, several features (e.g.
β0, β1,, c2) are uncorrelated to all others, irrespective of
the stage. Third, features H, c1, and hmin have very high
correlations [7] in both stages. Due to proximity of H ,
hmin and c1 in nature, H and hmin are considered redun-
dant to c1 and are removed from further analysis to ease
interpretation of results. Other highly-correlated features
are kept since they are of different natures.
Feature selection and classification. Fig. 2 displays the
weights produced for each feature (top panels) and clas-
sification performance (bottom panels), as functions of
the sparsity parameter C. First, it illustrates that low val-
ues of C promote sparsity with less features involved in
classification. Second, it shows that optimal performance
is obtained for a level of sparsity referred to as Copt that
never corresponds to the use of all available features. This
highlights the need to perform feature selection to prevent
unnecessary over-complicated and over-fitted models.
Optimal feature set. Table 2 shows selected features and
their corresponding weights, at the optimal level C =
Copt (only those with nonzero weights are displayed). It
can be seen that classification in SI requires only four
features: MADdtrd and Tstress (decelerations’ amplitude
and frequency), β0 (baseline level), and c1 (scale-free lin-
ear variability). For SII the feature vector is even more

Table 2: Selected features and weights.
S w

c1 .68
Tstress .43
MADdtrd .41
c2 .29
EHF .18
STV .17
β0 .16

SI w

MADdtrd .82
β0 .50
c1 .24
Tstress .16

SII w

c1 .89
c2 .45

sparse and contains only two features: c1 and c2 (scale-
free nonlinear variability). In contrast, for S, not only the
features that are significant for SI and SII , but also extra
features such as measures of short term variability like
STV and EHF are included. These additional features
are likely needed to account for the additional inter-stage
variability, which leads to an overall decrease in detec-
tion performance compared to what can be achieved us-
ing the knowledge about the stage of the delivery. Finally,
Table 2 highlights that c1 is the only feature used in all
groups. Interestingly, it consists of robust quantification
of FHR variability (cf. e.g., [7, 15]).
First versus second stage. S-SVM selects for SI features
classically rooted in clinical practice, such as MADdtrd,
Tstress (both quantifying the impact of decelerations),
and β0 (average level of baseline). Interestingly, these
features are no longer used for SII . Since the second
stage is associated with active maternal pushing, large
and frequent decelerations are present in most records,
irrespective of acidosis. In light of the loss of discrimina-
tive power from MADdtrd, Tstress, S-SVM conveniently
replaces them with c2 (which is associated with changes
in local regularity and burstiness of data), as a companion
to the already selected c1.
Optimal classification performance. Classification per-
formance for C = Copt is presented in Table 3. It in-
dicates that that independent evaluation of SI and SII
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Figure 2: S-SVM performance. Feature selection (top row) and classification performance (bottom row) as function of
the regularization parameter C. Results for different sets: a) S, b) SI , and c) SII .



Table 3: Optimal classification performance for differ-
ent combinations of training / testing sets.

Tr / Te SE SP BER #TP #FN #TN #FP

S/S .62 .71 .66 34 21 1241 508
SI/SI .67 .74 .70 18 9 752 263
SII/SII .68 .70 .69 19 9 515 219
S/SI .56 .80 .68 15 12 807 208
S/SII .68 .59 .64 19 9 434 300

results in better classification performance, since simple
models with only the relevant features for each stage are
used. Interestingly, if the classifier trained from S is
tested only with samples from SI and SII , dramatic loses
of either sensitivity or specificity are observed; this indi-
cates that the loss of performance is due to a suboptimal
training of the classifier that fails to fully account for the
characteristics of each stage.

4 Conclusions
This contribution explores the influence of the two

stages of labor on feature selection and classification per-
formance in a supervised classification task. To that end,
it uses a comprehensive set of FHR features and a Sparse-
SVM framework on three scenarios: i) naive classifica-
tion without recognizing labor stages ; ii) separate classi-
fication of records in the first stage ; iii) separate classifi-
cation of the records in the second stage. It was shown
that failure to recognize the stages leads to a complex
model, involving a large number of features, with inferior
performance. In contrast, results indicate that an indepen-
dent evaluation of both stages provides simpler models
(less features) with better performance. Further, selected
features for the first stage confirm the predominance of
decelerations and variability for acidosis detection while,
for the second stage, decelerations are no longer informa-
tive and other measures of variability, namely c1 and c2,
are preferred.
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